메뉴 건너뛰기




Volumn , Issue , 2016, Pages 32-37

Deep Belief Networks Ensemble with Multi-objective Optimization for Failure Diagnosis

Author keywords

Deep Belief Networks; Degradation Pattern Classification; Failure Diagnosis; Multi objective Ensemble

Indexed keywords

BAYESIAN NETWORKS; CYBERNETICS; DIAGNOSIS; FAILURE ANALYSIS; FAULT DETECTION; MULTIOBJECTIVE OPTIMIZATION; OPTIMIZATION;

EID: 84964414629     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/SMC.2015.19     Document Type: Conference Paper
Times cited : (45)

References (21)
  • 1
    • 34249661124 scopus 로고    scopus 로고
    • Support vector machine in machine condition monitoring and fault diagnosis
    • A. Widodo and B.-S. Yang, Support vector machine in machine condition monitoring and fault diagnosis, Mechanical Systems and Signal Processing, vol. 21, no. 6, pp. 2560-2574, 2007.
    • (2007) Mechanical Systems and Signal Processing , vol.21 , Issue.6 , pp. 2560-2574
    • Widodo, A.1    Yang, B.-S.2
  • 4
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • P. Tamilselvan and P. Wang, Failure diagnosis using deep belief learning based health state classification, Reliability Engineering & System Safety, vol. 115, pp. 124-135, 2013.
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 5
    • 0742306448 scopus 로고    scopus 로고
    • Global exponential stability of discretetime neural networks for constrained quadratic optimization
    • K. C. Tan, H. Tang, and Z. Yi, Global exponential stability of discretetime neural networks for constrained quadratic optimization, Neurocomputing, vol. 56, pp. 399-406, 2004.
    • (2004) Neurocomputing , vol.56 , pp. 399-406
    • Tan, K.C.1    Tang, H.2    Yi, Z.3
  • 6
    • 71749089181 scopus 로고    scopus 로고
    • An evolutionary memetic algorithm for rule extraction
    • J. H. Ang, K. Tan, and A. Mamun, An evolutionary memetic algorithm for rule extraction, Expert Systems with Applications, vol. 37, no. 2, pp. 1302-1315, 2010.
    • (2010) Expert Systems with Applications , vol.37 , Issue.2 , pp. 1302-1315
    • Ang, J.H.1    Tan, K.2    Mamun, A.3
  • 9
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • G. Hinton, S. Osindero, and Y.-W. Teh, A fast learning algorithm for deep belief nets, Neural computation, vol. 18, no. 7, pp. 1527-1554, 2006.
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.1    Osindero, S.2    Teh, Y.-W.3
  • 11
    • 58349111323 scopus 로고    scopus 로고
    • An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network
    • J.-D. Wu and C.-H. Liu, An expert system for fault diagnosis in internal combustion engines using wavelet packet transform and neural network, Expert systems with applications, vol. 36, no. 3, pp. 4278-4286, 2009.
    • (2009) Expert Systems with Applications , vol.36 , Issue.3 , pp. 4278-4286
    • Wu, J.-D.1    Liu, C.-H.2
  • 13
    • 32544450795 scopus 로고    scopus 로고
    • Ensemble learning using multi-objective evolutionary algorithms
    • A. Chandra and X. Yao, Ensemble learning using multi-objective evolutionary algorithms, Journal of Mathematical Modelling and Algorithms, vol. 5, no. 4, pp. 417-445, 2006.
    • (2006) Journal of Mathematical Modelling and Algorithms , vol.5 , Issue.4 , pp. 417-445
    • Chandra, A.1    Yao, X.2
  • 15
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted boltzmann machines
    • G. Hinton, A practical guide to training restricted boltzmann machines, Momentum, vol. 9, no. 1, p. 926, 2010.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1
  • 16
    • 9244240298 scopus 로고    scopus 로고
    • A columnar competitive model for solving combinatorial optimization problems
    • H. Tang, K. C. Tan, and Z. Yi, A columnar competitive model for solving combinatorial optimization problems, Neural Networks, IEEE Transactions on, vol. 15, no. 6, pp. 1568-1574, 2004.
    • (2004) Neural Networks IEEE Transactions on , vol.15 , Issue.6 , pp. 1568-1574
    • Tang, H.1    Tan, K.C.2    Yi, Z.3
  • 17
    • 33749017627 scopus 로고    scopus 로고
    • A coevolutionary algorithm for rules discovery in data mining
    • K. C. Tan, Q. Yu, and J. H. Ang, A coevolutionary algorithm for rules discovery in data mining, International Journal of Systems Science, vol. 37, no. 12, pp. 835-864, 2006.
    • (2006) International Journal of Systems Science , vol.37 , Issue.12 , pp. 835-864
    • Tan, K.C.1    Yu, Q.2    Ang, J.H.3
  • 18
    • 0036647002 scopus 로고    scopus 로고
    • Grey-box model identification via evolutionary computing
    • K. Tan and Y. Li, Grey-box model identification via evolutionary computing, Control Engineering Practice, vol. 10, no. 7, pp. 673-684, 2002.
    • (2002) Control Engineering Practice , vol.10 , Issue.7 , pp. 673-684
    • Tan, K.1    Li, Y.2
  • 20
    • 34548108555 scopus 로고    scopus 로고
    • Moea/d: A multiobjective evolutionary algorithm based on decomposition
    • Q. Zhang and H. Li, Moea/d: A multiobjective evolutionary algorithm based on decomposition, Evolutionary Computation, IEEE Transactions on, vol. 11, no. 6, pp. 712-731, 2007.
    • (2007) Evolutionary Computation IEEE Transactions on , vol.11 , Issue.6 , pp. 712-731
    • Zhang, Q.1    Li, H.2
  • 21
    • 84922495455 scopus 로고    scopus 로고
    • Turbofan engine degradation simulation data set
    • A. Saxena and K. Goebel., Turbofan Engine Degradation Simulation Data Set, NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), 2008.
    • (2008) NASA Ames Prognostics Data Repository
    • Saxena, A.1    Goebel, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.