메뉴 건너뛰기




Volumn 31, Issue , 2015, Pages 29-34

Analysis of feature extracting ability for cutting state monitoring using deep belief networks

Author keywords

Cutting states monitoring; Deep belief networks; Feature extraction; Intelligent manufacturing

Indexed keywords

ARTIFICIAL INTELLIGENCE; BACKPROPAGATION; COMPLEX NETWORKS; COMPUTER VISION; FEATURE EXTRACTION; FREQUENCY DOMAIN ANALYSIS; LEARNING SYSTEMS; MACHINING CENTERS; MANUFACTURE; MILLING (MACHINING); SPEECH RECOGNITION; WEAR OF MATERIALS;

EID: 84939180924     PISSN: 22128271     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1016/j.procir.2015.03.016     Document Type: Conference Paper
Times cited : (66)

References (20)
  • 1
    • 0034229139 scopus 로고    scopus 로고
    • Recent developments in evolutionary computation for manufacturing optimization: Problems, solutions, and comparisons
    • Dimopoulos, C. and A.M. Zalzala, Recent developments in evolutionary computation for manufacturing optimization: problems, solutions, and comparisons. Evolutionary Computation, IEEE Transactions on, 2000. 4(2): p. 93-113.
    • (2000) Evolutionary Computation, IEEE Transactions on , vol.4 , Issue.2 , pp. 93-113
    • Dimopoulos, C.1    Zalzala, A.M.2
  • 2
    • 80053567516 scopus 로고    scopus 로고
    • Knowledge framework for intelligent manufacturing systems
    • Jardim-Goncalves, R., et al., Knowledge framework for intelligent manufacturing systems. Journal of Intelligent Manufacturing, 2011. 22(5): p. 725-735.
    • (2011) Journal of Intelligent Manufacturing , vol.22 , Issue.5 , pp. 725-735
    • Jardim-Goncalves, R.1
  • 4
    • 74249115778 scopus 로고    scopus 로고
    • Application of soft computing techniques in machining performance prediction and optimization: A literature review
    • Chandrasekaran, M., et al., Application of soft computing techniques in machining performance prediction and optimization: a literature review. The International Journal of Advanced Manufacturing Technology, 2010. 46(5-8): p. 445-464.
    • (2010) The International Journal of Advanced Manufacturing Technology , vol.46 , Issue.5-8 , pp. 445-464
    • Chandrasekaran, M.1
  • 5
    • 84893464266 scopus 로고    scopus 로고
    • An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks
    • Tran, V.T., F. AlThobiani, and A. Ball, An approach to fault diagnosis of reciprocating compressor valves using Teager-Kaiser energy operator and deep belief networks. Expert Systems with Applications, 2014. 41(9): p. 4113-4122.
    • (2014) Expert Systems with Applications , vol.41 , Issue.9 , pp. 4113-4122
    • Tran, V.T.1    AlThobiani, F.2    Ball, A.3
  • 7
    • 77955555083 scopus 로고    scopus 로고
    • Advanced monitoring of machining operations
    • Teti, R., et al., Advanced monitoring of machining operations. CIRP Annals-Manufacturing Technology, 2010. 59(2): p. 717-739.
    • (2010) CIRP Annals-Manufacturing Technology , vol.59 , Issue.2 , pp. 717-739
    • Teti, R.1
  • 8
    • 0037345899 scopus 로고    scopus 로고
    • Artificial neural network based fault diagnostics of rolling element bearings using time-domain features
    • Samanta, B. and K.R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical Systems and Signal Processing, 2003. 17(2): p. 317-328.
    • (2003) Mechanical Systems and Signal Processing , vol.17 , Issue.2 , pp. 317-328
    • Samanta, B.1    Al-Balushi, K.R.2
  • 9
    • 76649097959 scopus 로고    scopus 로고
    • On-line chatter detection and identification based on wavelet and support vector machine
    • Yao, Z., D. Mei, and Z. Chen, On-line chatter detection and identification based on wavelet and support vector machine. Journal of Materials Processing Technology, 2010. 210(5): p. 713-719.
    • (2010) Journal of Materials Processing Technology , vol.210 , Issue.5 , pp. 713-719
    • Yao, Z.1    Mei, D.2    Chen, Z.3
  • 10
    • 15544385732 scopus 로고    scopus 로고
    • Automatic feature extraction for classifying audio data
    • Mierswa, I. and K. Morik, Automatic feature extraction for classifying audio data. Machine learning, 2005. 58(2-3): p. 127-149.
    • (2005) Machine Learning , vol.58 , Issue.2-3 , pp. 127-149
    • Mierswa, I.1    Morik, K.2
  • 11
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • Hinton, G.E. and R.R. Salakhutdinov, Reducing the dimensionality of data with neural networks. Science, 2006. 313(5786): p. 504-507.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 12
    • 33645410496 scopus 로고
    • Receptive fields, binocular interaction and functional architecture in the cat's visual cortex
    • Hubel, D.H. and T.N. Wiesel, Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of physiology, 1962. 160(1): p. 106.
    • (1962) The Journal of Physiology , vol.160 , Issue.1 , pp. 106
    • Hubel, D.H.1    Wiesel, T.N.2
  • 13
    • 84892142922 scopus 로고    scopus 로고
    • The learning machines
    • Jones, N., The learning machines. Nature, 2014. 505: p. 146-148.
    • (2014) Nature , vol.505 , pp. 146-148
    • Jones, N.1
  • 15
    • 84883201530 scopus 로고    scopus 로고
    • Deep learning of representations: Looking forward
    • Springer
    • Bengio, Y., Deep learning of representations: Looking forward, in Statistical Language and Speech Processing. 2013, Springer. p. 1-37.
    • (2013) Statistical Language and Speech Processing , pp. 1-37
    • Bengio, Y.1
  • 16
    • 85032751458 scopus 로고    scopus 로고
    • Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups
    • Hinton, G., et al., Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups. Signal Processing Magazine, IEEE, 2012. 29(6): p. 82-97.
    • (2012) Signal Processing Magazine, IEEE , vol.29 , Issue.6 , pp. 82-97
    • Hinton, G.1
  • 17
    • 84875848937 scopus 로고    scopus 로고
    • Failure diagnosis using deep belief learning based health state classification
    • Tamilselvan, P. and P. Wang, Failure diagnosis using deep belief learning based health state classification. Reliability Engineering & System Safety, 2013. 115: p. 124-135.
    • (2013) Reliability Engineering & System Safety , vol.115 , pp. 124-135
    • Tamilselvan, P.1    Wang, P.2
  • 18
    • 84861125212 scopus 로고    scopus 로고
    • A practical guide to training restricted Boltzmann machines
    • Hinton, G., A practical guide to training restricted Boltzmann machines. Momentum, 2010. 9(1): p. 926.
    • (2010) Momentum , vol.9 , Issue.1 , pp. 926
    • Hinton, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.