메뉴 건너뛰기




Volumn 118, Issue , 2014, Pages 114-123

A naive bayes model for robust remaining useful life prediction of lithium-ion battery

Author keywords

Lithium ion battery; Naive Bayes; Prediction; Prognostic; Remaining useful life; State of health

Indexed keywords

BARIUM COMPOUNDS; BATTERY MANAGEMENT SYSTEMS; BAYESIAN NETWORKS; CLASSIFIERS; FORECASTING; IONS; LITHIUM COMPOUNDS; SUPPORT VECTOR MACHINES; TEMPERATURE;

EID: 84891898576     PISSN: 03062619     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apenergy.2013.12.020     Document Type: Article
Times cited : (287)

References (43)
  • 1
    • 80054823206 scopus 로고    scopus 로고
    • System identification and estimation framework for pivotal automotive battery management system characteristics
    • Pattipati B., Sankavaram C., Pattipati K. System identification and estimation framework for pivotal automotive battery management system characteristics. Syst Man Cyber Part C: Appl Rev, IEEE Trans 2011, 41(6):869-884.
    • (2011) Syst Man Cyber Part C: Appl Rev, IEEE Trans , vol.41 , Issue.6 , pp. 869-884
    • Pattipati, B.1    Sankavaram, C.2    Pattipati, K.3
  • 2
    • 84878745510 scopus 로고    scopus 로고
    • Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
    • Waag W., Sauer D.U. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination. Appl Energy 2013, 111:416-427.
    • (2013) Appl Energy , vol.111 , pp. 416-427
    • Waag, W.1    Sauer, D.U.2
  • 3
    • 84861702168 scopus 로고    scopus 로고
    • Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries
    • Sun F., Xiong R., He H., Li W., Aussems J.E.E. Model-based dynamic multi-parameter method for peak power estimation of lithium-ion batteries. Appl Energy 2012, 96:378-386.
    • (2012) Appl Energy , vol.96 , pp. 378-386
    • Sun, F.1    Xiong, R.2    He, H.3    Li, W.4    Aussems, J.E.E.5
  • 4
    • 84869866120 scopus 로고    scopus 로고
    • A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries
    • He Y., Liu X., Zhang C., Chen Z. A new model for state-of-charge (SOC) estimation for high-power Li-ion batteries. Appl Energy 2013, 101:808-814.
    • (2013) Appl Energy , vol.101 , pp. 808-814
    • He, Y.1    Liu, X.2    Zhang, C.3    Chen, Z.4
  • 5
    • 84855292180 scopus 로고    scopus 로고
    • A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation
    • Hu C., Youn B.D., Chung J. A multiscale framework with extended Kalman filter for lithium-ion battery SOC and capacity estimation. Appl Energy 2012, 92:694-704.
    • (2012) Appl Energy , vol.92 , pp. 694-704
    • Hu, C.1    Youn, B.D.2    Chung, J.3
  • 6
    • 84859423588 scopus 로고    scopus 로고
    • Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications
    • Dai H., Wei X., Sun Z., Wang J., Gu W. Online cell SOC estimation of Li-ion battery packs using a dual time-scale Kalman filtering for EV applications. Appl Energy 2012, 95:227-237.
    • (2012) Appl Energy , vol.95 , pp. 227-237
    • Dai, H.1    Wei, X.2    Sun, Z.3    Wang, J.4    Gu, W.5
  • 8
    • 84884650019 scopus 로고    scopus 로고
    • Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction
    • Liu D., Wang H., Peng Y., Xie W., Liao H. Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 2013, 6(8):3654-3668.
    • (2013) Energies , vol.6 , Issue.8 , pp. 3654-3668
    • Liu, D.1    Wang, H.2    Peng, Y.3    Xie, W.4    Liao, H.5
  • 9
    • 80053570039 scopus 로고    scopus 로고
    • Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method
    • He W., Williard N., Osterman M., Pecht M. Prognostics of lithium-ion batteries based on Dempster-Shafer theory and the Bayesian Monte Carlo method. J Power Sour 2011, 196:10314-10321.
    • (2011) J Power Sour , vol.196 , pp. 10314-10321
    • He, W.1    Williard, N.2    Osterman, M.3    Pecht, M.4
  • 11
    • 84878551829 scopus 로고    scopus 로고
    • Reliability risk mitigation of free air cooling through prognostics and health management
    • Dai J., Das D., Ohadi M., Pecht M. Reliability risk mitigation of free air cooling through prognostics and health management. Appl Energy 2013, 111:104-112.
    • (2013) Appl Energy , vol.111 , pp. 104-112
    • Dai, J.1    Das, D.2    Ohadi, M.3    Pecht, M.4
  • 12
    • 79956339515 scopus 로고    scopus 로고
    • A review on prognostics and health monitoring of Li-ion battery
    • Zhang J., Lee J. A review on prognostics and health monitoring of Li-ion battery. J Power Sour 2011, 196(15):6007-6014.
    • (2011) J Power Sour , vol.196 , Issue.15 , pp. 6007-6014
    • Zhang, J.1    Lee, J.2
  • 15
    • 31344468918 scopus 로고    scopus 로고
    • A generalized cycle life model of rechargeable Li-ion batteries
    • Ning G., White R.E., Popov B.N. A generalized cycle life model of rechargeable Li-ion batteries. Electrochim Acta 2006, 51(10):2012-2022.
    • (2006) Electrochim Acta , vol.51 , Issue.10 , pp. 2012-2022
    • Ning, G.1    White, R.E.2    Popov, B.N.3
  • 16
    • 40849101538 scopus 로고    scopus 로고
    • Capacity fade analysis of a lithium ion cell
    • Zhang Q., White R.E. Capacity fade analysis of a lithium ion cell. J Power Sour 2008, 179(2):793-798.
    • (2008) J Power Sour , vol.179 , Issue.2 , pp. 793-798
    • Zhang, Q.1    White, R.E.2
  • 17
    • 77954774399 scopus 로고    scopus 로고
    • Sensor systems of prognostics and health management
    • Cheng S., Azarian M.H., Pecht M.G. Sensor systems of prognostics and health management. Sensors 2010, 10(6):5774-5797.
    • (2010) Sensors , vol.10 , Issue.6 , pp. 5774-5797
    • Cheng, S.1    Azarian, M.H.2    Pecht, M.G.3
  • 18
    • 84879837145 scopus 로고    scopus 로고
    • An ensemble model for predicting the remaining useful performance of lithium-ion batteries
    • Xing Y., Ma E.W., Tsui K.L., Pecht M. An ensemble model for predicting the remaining useful performance of lithium-ion batteries. Microelectron Reliab 2013, 53(6):811-820.
    • (2013) Microelectron Reliab , vol.53 , Issue.6 , pp. 811-820
    • Xing, Y.1    Ma, E.W.2    Tsui, K.L.3    Pecht, M.4
  • 19
    • 60149085988 scopus 로고    scopus 로고
    • Prognostics methods for battery health monitoring using a Bayesian framework
    • Saha B., Goebel K., Poll S., Christophersen J. Prognostics methods for battery health monitoring using a Bayesian framework. Instrum Meas Mag, IEEE Trans 2009, 58(2):291-296.
    • (2009) Instrum Meas Mag, IEEE Trans , vol.58 , Issue.2 , pp. 291-296
    • Saha, B.1    Goebel, K.2    Poll, S.3    Christophersen, J.4
  • 20
    • 84881527299 scopus 로고    scopus 로고
    • State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures
    • Xing Y., He W., Pecht M., Tsui K.L. State of charge estimation of lithium-ion batteries using the open-circuit voltage at various ambient temperatures. Appl Energy 2014, 113:106-115.
    • (2014) Appl Energy , vol.113 , pp. 106-115
    • Xing, Y.1    He, W.2    Pecht, M.3    Tsui, K.L.4
  • 22
    • 17044371543 scopus 로고    scopus 로고
    • Exploring conditions for the optimality of naive Bayes
    • Zhang H. Exploring conditions for the optimality of naive Bayes. Int J Pattern Recognit Artif Intell 2005, 19(2):183-198.
    • (2005) Int J Pattern Recognit Artif Intell , vol.19 , Issue.2 , pp. 183-198
    • Zhang, H.1
  • 23
    • 59749084739 scopus 로고    scopus 로고
    • Bayesian classifiers based on kernel density estimation: flexible classifiers
    • Pérez A., Larrañaga P., Inza I. Bayesian classifiers based on kernel density estimation: flexible classifiers. Int J Approx Reason 2009, 50(2):341-362.
    • (2009) Int J Approx Reason , vol.50 , Issue.2 , pp. 341-362
    • Pérez, A.1    Larrañaga, P.2    Inza, I.3
  • 25
    • 0012901784 scopus 로고    scopus 로고
    • Regression using classification algorithms
    • Torgo L., Gama J. Regression using classification algorithms. Intell Data Anal 1997, 1(1):275-292.
    • (1997) Intell Data Anal , vol.1 , Issue.1 , pp. 275-292
    • Torgo, L.1    Gama, J.2
  • 26
    • 0035528674 scopus 로고    scopus 로고
    • Idiot's Bayes not so stupid after all?
    • Hand D.J., Yu K. Idiot's Bayes not so stupid after all?. Int Stat Rev 2001, 69(3):385-398.
    • (2001) Int Stat Rev , vol.69 , Issue.3 , pp. 385-398
    • Hand, D.J.1    Yu, K.2
  • 27
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos P., Pazzani M. On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 1997, 29(2):103-130.
    • (1997) Mach Learn , vol.29 , Issue.2 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 28
    • 84957069091 scopus 로고    scopus 로고
    • Naive (Bayes) at forty the independence assumption in information retrieval
    • Lewis D. Naive (Bayes) at forty the independence assumption in information retrieval. Mach Learn: ECML-98 1998, 4-15.
    • (1998) Mach Learn: ECML-98 , pp. 4-15
    • Lewis, D.1
  • 29
  • 31
    • 33644870376 scopus 로고    scopus 로고
    • On the optimality of naive Bayes with dependent binary features
    • Kuncheva L.I. On the optimality of naive Bayes with dependent binary features. Pattern Recogn Lett 2006, 27(7):830-837.
    • (2006) Pattern Recogn Lett , vol.27 , Issue.7 , pp. 830-837
    • Kuncheva, L.I.1
  • 32
    • 0029214772 scopus 로고
    • Some inconsistencies and misidentified modeling assumptions in probabilistic information retrieval
    • Cooper W.S. Some inconsistencies and misidentified modeling assumptions in probabilistic information retrieval. ACM Trans Inform Syst (TOIS) 1995, 13(1):100-111.
    • (1995) ACM Trans Inform Syst (TOIS) , vol.13 , Issue.1 , pp. 100-111
    • Cooper, W.S.1
  • 33
    • 84891892150 scopus 로고    scopus 로고
    • Adjusted probability naive Bayesian induction
    • Webb G., Pazzani M. Adjusted probability naive Bayesian induction. Adv Top Artif Intell 1998, 285-295.
    • (1998) Adv Top Artif Intell , pp. 285-295
    • Webb, G.1    Pazzani, M.2
  • 34
    • 84891897579 scopus 로고    scopus 로고
    • Naive Bayesian classifier for on-line remaining useful life prediction of degrading bearings
    • MMR2011, Beijing
    • Di Maio F., Ng S.S.Y., Tsui K.L., Zio E. Naive Bayesian classifier for on-line remaining useful life prediction of degrading bearings. 7th Int Conf Math Methods Reliab 2011, MMR2011, Beijing.
    • (2011) 7th Int Conf Math Methods Reliab
    • Di Maio, F.1    Ng, S.S.Y.2    Tsui, K.L.3    Zio, E.4
  • 35
    • 0003024008 scopus 로고
    • On the handling of continuous-valued attributes in decision tree generation
    • Fayyad U.M., Irani K.B. On the handling of continuous-valued attributes in decision tree generation. Mach Learn 1992, 8:87-102.
    • (1992) Mach Learn , vol.8 , pp. 87-102
    • Fayyad, U.M.1    Irani, K.B.2
  • 39
    • 84887089385 scopus 로고    scopus 로고
    • Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods
    • Nuhic A., Terzimehic T., Soczka-Guth T., Buchholz M., Dietmayer K. Health diagnosis and remaining useful life prognostics of lithium-ion batteries using data-driven methods. J Power Sour 2013, 239:680-688.
    • (2013) J Power Sour , vol.239 , pp. 680-688
    • Nuhic, A.1    Terzimehic, T.2    Soczka-Guth, T.3    Buchholz, M.4    Dietmayer, K.5
  • 40
    • 84855865261 scopus 로고    scopus 로고
    • Bearing fault prognosis based on health state probability estimation
    • Kim H.E., Tan A.C., Mathew J., Choi B.K. Bearing fault prognosis based on health state probability estimation. Expert Syst Appl 2012, 39(5):5200-5213.
    • (2012) Expert Syst Appl , vol.39 , Issue.5 , pp. 5200-5213
    • Kim, H.E.1    Tan, A.C.2    Mathew, J.3    Choi, B.K.4
  • 42
    • 0003120218 scopus 로고    scopus 로고
    • Fast training of support vector machines using sequential minimal optimization
    • MIT Press, B. Schoelkopf, C. Burges, A. Smola (Eds.)
    • Platt J. Fast training of support vector machines using sequential minimal optimization. Advances in kernel methods - support vector learning 1998, MIT Press, . B. Schoelkopf, C. Burges, A. Smola (Eds.).
    • (1998) Advances in kernel methods - support vector learning
    • Platt, J.1
  • 43
    • 0032355984 scopus 로고    scopus 로고
    • Classification by pairwise coupling
    • Hastie T., Tibshirani R. Classification by pairwise coupling. Ann Stat 1998, 26(2):451-471.
    • (1998) Ann Stat , vol.26 , Issue.2 , pp. 451-471
    • Hastie, T.1    Tibshirani, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.