메뉴 건너뛰기




Volumn 2015-September, Issue , 2015, Pages 6331-6335

Bearing fault diagnosis method based on stacked autoencoder and softmax regression

Author keywords

Classification; Fault Diagnosis; Robustness; Softmax Regression; Stacked Autoencoder

Indexed keywords

BEARINGS (MACHINE PARTS); CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; DEEP NEURAL NETWORKS; FAILURE ANALYSIS; REGRESSION ANALYSIS; ROBUSTNESS (CONTROL SYSTEMS);

EID: 84946600673     PISSN: 19341768     EISSN: 21612927     Source Type: Conference Proceeding    
DOI: 10.1109/ChiCC.2015.7260634     Document Type: Conference Paper
Times cited : (105)

References (14)
  • 1
    • 0034297837 scopus 로고    scopus 로고
    • Neural-network-based motor rolling bearing fault diagnosis[J]
    • Li B, Chow M Y, et al. Neural-network-based motor rolling bearing fault diagnosis[J]. Industrial Electronics, IEEE Transactions 2000, 47(5):1060-1069.
    • (2000) Industrial Electronics, IEEE Transactions , vol.47 , Issue.5 , pp. 1060-1069
    • Li, B.1    Chow, M.Y.2
  • 2
    • 0036532606 scopus 로고    scopus 로고
    • Rolling element bearing fault diagnosis using wavelet packets[J]
    • Nikolaou N G, Antoniadis I A. Rolling element bearing fault diagnosis using wavelet packets[J]. Ndt & E International, 2002, 35(3):197-205.
    • (2002) NDT & e International , vol.35 , Issue.3 , pp. 197-205
    • Nikolaou, N.G.1    Antoniadis, I.A.2
  • 3
    • 0012020346 scopus 로고    scopus 로고
    • Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities[J]
    • Peter W T, Peng Y H, Yam R. Wavelet analysis and envelope detection for rolling element bearing fault diagnosis-their effectiveness and flexibilities[J]. Journal of vibration and acoustics, 2001, 123(3):303-310.
    • (2001) Journal of Vibration and Acoustics , vol.123 , Issue.3 , pp. 303-310
    • Peter, W.T.1    Peng, Y.H.2    Yam, R.3
  • 4
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]
    • Samanta B, Al-Balushi K R. Artificial neural network based fault diagnostics of rolling element bearings using time-domain features[J]. Mechanical systems and signal processing, 2003, 17(2):317-328.
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 5
    • 0344704278 scopus 로고    scopus 로고
    • A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks[J]
    • Kong F, Chen R. A combined method for triplex pump fault diagnosis based on wavelet transform, fuzzy logic and neuro-networks[J]. Mechanical Systems and Signal Processing, 2004, 18(1):161-168.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , Issue.1 , pp. 161-168
    • Kong, F.1    Chen, R.2
  • 6
    • 2942525326 scopus 로고    scopus 로고
    • Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]
    • Lou X, Loparo K A. Bearing fault diagnosis based on wavelet transform and fuzzy inference[J]. Mechanical systems and signal processing, 2004, 18(5):1077-1095.
    • (2004) Mechanical Systems and Signal Processing , vol.18 , Issue.5 , pp. 1077-1095
    • Lou, X.1    Loparo, K.A.2
  • 7
    • 84946608184 scopus 로고    scopus 로고
    • Induction motors bearing failures detection and diagnosis using a RBF ANN Park pattern based method[C]
    • Önel I, Senol I, Benbouzid M. Induction motors bearing failures detection and diagnosis using a RBF ANN Park pattern based method[C], ICEM'06. 2006:6pp.
    • (2006) ICEM'06
    • Önel, I.1    Senol, I.2    Benbouzid, M.3
  • 8
    • 34249751601 scopus 로고    scopus 로고
    • Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]
    • Rai V K, Mohanty A R. Bearing fault diagnosis using FFT of intrinsic mode functions in Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(6):2607-2615.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2607-2615
    • Rai, V.K.1    Mohanty, A.R.2
  • 9
    • 79960043301 scopus 로고    scopus 로고
    • Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models[J]
    • Yu J. Bearing performance degradation assessment using locality preserving projections and Gaussian mixture models[J]. Mechanical Systems and Signal Processing, 2011, 25(7):2573-2588.
    • (2011) Mechanical Systems and Signal Processing , vol.25 , Issue.7 , pp. 2573-2588
    • Yu, J.1
  • 10
    • 84946572243 scopus 로고    scopus 로고
    • Naïve Bayesian classifier for on-line remaining useful life prediction of degrading bearings[C]
    • Di Maio F, Ng S S Y, Tsui K L, et al. Naïve Bayesian classifier for on-line remaining useful life prediction of degrading bearings[C], MMR 2011:1-14.
    • (2011) MMR , pp. 1-14
    • Di Maio, F.1    Ng, S.S.Y.2    Tsui, K.L.3
  • 11
    • 33750591809 scopus 로고    scopus 로고
    • Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing[J]
    • Sugumaran V, Muralidharan V, Ramachandran K I. Feature selection using decision tree and classification through proximal support vector machine for fault diagnostics of roller bearing[J]. Mechanical systems and signal processing, 2007, 21(2):930-942.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.2 , pp. 930-942
    • Sugumaran, V.1    Muralidharan, V.2    Ramachandran, K.I.3
  • 12
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis[J]
    • Widodo A, Yang B S. Support vector machine in machine condition monitoring and fault diagnosis[J]. Mechanical Systems and Signal Processing, 2007, 21(6):2560-2574.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.S.2
  • 13
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets[J]
    • Hinton G, Osindero S, Teh Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1554.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.W.3
  • 14
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks[J]
    • Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.