메뉴 건너뛰기




Volumn 7, Issue JAN, 2017, Pages

Host and viral modulation of RIG-I-mediated antiviral immunity

Author keywords

Antiviral; Infection; Innate immunity; RIG I; Type I IFNs; Virus host interaction

Indexed keywords

IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; PROTEIN BCL 10; RETINOIC ACID INDUCIBLE PROTEIN I; STAT1 PROTEIN; STAT2 PROTEIN;

EID: 85012069968     PISSN: None     EISSN: 16643224     Source Type: Journal    
DOI: 10.3389/fimmu.2016.00662     Document Type: Review
Times cited : (110)

References (152)
  • 1
    • 77951260924 scopus 로고    scopus 로고
    • The role of pattern-recognition receptors in innate immunity: update on toll-like receptors
    • Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on toll-like receptors. Nat Immunol (2010) 11:373-84. doi:10.1038/ni.1863.
    • (2010) Nat Immunol , vol.11 , pp. 373-384
    • Kawai, T.1    Akira, S.2
  • 2
    • 3242813113 scopus 로고    scopus 로고
    • The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
    • Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol (2004) 5:730-7. doi:10.1038/ni1087.
    • (2004) Nat Immunol , vol.5 , pp. 730-737
    • Yoneyama, M.1    Kikuchi, M.2    Natsukawa, T.3    Shinobu, N.4    Imaizumi, T.5    Miyagishi, M.6
  • 3
    • 79956314622 scopus 로고    scopus 로고
    • Immune signaling by RIG-I-like receptors
    • Loo YM, Gale M Jr. Immune signaling by RIG-I-like receptors. Immunity (2011) 34:680-92. doi:10.1016/j.immuni.2011.05.003.
    • (2011) Immunity , vol.34 , pp. 680-692
    • Loo, Y.M.1    Gale, M.2
  • 4
    • 0742324860 scopus 로고    scopus 로고
    • TLR signaling pathways
    • Takeda K, Akira S. TLR signaling pathways. Semin Immunol (2004) 16:3-9. doi:10.1016/j.smim.2003.10.003.
    • (2004) Semin Immunol , vol.16 , pp. 3-9
    • Takeda, K.1    Akira, S.2
  • 5
    • 79956303498 scopus 로고    scopus 로고
    • Regulation of the antimicrobial response by NLR proteins
    • Elinav E, Strowig T, Henao-Mejia J, Flavell RA. Regulation of the antimicrobial response by NLR proteins. Immunity (2011) 34:665-79. doi:10.1016/j.immuni.2011.05.007.
    • (2011) Immunity , vol.34 , pp. 665-679
    • Elinav, E.1    Strowig, T.2    Henao-Mejia, J.3    Flavell, R.A.4
  • 6
    • 84873711885 scopus 로고    scopus 로고
    • Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway
    • Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science (2013) 339:786-91. doi:10.1126/science.1232458.
    • (2013) Science , vol.339 , pp. 786-791
    • Sun, L.1    Wu, J.2    Du, F.3    Chen, X.4    Chen, Z.J.5
  • 8
    • 18844457095 scopus 로고    scopus 로고
    • Mechanisms of type-I-and type-II-interferon-mediated signalling
    • Platanias LC. Mechanisms of type-I-and type-II-interferon-mediated signalling. Nat Rev Immunol (2005) 5:375-86. doi:10.1038/nri1604.
    • (2005) Nat Rev Immunol , vol.5 , pp. 375-386
    • Platanias, L.C.1
  • 9
    • 56749133272 scopus 로고    scopus 로고
    • Viral evasion and subversion of pattern-recognition receptor signalling
    • Bowie AG, Unterholzner L. Viral evasion and subversion of pattern-recognition receptor signalling. Nat Rev Immunol (2008) 8:911-22. doi:10.1038/nri2436.
    • (2008) Nat Rev Immunol , vol.8 , pp. 911-922
    • Bowie, A.G.1    Unterholzner, L.2
  • 10
    • 84967215091 scopus 로고    scopus 로고
    • Viral evasion of intracellular DNA and RNA sensing
    • Chan YK, Gack MU. Viral evasion of intracellular DNA and RNA sensing. Nat Rev Microbiol (2016) 14:360-73. doi:10.1038/nrmicro.2016.45.
    • (2016) Nat Rev Microbiol , vol.14 , pp. 360-373
    • Chan, Y.K.1    Gack, M.U.2
  • 11
    • 77950343791 scopus 로고    scopus 로고
    • Pattern recognition receptors and inflammation
    • Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell (2010) 140:805-20. doi:10.1016/j.cell.2010.01.022.
    • (2010) Cell , vol.140 , pp. 805-820
    • Takeuchi, O.1    Akira, S.2
  • 12
    • 80054685883 scopus 로고    scopus 로고
    • Structural insights into RNA recognition by RIG-I
    • Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. Structural insights into RNA recognition by RIG-I. Cell (2011) 147:409-22. doi:10.1016/j.cell.2011.09.023.
    • (2011) Cell , vol.147 , pp. 409-422
    • Luo, D.1    Ding, S.C.2    Vela, A.3    Kohlway, A.4    Lindenbach, B.D.5    Pyle, A.M.6
  • 13
    • 81555204380 scopus 로고    scopus 로고
    • Structural basis of RNA recognition and activation by innate immune receptor RIG-I
    • Jiang F, Ramanathan A, Miller MT, Tang GQ, Gale M Jr, Patel SS, et al. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature (2011) 479:423-7. doi:10.1038/nature10537.
    • (2011) Nature , vol.479 , pp. 423-427
    • Jiang, F.1    Ramanathan, A.2    Miller, M.T.3    Tang, G.Q.4    Gale, M.5    Patel, S.S.6
  • 14
    • 80054703126 scopus 로고    scopus 로고
    • Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
    • Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, Grigorov B, et al. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell (2011) 147:423-35. doi:10.1016/j.cell.2011.09.039.
    • (2011) Cell , vol.147 , pp. 423-435
    • Kowalinski, E.1    Lunardi, T.2    McCarthy, A.A.3    Louber, J.4    Brunel, J.5    Grigorov, B.6
  • 15
    • 80053590435 scopus 로고    scopus 로고
    • Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter
    • Belgnaoui SM, Paz S, Hiscott J. Orchestrating the interferon antiviral response through the mitochondrial antiviral signaling (MAVS) adapter. Curr Opin Immunol (2011) 23:564-72. doi:10.1016/j.coi.2011.08.001.
    • (2011) Curr Opin Immunol , vol.23 , pp. 564-572
    • Belgnaoui, S.M.1    Paz, S.2    Hiscott, J.3
  • 16
    • 75749089555 scopus 로고    scopus 로고
    • Recognition of viral nucleic acids in innate immunity
    • Yoneyama M, Fujita T. Recognition of viral nucleic acids in innate immunity. Rev Med Virol (2010) 20:4-22. doi:10.1002/rmv.633.
    • (2010) Rev Med Virol , vol.20 , pp. 4-22
    • Yoneyama, M.1    Fujita, T.2
  • 17
    • 58049217490 scopus 로고    scopus 로고
    • RNA recognition and signal transduction by RIG-I-like receptors
    • Yoneyama M, Fujita T. RNA recognition and signal transduction by RIG-I-like receptors. Immunol Rev (2009) 227:54-65. doi:10.1111/j.1600-065X.2008.00727.x.
    • (2009) Immunol Rev , vol.227 , pp. 54-65
    • Yoneyama, M.1    Fujita, T.2
  • 18
    • 33646748294 scopus 로고    scopus 로고
    • Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling
    • Cardenas WB, Loo YM, Gale M Jr, Hartman AL, Kimberlin CR, Martinez-Sobrido L, et al. Ebola virus VP35 protein binds double-stranded RNA and inhibits alpha/beta interferon production induced by RIG-I signaling. J Virol (2006) 80:5168-78. doi:10.1128/JVI.02199-05.
    • (2006) J Virol , vol.80 , pp. 5168-5178
    • Cardenas, W.B.1    Loo, Y.M.2    Gale, M.3    Hartman, A.L.4    Kimberlin, C.R.5    Martinez-Sobrido, L.6
  • 19
    • 79851492362 scopus 로고    scopus 로고
    • RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection
    • Nasirudeen AM, Wong HH, Thien P, Xu S, Lam KP, Liu DX. RIG-I, MDA5 and TLR3 synergistically play an important role in restriction of dengue virus infection. PLoS Negl Trop Dis (2011) 5:e926. doi:10.1371/journal.pntd.0000926.
    • (2011) PLoS Negl Trop Dis , vol.5
    • Nasirudeen, A.M.1    Wong, H.H.2    Thien, P.3    Xu, S.4    Lam, K.P.5    Liu, D.X.6
  • 20
    • 33750976374 scopus 로고    scopus 로고
    • 5'-Triphosphate RNA is the ligand for RIG-I
    • Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, Kato H, et al. 5'-Triphosphate RNA is the ligand for RIG-I. Science (2006) 314:994-7. doi:10.1126/science.1132505.
    • (2006) Science , vol.314 , pp. 994-997
    • Hornung, V.1    Ellegast, J.2    Kim, S.3    Brzozka, K.4    Jung, A.5    Kato, H.6
  • 21
    • 68049089651 scopus 로고    scopus 로고
    • Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
    • Schlee M, Roth A, Hornung V, Hagmann CA, Wimmenauer V, Barchet W, et al. Recognition of 5' triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity (2009) 31:25-34. doi:10.1016/j.immuni.2009.05.008.
    • (2009) Immunity , vol.31 , pp. 25-34
    • Schlee, M.1    Roth, A.2    Hornung, V.3    Hagmann, C.A.4    Wimmenauer, V.5    Barchet, W.6
  • 22
    • 84875167118 scopus 로고    scopus 로고
    • Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling
    • Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, et al. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe (2013) 13:336-46. doi:10.1016/j.chom.2013.01.012.
    • (2013) Cell Host Microbe , vol.13 , pp. 336-346
    • Weber, M.1    Gawanbacht, A.2    Habjan, M.3    Rang, A.4    Borner, C.5    Schmidt, A.M.6
  • 23
    • 33750984771 scopus 로고    scopus 로고
    • RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates
    • Pichlmair A, Schulz O, Tan CP, Naslund TI, Liljestrom P, Weber F, et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5'-phosphates. Science (2006) 314:997-1001. doi:10.1126/science.1132998.
    • (2006) Science , vol.314 , pp. 997-1001
    • Pichlmair, A.1    Schulz, O.2    Tan, C.P.3    Naslund, T.I.4    Liljestrom, P.5    Weber, F.6
  • 24
    • 84908192059 scopus 로고    scopus 로고
    • Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates
    • Goubau D, Schlee M, Deddouche S, Pruijssers AJ, Zillinger T, Goldeck M, et al. Antiviral immunity via RIG-I-mediated recognition of RNA bearing 5'-diphosphates. Nature (2014) 514:372-5. doi:10.1038/nature13590.
    • (2014) Nature , vol.514 , pp. 372-375
    • Goubau, D.1    Schlee, M.2    Deddouche, S.3    Pruijssers, A.J.4    Zillinger, T.5    Goldeck, M.6
  • 25
    • 84876854916 scopus 로고    scopus 로고
    • Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity
    • Goulet ML, Olagnier D, Xu Z, Paz S, Belgnaoui SM, Lafferty EI, et al. Systems analysis of a RIG-I agonist inducing broad spectrum inhibition of virus infectivity. PLoS Pathog (2013) 9:e1003298. doi:10.1371/journal.ppat.1003298.
    • (2013) PLoS Pathog , vol.9
    • Goulet, M.L.1    Olagnier, D.2    Xu, Z.3    Paz, S.4    Belgnaoui, S.M.5    Lafferty, E.I.6
  • 26
    • 84896993674 scopus 로고    scopus 로고
    • Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response
    • Olagnier D, Scholte FE, Chiang C, Albulescu IC, Nichols C, He Z, et al. Inhibition of dengue and chikungunya virus infections by RIG-I-mediated type I interferon-independent stimulation of the innate antiviral response. J Virol (2014) 88:4180-94. doi:10.1128/JVI.03114-13.
    • (2014) J Virol , vol.88 , pp. 4180-4194
    • Olagnier, D.1    Scholte, F.E.2    Chiang, C.3    Albulescu, I.C.4    Nichols, C.5    He, Z.6
  • 27
    • 84942133125 scopus 로고    scopus 로고
    • Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant
    • Beljanski V, Chiang C, Kirchenbaum GA, Olagnier D, Bloom CE, Wong T, et al. Enhanced influenza virus-like particle vaccination with a structurally optimized RIG-I agonist as adjuvant. J Virol (2015) 89:10612-24. doi:10.1128/JVI.01526-15.
    • (2015) J Virol , vol.89 , pp. 10612-10624
    • Beljanski, V.1    Chiang, C.2    Kirchenbaum, G.A.3    Olagnier, D.4    Bloom, C.E.5    Wong, T.6
  • 28
    • 84946593503 scopus 로고    scopus 로고
    • Defining new therapeutics using a more immunocompetent mouse model of antibody-enhanced dengue virus infection
    • Pinto AK, Brien JD, Lam CY, Johnson S, Chiang C, Hiscott J, et al. Defining new therapeutics using a more immunocompetent mouse model of antibody-enhanced dengue virus infection. MBio (2015) 6:e1316-1315. doi:10.1128/mBio.01316-15.
    • (2015) MBio , vol.6
    • Pinto, A.K.1    Brien, J.D.2    Lam, C.Y.3    Johnson, S.4    Chiang, C.5    Hiscott, J.6
  • 29
    • 84937715615 scopus 로고    scopus 로고
    • Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists
    • Chiang C, Beljanski V, Yin K, Olagnier D, Ben Yebdri F, Steel C, et al. Sequence-specific modifications enhance the broad-spectrum antiviral response activated by RIG-I agonists. J Virol (2015) 89:8011-25. doi:10.1128/JVI.00845-15.
    • (2015) J Virol , vol.89 , pp. 8011-8025
    • Chiang, C.1    Beljanski, V.2    Yin, K.3    Olagnier, D.4    Ben Yebdri, F.5    Steel, C.6
  • 30
    • 84962585468 scopus 로고    scopus 로고
    • Cutting edge: the RIG-I ligand 3pRNA potently improves CTL cross-priming and facilitates antiviral vaccination
    • Hochheiser K, Klein M, Gottschalk C, Hoss F, Scheu S, Coch C, et al. Cutting edge: the RIG-I ligand 3pRNA potently improves CTL cross-priming and facilitates antiviral vaccination. J Immunol (2016) 196:2439-43. doi:10.4049/jimmunol.1501958.
    • (2016) J Immunol , vol.196 , pp. 2439-2443
    • Hochheiser, K.1    Klein, M.2    Gottschalk, C.3    Hoss, F.4    Scheu, S.5    Coch, C.6
  • 31
    • 77957958023 scopus 로고    scopus 로고
    • Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways
    • Melchjorsen J, Rintahaka J, Soby S, Horan KA, Poltajainen A, Ostergaard L, et al. Early innate recognition of herpes simplex virus in human primary macrophages is mediated via the MDA5/MAVS-dependent and MDA5/MAVS/RNA polymerase III-independent pathways. J Virol (2010) 84:11350-8. doi:10.1128/JVI.01106-10.
    • (2010) J Virol , vol.84 , pp. 11350-11358
    • Melchjorsen, J.1    Rintahaka, J.2    Soby, S.3    Horan, K.A.4    Poltajainen, A.5    Ostergaard, L.6
  • 32
    • 68049092912 scopus 로고    scopus 로고
    • RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
    • Chiu YH, Macmillan JB, Chen ZJ. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell (2009) 138:576-91. doi:10.1016/j.cell.2009.06.015.
    • (2009) Cell , vol.138 , pp. 576-591
    • Chiu, Y.H.1    Macmillan, J.B.2    Chen, Z.J.3
  • 33
    • 84990038856 scopus 로고    scopus 로고
    • RIG-I mediated STING up-regulation restricts HSV-1 infection
    • Liu Y, Goulet ML, Sze A, Bel Hadj S, Belgnaoui SM, Lababidi RR, et al. RIG-I mediated STING up-regulation restricts HSV-1 infection. J Virol (2016) 90:9406-19. doi:10.1128/JVI.00748-16.
    • (2016) J Virol , vol.90 , pp. 9406-9419
    • Liu, Y.1    Goulet, M.L.2    Sze, A.3    Bel Hadj, S.4    Belgnaoui, S.M.5    Lababidi, R.R.6
  • 34
    • 74049126045 scopus 로고    scopus 로고
    • Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production
    • Poeck H, Bscheider M, Gross O, Finger K, Roth S, Rebsamen M, et al. Recognition of RNA virus by RIG-I results in activation of CARD9 and inflammasome signaling for interleukin 1 beta production. Nat Immunol (2010) 11:63-9. doi:10.1038/ni.1824.
    • (2010) Nat Immunol , vol.11 , pp. 63-69
    • Poeck, H.1    Bscheider, M.2    Gross, O.3    Finger, K.4    Roth, S.5    Rebsamen, M.6
  • 35
    • 84876833883 scopus 로고    scopus 로고
    • Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells
    • Pothlichet J, Meunier I, Davis BK, Ting JP, Skamene E, von Messling V, et al. Type I IFN triggers RIG-I/TLR3/NLRP3-dependent inflammasome activation in influenza A virus infected cells. PLoS Pathog (2013) 9:e1003256. doi:10.1371/journal.ppat.1003256.
    • (2013) PLoS Pathog , vol.9
    • Pothlichet, J.1    Meunier, I.2    Davis, B.K.3    Ting, J.P.4    Skamene, E.5    von Messling, V.6
  • 36
    • 27144440476 scopus 로고    scopus 로고
    • Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
    • Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature (2005) 437:1167-72. doi:10.1038/nature04193.
    • (2005) Nature , vol.437 , pp. 1167-1172
    • Meylan, E.1    Curran, J.2    Hofmann, K.3    Moradpour, D.4    Binder, M.5    Bartenschlager, R.6
  • 37
    • 24144461689 scopus 로고    scopus 로고
    • Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
    • Seth RB, Sun L, Ea CK, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell (2005) 122:669-82. doi:10.1016/j.cell.2005.08.012.
    • (2005) Cell , vol.122 , pp. 669-682
    • Seth, R.B.1    Sun, L.2    Ea, C.K.3    Chen, Z.J.4
  • 38
    • 67650724069 scopus 로고    scopus 로고
    • Regulation and function of NF-kappaB transcription factors in the immune system
    • Vallabhapurapu S, Karin M. Regulation and function of NF-kappaB transcription factors in the immune system. Annu Rev Immunol (2009) 27:693-733. doi:10.1146/annurev.immunol.021908.132641.
    • (2009) Annu Rev Immunol , vol.27 , pp. 693-733
    • Vallabhapurapu, S.1    Karin, M.2
  • 39
    • 79960049196 scopus 로고    scopus 로고
    • A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response
    • Paz S, Vilasco M, Werden SJ, Arguello M, Joseph-Pillai D, Zhao T, et al. A functional C-terminal TRAF3-binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res (2011) 21:895-910. doi:10.1038/cr.2011.2.
    • (2011) Cell Res , vol.21 , pp. 895-910
    • Paz, S.1    Vilasco, M.2    Werden, S.J.3    Arguello, M.4    Joseph-Pillai, D.5    Zhao, T.6
  • 40
    • 34249058119 scopus 로고    scopus 로고
    • The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways
    • Zhao T, Yang L, Sun Q, Arguello M, Ballard DW, Hiscott J, et al. The NEMO adaptor bridges the nuclear factor-kappaB and interferon regulatory factor signaling pathways. Nat Immunol (2007) 8:592-600. doi:10.1038/ni1465.
    • (2007) Nat Immunol , vol.8 , pp. 592-600
    • Zhao, T.1    Yang, L.2    Sun, Q.3    Arguello, M.4    Ballard, D.W.5    Hiscott, J.6
  • 41
    • 0032481352 scopus 로고    scopus 로고
    • Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300
    • Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita T. Direct triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J (1998) 17:1087-95. doi:10.1093/emboj/17.4.1087.
    • (1998) EMBO J , vol.17 , pp. 1087-1095
    • Yoneyama, M.1    Suhara, W.2    Fukuhara, Y.3    Fukuda, M.4    Nishida, E.5    Fujita, T.6
  • 42
    • 33846307026 scopus 로고    scopus 로고
    • Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
    • Saito T, Hirai R, Loo YM, Owen D, Johnson CL, Sinha SC, et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci U S A (2007) 104:582-7. doi:10.1073/pnas.0606699104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 582-587
    • Saito, T.1    Hirai, R.2    Loo, Y.M.3    Owen, D.4    Johnson, C.L.5    Sinha, S.C.6
  • 43
    • 38649089789 scopus 로고    scopus 로고
    • The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I
    • Cui S, Eisenacher K, Kirchhofer A, Brzozka K, Lammens A, Lammens K, et al. The C-terminal regulatory domain is the RNA 5'-triphosphate sensor of RIG-I. Mol Cell (2008) 29:169-79. doi:10.1016/j.molcel.2007.10.032.
    • (2008) Mol Cell , vol.29 , pp. 169-179
    • Cui, S.1    Eisenacher, K.2    Kirchhofer, A.3    Brzozka, K.4    Lammens, A.5    Lammens, K.6
  • 44
    • 84883487585 scopus 로고    scopus 로고
    • ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon
    • Patel JR, Jain A, Chou YY, Baum A, Ha T, Garcia-Sastre A. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep (2013) 14:780-7. doi:10.1038/embor.2013.102.
    • (2013) EMBO Rep , vol.14 , pp. 780-787
    • Patel, J.R.1    Jain, A.2    Chou, Y.Y.3    Baum, A.4    Ha, T.5    Garcia-Sastre, A.6
  • 45
    • 84883759334 scopus 로고    scopus 로고
    • RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner
    • Peisley A, Wu B, Yao H, Walz T, Hur S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell (2013) 51:573-83. doi:10.1016/j.molcel.2013.07.024.
    • (2013) Mol Cell , vol.51 , pp. 573-583
    • Peisley, A.1    Wu, B.2    Yao, H.3    Walz, T.4    Hur, S.5
  • 46
    • 84929485094 scopus 로고    scopus 로고
    • RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA
    • Anchisi S, Guerra J, Garcin D. RIG-I ATPase activity and discrimination of self-RNA versus non-self-RNA. MBio (2015) 6:e02349. doi:10.1128/mBio.02349-14.
    • (2015) MBio , vol.6
    • Anchisi, S.1    Guerra, J.2    Garcin, D.3
  • 47
    • 85051887103 scopus 로고    scopus 로고
    • Correction: ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA
    • Lässig C, Matheisl S, Sparrer KMJ, de Oliveira Mann CC, Moldt M, Patel JR, et al. Correction: ATP hydrolysis by the viral RNA sensor RIG-I prevents unintentional recognition of self-RNA. Elife (2016) 5:e14954. doi:10.7554/eLife.14954.
    • (2016) Elife , vol.5
    • Lässig, C.1    Matheisl, S.2    Sparrer, K.M.J.3    de Oliveira Mann, C.C.4    Moldt, M.5    Patel, J.R.6
  • 48
    • 55949131282 scopus 로고    scopus 로고
    • Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction
    • Gack MU, Kirchhofer A, Shin YC, Inn KS, Liang C, Cui S, et al. Roles of RIG-I N-terminal tandem CARD and splice variant in TRIM25-mediated antiviral signal transduction. Proc Natl Acad Sci U S A (2008) 105:16743-8. doi:10.1073/pnas.0804947105.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 16743-16748
    • Gack, M.U.1    Kirchhofer, A.2    Shin, Y.C.3    Inn, K.S.4    Liang, C.5    Cui, S.6
  • 49
    • 84861181618 scopus 로고    scopus 로고
    • The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
    • Liu HM, Loo YM, Horner SM, Zornetzer GA, Katze MG, Gale M Jr. The mitochondrial targeting chaperone 14-3-3epsilon regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe (2012) 11:528-37. doi:10.1016/j.chom.2012.04.006.
    • (2012) Cell Host Microbe , vol.11 , pp. 528-537
    • Liu, H.M.1    Loo, Y.M.2    Horner, S.M.3    Zornetzer, G.A.4    Katze, M.G.5    Gale, M.6
  • 50
    • 34247341367 scopus 로고    scopus 로고
    • TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
    • Gack MU, Shin YC, Joo CH, Urano T, Liang C, Sun L, et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature (2007) 446:916-20. doi:10.1038/nature05732.
    • (2007) Nature , vol.446 , pp. 916-920
    • Gack, M.U.1    Shin, Y.C.2    Joo, C.H.3    Urano, T.4    Liang, C.5    Sun, L.6
  • 51
    • 59449091450 scopus 로고    scopus 로고
    • Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection
    • Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-beta induction during the early phase of viral infection. J Biol Chem (2009) 284:807-17. doi:10.1074/jbc. M804259200.
    • (2009) J Biol Chem , vol.284 , pp. 807-817
    • Oshiumi, H.1    Matsumoto, M.2    Hatakeyama, S.3    Seya, T.4
  • 52
    • 78650189572 scopus 로고    scopus 로고
    • The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
    • Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. The ubiquitin ligase Riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe (2010) 8:496-509. doi:10.1016/j.chom.2010.11.008.
    • (2010) Cell Host Microbe , vol.8 , pp. 496-509
    • Oshiumi, H.1    Miyashita, M.2    Inoue, N.3    Okabe, M.4    Matsumoto, M.5    Seya, T.6
  • 53
    • 66749142359 scopus 로고    scopus 로고
    • REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I
    • Gao D, Yang YK, Wang RP, Zhou X, Diao FC, Li MD, et al. REUL is a novel E3 ubiquitin ligase and stimulator of retinoic-acid-inducible gene-I. PLoS One (2009) 4:e5760. doi:10.1371/journal.pone.0005760.
    • (2009) PLoS One , vol.4
    • Gao, D.1    Yang, Y.K.2    Wang, R.P.3    Zhou, X.4    Diao, F.C.5    Li, M.D.6
  • 54
    • 84883324602 scopus 로고    scopus 로고
    • A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses
    • Oshiumi H, Miyashita M, Matsumoto M, Seya T. A distinct role of Riplet-mediated K63-linked polyubiquitination of the RIG-I repressor domain in human antiviral innate immune responses. PLoS Pathog (2013) 9:e1003533. doi:10.1371/journal.ppat.1003533.
    • (2013) PLoS Pathog , vol.9
    • Oshiumi, H.1    Miyashita, M.2    Matsumoto, M.3    Seya, T.4
  • 55
    • 84898776236 scopus 로고    scopus 로고
    • Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity
    • Kuniyoshi K, Takeuchi O, Pandey S, Satoh T, Iwasaki H, Akira S, et al. Pivotal role of RNA-binding E3 ubiquitin ligase MEX3C in RIG-I-mediated antiviral innate immunity. Proc Natl Acad Sci U S A (2014) 111:5646-51. doi:10.1073/pnas.1401674111.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. 5646-5651
    • Kuniyoshi, K.1    Takeuchi, O.2    Pandey, S.3    Satoh, T.4    Iwasaki, H.5    Akira, S.6
  • 56
    • 84902829130 scopus 로고    scopus 로고
    • Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor
    • Zhu J, Zhang Y, Ghosh A, Cuevas RA, Forero A, Dhar J, et al. Antiviral activity of human OASL protein is mediated by enhancing signaling of the RIG-I RNA sensor. Immunity (2014) 40:936-48. doi:10.1016/j.immuni.2014.05.007.
    • (2014) Immunity , vol.40 , pp. 936-948
    • Zhu, J.1    Zhang, Y.2    Ghosh, A.3    Cuevas, R.A.4    Forero, A.5    Dhar, J.6
  • 57
    • 84931282047 scopus 로고    scopus 로고
    • Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling
    • Ibsen MS, Gad HH, Andersen LL, Hornung V, Julkunen I, Sarkar SN, et al. Structural and functional analysis reveals that human OASL binds dsRNA to enhance RIG-I signaling. Nucleic Acids Res (2015) 43:5236-48. doi:10.1093/nar/gkv389.
    • (2015) Nucleic Acids Res , vol.43 , pp. 5236-5248
    • Ibsen, M.S.1    Gad, H.H.2    Andersen, L.L.3    Hornung, V.4    Julkunen, I.5    Sarkar, S.N.6
  • 58
    • 77951708374 scopus 로고    scopus 로고
    • Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
    • Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, et al. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell (2010) 141:315-30. doi:10.1016/j.cell.2010.03.029.
    • (2010) Cell , vol.141 , pp. 315-330
    • Zeng, W.1    Sun, L.2    Jiang, X.3    Chen, X.4    Hou, F.5    Adhikari, A.6
  • 59
    • 84899957213 scopus 로고    scopus 로고
    • Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I
    • Peisley A, Wu B, Xu H, Chen ZJ, Hur S. Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature (2014) 509:110-4. doi:10.1038/nature13140.
    • (2014) Nature , vol.509 , pp. 110-114
    • Peisley, A.1    Wu, B.2    Xu, H.3    Chen, Z.J.4    Hur, S.5
  • 60
    • 51049106824 scopus 로고    scopus 로고
    • The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response
    • Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, Yount JS, et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep (2008) 9:930-6. doi:10.1038/embor.2008.136.
    • (2008) EMBO Rep , vol.9 , pp. 930-936
    • Friedman, C.S.1    O'Donnell, M.A.2    Legarda-Addison, D.3    Ng, A.4    Cardenas, W.B.5    Yount, J.S.6
  • 61
    • 84973661450 scopus 로고    scopus 로고
    • Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD
    • Lin W, Zhang J, Lin H, Li Z, Sun X, Xin D, et al. Syndecan-4 negatively regulates antiviral signalling by mediating RIG-I deubiquitination via CYLD. Nat Commun (2016) 7:11848. doi:10.1038/ncomms11848.
    • (2016) Nat Commun , vol.7 , pp. 11848
    • Lin, W.1    Zhang, J.2    Lin, H.3    Li, Z.4    Sun, X.5    Xin, D.6
  • 62
    • 84898040489 scopus 로고    scopus 로고
    • USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors
    • Cui J, Song Y, Li Y, Zhu Q, Tan P, Qin Y, et al. USP3 inhibits type I interferon signaling by deubiquitinating RIG-I-like receptors. Cell Res (2014) 24:400-16. doi:10.1038/cr.2013.170.
    • (2014) Cell Res , vol.24 , pp. 400-416
    • Cui, J.1    Song, Y.2    Li, Y.3    Zhu, Q.4    Tan, P.5    Qin, Y.6
  • 63
    • 84893721948 scopus 로고    scopus 로고
    • USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase
    • Fan Y, Mao R, Yu Y, Liu S, Shi Z, Cheng J, et al. USP21 negatively regulates antiviral response by acting as a RIG-I deubiquitinase. J Exp Med (2014) 211:313-28. doi:10.1084/jem.20122844.
    • (2014) J Exp Med , vol.211 , pp. 313-328
    • Fan, Y.1    Mao, R.2    Yu, Y.3    Liu, S.4    Shi, Z.5    Cheng, J.6
  • 65
    • 84983604685 scopus 로고    scopus 로고
    • RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation
    • Wang W, Jiang M, Liu S, Zhang S, Liu W, Ma Y, et al. RNF122 suppresses antiviral type I interferon production by targeting RIG-I CARDs to mediate RIG-I degradation. Proc Natl Acad Sci U S A (2016) 113:9581-6. doi:10.1073/pnas.1604277113.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , pp. 9581-9586
    • Wang, W.1    Jiang, M.2    Liu, S.3    Zhang, S.4    Liu, W.5    Ma, Y.6
  • 66
    • 79251550124 scopus 로고    scopus 로고
    • Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction
    • Inn KS, Gack MU, Tokunaga F, Shi M, Wong LY, Iwai K, et al. Linear ubiquitin assembly complex negatively regulates RIG-I-and TRIM25-mediated type I interferon induction. Mol Cell (2011) 41:354-65. doi:10.1016/j.molcel.2010.12.029.
    • (2011) Mol Cell , vol.41 , pp. 354-365
    • Inn, K.S.1    Gack, M.U.2    Tokunaga, F.3    Shi, M.4    Wong, L.Y.5    Iwai, K.6
  • 67
    • 84892428607 scopus 로고    scopus 로고
    • The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25
    • Pauli EK, Chan YK, Davis ME, Gableske S, Wang MK, Feister KF, et al. The ubiquitin-specific protease USP15 promotes RIG-I-mediated antiviral signaling by deubiquitylating TRIM25. Sci Signal (2014) 7:ra3. doi:10.1126/scisignal.2004577.
    • (2014) Sci Signal , vol.7
    • Pauli, E.K.1    Chan, Y.K.2    Davis, M.E.3    Gableske, S.4    Wang, M.K.5    Feister, K.F.6
  • 68
    • 77949422543 scopus 로고    scopus 로고
    • Phosphorylation-mediated negative regulation of RIG-I antiviral activity
    • Gack MU, Nistal-Villan E, Inn KS, Garcia-Sastre A, Jung JU. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J Virol (2010) 84:3220-9. doi:10.1128/JVI.02241-09.
    • (2010) J Virol , vol.84 , pp. 3220-3229
    • Gack, M.U.1    Nistal-Villan, E.2    Inn, K.S.3    Garcia-Sastre, A.4    Jung, J.U.5
  • 69
    • 77953743809 scopus 로고    scopus 로고
    • Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production
    • Nistal-Villan E, Gack MU, Martinez-Delgado G, Maharaj NP, Inn KS, Yang H, et al. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-beta production. J Biol Chem (2010) 285:20252-61. doi:10.1074/jbc. M109.089912.
    • (2010) J Biol Chem , vol.285 , pp. 20252-20261
    • Nistal-Villan, E.1    Gack, M.U.2    Martinez-Delgado, G.3    Maharaj, N.P.4    Inn, K.S.5    Yang, H.6
  • 70
    • 78650665171 scopus 로고    scopus 로고
    • Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response
    • Sun Z, Ren H, Liu Y, Teeling JL, Gu J. Phosphorylation of RIG-I by casein kinase II inhibits its antiviral response. J Virol (2011) 85:1036-47. doi:10.1128/JVI.01734-10.
    • (2011) J Virol , vol.85 , pp. 1036-1047
    • Sun, Z.1    Ren, H.2    Liu, Y.3    Teeling, J.L.4    Gu, J.5
  • 71
    • 84955638504 scopus 로고    scopus 로고
    • IKK negatively regulates RIG-I via direct phosphorylation
    • Zhang X, Yu H, Zhao J, Li X, Li J, He J, et al. IKK negatively regulates RIG-I via direct phosphorylation. J Med Virol (2016) 88:712-8. doi:10.1002/jmv.24376.
    • (2016) J Med Virol , vol.88 , pp. 712-718
    • Zhang, X.1    Yu, H.2    Zhao, J.3    Li, X.4    Li, J.5    He, J.6
  • 72
    • 84857073450 scopus 로고    scopus 로고
    • Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction
    • Maharaj NP, Wies E, Stoll A, Gack MU. Conventional protein kinase C-alpha (PKC-alpha) and PKC-beta negatively regulate RIG-I antiviral signal transduction. J Virol (2012) 86:1358-71. doi:10.1128/JVI.06543-11.
    • (2012) J Virol , vol.86 , pp. 1358-1371
    • Maharaj, N.P.1    Wies, E.2    Stoll, A.3    Gack, M.U.4
  • 73
    • 84875542059 scopus 로고    scopus 로고
    • Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling
    • Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, Finberg RW, et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity (2013) 38:437-49. doi:10.1016/j.immuni.2012.11.018.
    • (2013) Immunity , vol.38 , pp. 437-449
    • Wies, E.1    Wang, M.K.2    Maharaj, N.P.3    Chen, K.4    Zhou, S.5    Finberg, R.W.6
  • 74
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M, Walther TC, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science (2009) 325:834-40. doi:10.1126/science.1175371.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3    Nielsen, M.L.4    Rehman, M.5    Walther, T.C.6
  • 75
    • 84977620968 scopus 로고    scopus 로고
    • Regulation of retinoic acid inducible gene-I (RIG-I) activation by the histone deacetylase 6
    • Liu HM, Jiang F, Loo YM, Hsu S, Hsiang TY, Marcotrigiano J, et al. Regulation of retinoic acid inducible gene-I (RIG-I) activation by the histone deacetylase 6. EBioMedicine (2016) 9:195-206. doi:10.1016/j.ebiom.2016.06.015.
    • (2016) EBioMedicine , vol.9 , pp. 195-206
    • Liu, H.M.1    Jiang, F.2    Loo, Y.M.3    Hsu, S.4    Hsiang, T.Y.5    Marcotrigiano, J.6
  • 76
    • 84958662906 scopus 로고    scopus 로고
    • HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I
    • Choi SJ, Lee HC, Kim JH, Park SY, Kim TH, Lee WK, et al. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J (2016) 35:429-42. doi:10.15252/embj.201592586.
    • (2016) EMBO J , vol.35 , pp. 429-442
    • Choi, S.J.1    Lee, H.C.2    Kim, J.H.3    Park, S.Y.4    Kim, T.H.5    Lee, W.K.6
  • 77
    • 84861902139 scopus 로고    scopus 로고
    • Ubiquitin-like proteins
    • van der Veen AG, Ploegh HL. Ubiquitin-like proteins. Annu Rev Biochem (2012) 81:323-57. doi:10.1146/annurev-biochem-093010-153308.
    • (2012) Annu Rev Biochem , vol.81 , pp. 323-357
    • van der Veen, A.G.1    Ploegh, H.L.2
  • 78
    • 79953162495 scopus 로고    scopus 로고
    • SUMOylation of RIG-I positively regulates the type I interferon signaling
    • Mi Z, Fu J, Xiong Y, Tang H. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell (2010) 1:275-83. doi:10.1007/s13238-010-0030-1.
    • (2010) Protein Cell , vol.1 , pp. 275-283
    • Mi, Z.1    Fu, J.2    Xiong, Y.3    Tang, H.4
  • 79
    • 84961784072 scopus 로고    scopus 로고
    • Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform
    • Nguyen NT, Now H, Kim WJ, Kim N, Yoo JY. Ubiquitin-like modifier FAT10 attenuates RIG-I mediated antiviral signaling by segregating activated RIG-I from its signaling platform. Sci Rep (2016) 6:23377. doi:10.1038/srep23377.
    • (2016) Sci Rep , vol.6 , pp. 23377
    • Nguyen, N.T.1    Now, H.2    Kim, W.J.3    Kim, N.4    Yoo, J.Y.5
  • 80
    • 38349189787 scopus 로고    scopus 로고
    • Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation
    • Kim MJ, Hwang SY, Imaizumi T, Yoo JY. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J Virol (2008) 82:1474-83. doi:10.1128/JVI.01650-07.
    • (2008) J Virol , vol.82 , pp. 1474-1483
    • Kim, M.J.1    Hwang, S.Y.2    Imaizumi, T.3    Yoo, J.Y.4
  • 81
    • 84883295709 scopus 로고    scopus 로고
    • Negative regulation of RIG-I-mediated innate antiviral signaling by SEC14L1
    • Li MT, Di W, Xu H, Yang YK, Chen HW, Zhang FX, et al. Negative regulation of RIG-I-mediated innate antiviral signaling by SEC14L1. J Virol (2013) 87:10037-46. doi:10.1128/JVI.01073-13.
    • (2013) J Virol , vol.87 , pp. 10037-10046
    • Li, M.T.1    Di, W.2    Xu, H.3    Yang, Y.K.4    Chen, H.W.5    Zhang, F.X.6
  • 83
    • 84961287871 scopus 로고    scopus 로고
    • Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production
    • He S, Zhao J, Song S, He X, Minassian A, Zhou Y, et al. Viral pseudo-enzymes activate RIG-I via deamidation to evade cytokine production. Mol Cell (2015) 58:134-46. doi:10.1016/j.molcel.2015.01.036.
    • (2015) Mol Cell , vol.58 , pp. 134-146
    • He, S.1    Zhao, J.2    Song, S.3    He, X.4    Minassian, A.5    Zhou, Y.6
  • 84
    • 84964928607 scopus 로고    scopus 로고
    • Emerging roles of protein deamidation in innate immune signaling
    • Zhao J, Li J, Xu S, Feng P. Emerging roles of protein deamidation in innate immune signaling. J Virol (2016) 90:4262-8. doi:10.1128/JVI.01980-15.
    • (2016) J Virol , vol.90 , pp. 4262-4268
    • Zhao, J.1    Li, J.2    Xu, S.3    Feng, P.4
  • 85
    • 44349143815 scopus 로고    scopus 로고
    • Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction
    • Habjan M, Andersson I, Klingstrom J, Schumann M, Martin A, Zimmermann P, et al. Processing of genome 5' termini as a strategy of negative-strand RNA viruses to avoid RIG-I-dependent interferon induction. PLoS One (2008) 3:e2032. doi:10.1371/journal.pone.0002032.
    • (2008) PLoS One , vol.3
    • Habjan, M.1    Andersson, I.2    Klingstrom, J.3    Schumann, M.4    Martin, A.5    Zimmermann, P.6
  • 86
    • 0029080822 scopus 로고
    • The 5' ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis
    • Garcin D, Lezzi M, Dobbs M, Elliott RM, Schmaljohn C, Kang CY, et al. The 5' ends of Hantaan virus (Bunyaviridae) RNAs suggest a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol (1995) 69:5754-62.
    • (1995) J Virol , vol.69 , pp. 5754-5762
    • Garcin, D.1    Lezzi, M.2    Dobbs, M.3    Elliott, R.M.4    Schmaljohn, C.5    Kang, C.Y.6
  • 87
    • 79955605785 scopus 로고    scopus 로고
    • Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5' termini of their genomic RNAs are monophosphorylated
    • Wang H, Vaheri A, Weber F, Plyusnin A. Old World hantaviruses do not produce detectable amounts of dsRNA in infected cells and the 5' termini of their genomic RNAs are monophosphorylated. J Gen Virol (2011) 92:1199-204. doi:10.1099/vir.0.029405-0.
    • (2011) J Gen Virol , vol.92 , pp. 1199-1204
    • Wang, H.1    Vaheri, A.2    Weber, F.3    Plyusnin, A.4
  • 88
    • 14744267671 scopus 로고    scopus 로고
    • Genome trimming: a unique strategy for replication control employed by Borna disease virus
    • Schneider U, Schwemmle M, Staeheli P. Genome trimming: a unique strategy for replication control employed by Borna disease virus. Proc Natl Acad Sci U S A (2005) 102:3441-6. doi:10.1073/pnas.0405965102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 3441-3446
    • Schneider, U.1    Schwemmle, M.2    Staeheli, P.3
  • 89
    • 77953308262 scopus 로고    scopus 로고
    • Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I
    • Marq JB, Kolakofsky D, Garcin D. Unpaired 5' ppp-nucleotides, as found in arenavirus double-stranded RNA panhandles, are not recognized by RIG-I. J Biol Chem (2010) 285:18208-16. doi:10.1074/jbc. M109.089425.
    • (2010) J Biol Chem , vol.285 , pp. 18208-18216
    • Marq, J.B.1    Kolakofsky, D.2    Garcin, D.3
  • 91
    • 83855162132 scopus 로고    scopus 로고
    • Conventional and unconventional mechanisms for capping viral mRNA
    • Decroly E, Ferron F, Lescar J, Canard B. Conventional and unconventional mechanisms for capping viral mRNA. Nat Rev Microbiol (2012) 10:51-65. doi:10.1038/nrmicro2675.
    • (2012) Nat Rev Microbiol , vol.10 , pp. 51-65
    • Decroly, E.1    Ferron, F.2    Lescar, J.3    Canard, B.4
  • 92
    • 84955260823 scopus 로고    scopus 로고
    • Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I
    • Devarkar SC, Wang C, Miller MT, Ramanathan A, Jiang F, Khan AG, et al. Structural basis for m7G recognition and 2'-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc Natl Acad Sci U S A (2016) 113:596-601. doi:10.1073/pnas.1515152113.
    • (2016) Proc Natl Acad Sci U S A , vol.113 , pp. 596-601
    • Devarkar, S.C.1    Wang, C.2    Miller, M.T.3    Ramanathan, A.4    Jiang, F.5    Khan, A.G.6
  • 94
    • 84866939048 scopus 로고    scopus 로고
    • Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism
    • Bale S, Julien JP, Bornholdt ZA, Kimberlin CR, Halfmann P, Zandonatti MA, et al. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog (2012) 8:e1002916. doi:10.1371/journal.ppat.1002916.
    • (2012) PLoS Pathog , vol.8
    • Bale, S.1    Julien, J.P.2    Bornholdt, Z.A.3    Kimberlin, C.R.4    Halfmann, P.5    Zandonatti, M.A.6
  • 96
    • 0345167006 scopus 로고    scopus 로고
    • A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice
    • Donelan NR, Basler CF, Garcia-Sastre A. A recombinant influenza A virus expressing an RNA-binding-defective NS1 protein induces high levels of beta interferon and is attenuated in mice. J Virol (2003) 77:13257-66. doi:10.1128/JVI.77.24.13257-13266.2003.
    • (2003) J Virol , vol.77 , pp. 13257-13266
    • Donelan, N.R.1    Basler, C.F.2    Garcia-Sastre, A.3
  • 97
    • 84926139701 scopus 로고    scopus 로고
    • Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I
    • Weber M, Sediri H, Felgenhauer U, Binzen I, Banfer S, Jacob R, et al. Influenza virus adaptation PB2-627K modulates nucleocapsid inhibition by the pathogen sensor RIG-I. Cell Host Microbe (2015) 17:309-19. doi:10.1016/j.chom.2015.01.005.
    • (2015) Cell Host Microbe , vol.17 , pp. 309-319
    • Weber, M.1    Sediri, H.2    Felgenhauer, U.3    Binzen, I.4    Banfer, S.5    Jacob, R.6
  • 98
    • 84925719276 scopus 로고    scopus 로고
    • The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response
    • Uchida L, Espada-Murao LA, Takamatsu Y, Okamoto K, Hayasaka D, Yu F, et al. The dengue virus conceals double-stranded RNA in the intracellular membrane to escape from an interferon response. Sci Rep (2014) 4:7395. doi:10.1038/srep07395.
    • (2014) Sci Rep , vol.4 , pp. 7395
    • Uchida, L.1    Espada-Murao, L.A.2    Takamatsu, Y.3    Okamoto, K.4    Hayasaka, D.5    Yu, F.6
  • 99
    • 54749157085 scopus 로고    scopus 로고
    • SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum
    • Knoops K, Kikkert M, Worm SH, Zevenhoven-Dobbe JC, van der Meer Y, Koster AJ, et al. SARS-coronavirus replication is supported by a reticulovesicular network of modified endoplasmic reticulum. PLoS Biol (2008) 6:e226. doi:10.1371/journal.pbio.0060226.
    • (2008) PLoS Biol , vol.6
    • Knoops, K.1    Kikkert, M.2    Worm, S.H.3    Zevenhoven-Dobbe, J.C.4    van der Meer, Y.5    Koster, A.J.6
  • 100
    • 65549164536 scopus 로고    scopus 로고
    • Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I
    • Gack MU, Albrecht RA, Urano T, Inn KS, Huang IC, Carnero E, et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe (2009) 5:439-49. doi:10.1016/j.chom.2009.04.006.
    • (2009) Cell Host Microbe , vol.5 , pp. 439-449
    • Gack, M.U.1    Albrecht, R.A.2    Urano, T.3    Inn, K.S.4    Huang, I.C.5    Carnero, E.6
  • 101
    • 84870820660 scopus 로고    scopus 로고
    • Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein
    • Rajsbaum R, Albrecht RA, Wang MK, Maharaj NP, Versteeg GA, Nistal-Villan E, et al. Species-specific inhibition of RIG-I ubiquitination and IFN induction by the influenza A virus NS1 protein. PLoS Pathog (2012) 8:e1003059. doi:10.1371/journal.ppat.1003059.
    • (2012) PLoS Pathog , vol.8
    • Rajsbaum, R.1    Albrecht, R.A.2    Wang, M.K.3    Maharaj, N.P.4    Versteeg, G.A.5    Nistal-Villan, E.6
  • 102
    • 84956628939 scopus 로고    scopus 로고
    • Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity
    • Kathum OA, Schrader T, Anhlan D, NordhoffC, Liedmann S, Pande A, et al. Phosphorylation of influenza A virus NS1 protein at threonine 49 suppresses its interferon antagonistic activity. Cell Microbiol (2016) 18:784-91. doi:10.1111/cmi.12559.
    • (2016) Cell Microbiol , vol.18 , pp. 784-791
    • Kathum, O.A.1    Schrader, T.2    Anhlan, D.3    Nordhoff, C.4    Liedmann, S.5    Pande, A.6
  • 103
    • 84980351226 scopus 로고    scopus 로고
    • Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I
    • Zheng W, Cao S, Chen C, Li J, Zhang S, Jiang J, et al. Threonine 80 phosphorylation of non-structural protein 1 regulates the replication of influenza A virus by reducing the binding affinity with RIG-I. Cell Microbiol (2016). doi:10.1111/cmi.12643.
    • (2016) Cell Microbiol
    • Zheng, W.1    Cao, S.2    Chen, C.3    Li, J.4    Zhang, S.5    Jiang, J.6
  • 104
    • 84977561786 scopus 로고    scopus 로고
    • Robust Lys63-linked ubiquitination of RIG-I promotes cytokine eruption in early influenza B virus infection
    • Jiang J, Li J, Fan W, Zheng W, Yu M, Chen C, et al. Robust Lys63-linked ubiquitination of RIG-I promotes cytokine eruption in early influenza B virus infection. J Virol (2016) 90:6263-75. doi:10.1128/JVI.00549-16.
    • (2016) J Virol , vol.90 , pp. 6263-6275
    • Jiang, J.1    Li, J.2    Fan, W.3    Zheng, W.4    Yu, M.5    Chen, C.6
  • 105
    • 80055007460 scopus 로고    scopus 로고
    • Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64
    • Inn KS, Lee SH, Rathbun JY, Wong LY, Toth Z, Machida K, et al. Inhibition of RIG-I-mediated signaling by Kaposi's sarcoma-associated herpesvirus-encoded deubiquitinase ORF64. J Virol (2011) 85:10899-904. doi:10.1128/JVI.00690-11.
    • (2011) J Virol , vol.85 , pp. 10899-10904
    • Inn, K.S.1    Lee, S.H.2    Rathbun, J.Y.3    Wong, L.Y.4    Toth, Z.5    Machida, K.6
  • 106
    • 84908330408 scopus 로고    scopus 로고
    • Regulation of RIG-I-like receptor signaling by host and viral proteins
    • Chiang JJ, Davis ME, Gack MU. Regulation of RIG-I-like receptor signaling by host and viral proteins. Cytokine Growth Factor Rev (2014) 25:491-505. doi:10.1016/j.cytogfr.2014.06.005.
    • (2014) Cytokine Growth Factor Rev , vol.25 , pp. 491-505
    • Chiang, J.J.1    Davis, M.E.2    Gack, M.U.3
  • 107
    • 84856844697 scopus 로고    scopus 로고
    • Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling
    • van Kasteren PB, Beugeling C, Ninaber DK, Frias-Staheli N, van Boheemen S, Garcia-Sastre A, et al. Arterivirus and nairovirus ovarian tumor domain-containing deubiquitinases target activated RIG-I to control innate immune signaling. J Virol (2012) 86:773-85. doi:10.1128/JVI.06277-11.
    • (2012) J Virol , vol.86 , pp. 773-785
    • van Kasteren, P.B.1    Beugeling, C.2    Ninaber, D.K.3    Frias-Staheli, N.4    van Boheemen, S.5    Garcia-Sastre, A.6
  • 108
    • 84904182245 scopus 로고    scopus 로고
    • Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases
    • Mesman AW, Zijlstra-Willems EM, Kaptein TM, de Swart RL, Davis ME, Ludlow M, et al. Measles virus suppresses RIG-I-like receptor activation in dendritic cells via DC-SIGN-mediated inhibition of PP1 phosphatases. Cell Host Microbe (2014) 16:31-42. doi:10.1016/j.chom.2014.06.008.
    • (2014) Cell Host Microbe , vol.16 , pp. 31-42
    • Mesman, A.W.1    Zijlstra-Willems, E.M.2    Kaptein, T.M.3    de Swart, R.L.4    Davis, M.E.5    Ludlow, M.6
  • 109
    • 68649098926 scopus 로고    scopus 로고
    • RIG-I is cleaved during picornavirus infection
    • Barral PM, Sarkar D, Fisher PB, Racaniello VR. RIG-I is cleaved during picornavirus infection. Virology (2009) 391:171-6. doi:10.1016/j.virol.2009.06.045.
    • (2009) Virology , vol.391 , pp. 171-176
    • Barral, P.M.1    Sarkar, D.2    Fisher, P.B.3    Racaniello, V.R.4
  • 110
    • 84894522449 scopus 로고    scopus 로고
    • Enterovirus 2Apro targets MDA5 and MAVS in infected cells
    • Feng Q, Langereis MA, Lork M, Nguyen M, Hato SV, Lanke K, et al. Enterovirus 2Apro targets MDA5 and MAVS in infected cells. J Virol (2014) 88:3369-78. doi:10.1128/JVI.02712-13.
    • (2014) J Virol , vol.88 , pp. 3369-3378
    • Feng, Q.1    Langereis, M.A.2    Lork, M.3    Nguyen, M.4    Hato, S.V.5    Lanke, K.6
  • 111
    • 70349807812 scopus 로고    scopus 로고
    • The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection
    • Papon L, Oteiza A, Imaizumi T, Kato H, Brocchi E, Lawson TG, et al. The viral RNA recognition sensor RIG-I is degraded during encephalomyocarditis virus (EMCV) infection. Virology (2009) 393:311-8. doi:10.1016/j.virol.2009.08.009.
    • (2009) Virology , vol.393 , pp. 311-318
    • Papon, L.1    Oteiza, A.2    Imaizumi, T.3    Kato, H.4    Brocchi, E.5    Lawson, T.G.6
  • 113
    • 34249855382 scopus 로고    scopus 로고
    • Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor
    • Yang Y, Liang Y, Qu L, Chen Z, Yi M, Li K, et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sci U S A (2007) 104:7253-8. doi:10.1073/pnas.0611506104.
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 7253-7258
    • Yang, Y.1    Liang, Y.2    Qu, L.3    Chen, Z.4    Yi, M.5    Li, K.6
  • 114
    • 79953279338 scopus 로고    scopus 로고
    • The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling
    • Mukherjee A, Morosky SA, Delorme-Axford E, Dybdahl-Sissoko N, Oberste MS, Wang T, et al. The coxsackievirus B 3C protease cleaves MAVS and TRIF to attenuate host type I interferon and apoptotic signaling. PLoS Pathog (2011) 7:e1001311. doi:10.1371/journal.ppat.1001311.
    • (2011) PLoS Pathog , vol.7
    • Mukherjee, A.1    Morosky, S.A.2    Delorme-Axford, E.3    Dybdahl-Sissoko, N.4    Oberste, M.S.5    Wang, T.6
  • 115
    • 29144462494 scopus 로고    scopus 로고
    • Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein offthe mitochondria to evade innate immunity
    • Li XD, Sun L, Seth RB, Pineda G, Chen ZJ. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein offthe mitochondria to evade innate immunity. Proc Natl Acad Sci U S A (2005) 102:17717-22. doi:10.1073/pnas.0508531102.
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 17717-17722
    • Li, X.D.1    Sun, L.2    Seth, R.B.3    Pineda, G.4    Chen, Z.J.5
  • 116
    • 77955496554 scopus 로고    scopus 로고
    • The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein
    • Wei C, Ni C, Song T, Liu Y, Yang X, Zheng Z, et al. The hepatitis B virus X protein disrupts innate immunity by downregulating mitochondrial antiviral signaling protein. J Immunol (2010) 185:1158-68. doi:10.4049/jimmunol.0903874.
    • (2010) J Immunol , vol.185 , pp. 1158-1168
    • Wei, C.1    Ni, C.2    Song, T.3    Liu, Y.4    Yang, X.5    Zheng, Z.6
  • 117
    • 84865095316 scopus 로고    scopus 로고
    • Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential
    • Varga ZT, Grant A, Manicassamy B, Palese P. Influenza virus protein PB1-F2 inhibits the induction of type I interferon by binding to MAVS and decreasing mitochondrial membrane potential. J Virol (2012) 86:8359-66. doi:10.1128/JVI.01122-12.
    • (2012) J Virol , vol.86 , pp. 8359-8366
    • Varga, Z.T.1    Grant, A.2    Manicassamy, B.3    Palese, P.4
  • 118
    • 79959823372 scopus 로고    scopus 로고
    • The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein
    • Varga ZT, Ramos I, Hai R, Schmolke M, Garcia-Sastre A, Fernandez-Sesma A, et al. The influenza virus protein PB1-F2 inhibits the induction of type I interferon at the level of the MAVS adaptor protein. PLoS Pathog (2011) 7:e1002067. doi:10.1371/journal.ppat.1002067.
    • (2011) PLoS Pathog , vol.7
    • Varga, Z.T.1    Ramos, I.2    Hai, R.3    Schmolke, M.4    Garcia-Sastre, A.5    Fernandez-Sesma, A.6
  • 119
    • 84907319179 scopus 로고    scopus 로고
    • Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity
    • Yoshizumi T, Ichinohe T, Sasaki O, Otera H, Kawabata S, Mihara K, et al. Influenza A virus protein PB1-F2 translocates into mitochondria via Tom40 channels and impairs innate immunity. Nat Commun (2014) 5:4713. doi:10.1038/ncomms5713.
    • (2014) Nat Commun , vol.5 , pp. 4713
    • Yoshizumi, T.1    Ichinohe, T.2    Sasaki, O.3    Otera, H.4    Kawabata, S.5    Mihara, K.6
  • 120
    • 84864391552 scopus 로고    scopus 로고
    • Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS
    • Lifland AW, Jung J, Alonas E, Zurla C, Crowe JE Jr, Santangelo PJ. Human respiratory syncytial virus nucleoprotein and inclusion bodies antagonize the innate immune response mediated by MDA5 and MAVS. J Virol (2012) 86:8245-58. doi:10.1128/JVI.00215-12.
    • (2012) J Virol , vol.86 , pp. 8245-8258
    • Lifland, A.W.1    Jung, J.2    Alonas, E.3    Zurla, C.4    Crowe, J.E.5    Santangelo, P.J.6
  • 121
    • 84896930327 scopus 로고    scopus 로고
    • Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses
    • Santiago FW, Covaleda LM, Sanchez-Aparicio MT, Silvas JA, Diaz-Vizarreta AC, Patel JR, et al. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol (2014) 88:4572-85. doi:10.1128/JVI.03021-13.
    • (2014) J Virol , vol.88 , pp. 4572-4585
    • Santiago, F.W.1    Covaleda, L.M.2    Sanchez-Aparicio, M.T.3    Silvas, J.A.4    Diaz-Vizarreta, A.C.5    Patel, J.R.6
  • 122
    • 79952837091 scopus 로고    scopus 로고
    • The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase
    • Wang D, Fang L, Li P, Sun L, Fan J, Zhang Q, et al. The leader proteinase of foot-and-mouth disease virus negatively regulates the type I interferon pathway by acting as a viral deubiquitinase. J Virol (2011) 85:3758-66. doi:10.1128/JVI.02589-10.
    • (2011) J Virol , vol.85 , pp. 3758-3766
    • Wang, D.1    Fang, L.2    Li, P.3    Sun, L.4    Fan, J.5    Zhang, Q.6
  • 123
    • 55549102621 scopus 로고    scopus 로고
    • PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production
    • Zheng D, Chen G, Guo B, Cheng G, Tang H. PLP2, a potent deubiquitinase from murine hepatitis virus, strongly inhibits cellular type I interferon production. Cell Res (2008) 18:1105-13. doi:10.1038/cr.2008.294.
    • (2008) Cell Res , vol.18 , pp. 1105-1113
    • Zheng, D.1    Chen, G.2    Guo, B.3    Cheng, G.4    Tang, H.5
  • 124
    • 84936935012 scopus 로고    scopus 로고
    • Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant
    • Dalrymple NA, Cimica V, Mackow ER. Dengue virus NS proteins inhibit RIG-I/MAVS signaling by blocking TBK1/IRF3 phosphorylation: dengue virus serotype 1 NS4A is a unique interferon-regulating virulence determinant. MBio (2015) 6:e553-515. doi:10.1128/mBio.00553-15.
    • (2015) MBio , vol.6
    • Dalrymple, N.A.1    Cimica, V.2    Mackow, E.R.3
  • 125
    • 84892583254 scopus 로고    scopus 로고
    • Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus
    • Randall CM, Biswas S, Selen CV, Shisler JL. Inhibition of interferon gene activation by death-effector domain-containing proteins from the molluscum contagiosum virus. Proc Natl Acad Sci U S A (2014) 111:E265-72. doi:10.1073/pnas.1314569111.
    • (2014) Proc Natl Acad Sci U S A , vol.111 , pp. E265-E272
    • Randall, C.M.1    Biswas, S.2    Selen, C.V.3    Shisler, J.L.4
  • 126
    • 49149113373 scopus 로고    scopus 로고
    • Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation
    • Schroder M, Baran M, Bowie AG. Viral targeting of DEAD box protein 3 reveals its role in TBK1/IKKepsilon-mediated IRF activation. EMBO J (2008) 27:2147-57. doi:10.1038/emboj.2008.143.
    • (2008) EMBO J , vol.27 , pp. 2147-2157
    • Schroder, M.1    Baran, M.2    Bowie, A.G.3
  • 127
    • 50949085475 scopus 로고    scopus 로고
    • The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation
    • AlffPJ, Sen N, Gorbunova E, Gavrilovskaya IN, Mackow ER. The NY-1 hantavirus Gn cytoplasmic tail coprecipitates TRAF3 and inhibits cellular interferon responses by disrupting TBK1-TRAF3 complex formation. J Virol (2008) 82:9115-22. doi:10.1128/JVI.00290-08.
    • (2008) J Virol , vol.82 , pp. 9115-9122
    • Alff, P.J.1    Sen, N.2    Gorbunova, E.3    Gavrilovskaya, I.N.4    Mackow, E.R.5
  • 128
    • 84899584959 scopus 로고    scopus 로고
    • SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex
    • Chen X, Yang X, Zheng Y, Yang Y, Xing Y, Chen Z. SARS coronavirus papain-like protease inhibits the type I interferon signaling pathway through interaction with the STING-TRAF3-TBK1 complex. Protein Cell (2014) 5:369-81. doi:10.1007/s13238-014-0026-3.
    • (2014) Protein Cell , vol.5 , pp. 369-381
    • Chen, X.1    Yang, X.2    Zheng, Y.3    Yang, Y.4    Xing, Y.5    Chen, Z.6
  • 129
    • 84894576199 scopus 로고    scopus 로고
    • Evasion of antiviral immunity through sequestering of TBK1/IKKepsilon/IRF3 into viral inclusion bodies
    • Wu X, Qi X, Qu B, Zhang Z, Liang M, Li C, et al. Evasion of antiviral immunity through sequestering of TBK1/IKKepsilon/IRF3 into viral inclusion bodies. J Virol (2014) 88:3067-76. doi:10.1128/JVI.03510-13.
    • (2014) J Virol , vol.88 , pp. 3067-3076
    • Wu, X.1    Qi, X.2    Qu, B.3    Zhang, Z.4    Liang, M.5    Li, C.6
  • 130
    • 0033870894 scopus 로고    scopus 로고
    • Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein
    • Talon J, Horvath CM, Polley R, Basler CF, Muster T, Palese P, et al. Activation of interferon regulatory factor 3 is inhibited by the influenza A virus NS1 protein. J Virol (2000) 74:7989-96. doi:10.1128/JVI.74.17.7989-7996.2000.
    • (2000) J Virol , vol.74 , pp. 7989-7996
    • Talon, J.1    Horvath, C.M.2    Polley, R.3    Basler, C.F.4    Muster, T.5    Palese, P.6
  • 131
    • 84864118573 scopus 로고    scopus 로고
    • Inhibition of interferon regulatory factor 3 activation by paramyxovirus V protein
    • Irie T, Kiyotani K, Igarashi T, Yoshida A, Sakaguchi T. Inhibition of interferon regulatory factor 3 activation by paramyxovirus V protein. J Virol (2012) 86:7136-45. doi:10.1128/JVI.06705-11.
    • (2012) J Virol , vol.86 , pp. 7136-7145
    • Irie, T.1    Kiyotani, K.2    Igarashi, T.3    Yoshida, A.4    Sakaguchi, T.5
  • 132
    • 84938521107 scopus 로고    scopus 로고
    • The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity
    • Matthews K, Schafer A, Pham A, Frieman M. The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity. Virol J (2014) 11:209. doi:10.1186/s12985-014-0209-9.
    • (2014) Virol J , vol.11 , pp. 209
    • Matthews, K.1    Schafer, A.2    Pham, A.3    Frieman, M.4
  • 133
    • 78650675607 scopus 로고    scopus 로고
    • Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity
    • Rieder M, Brzozka K, Pfaller CK, Cox JH, Stitz L, Conzelmann KK. Genetic dissection of interferon-antagonistic functions of rabies virus phosphoprotein: inhibition of interferon regulatory factor 3 activation is important for pathogenicity. J Virol (2011) 85:842-52. doi:10.1128/JVI.01427-10.
    • (2011) J Virol , vol.85 , pp. 842-852
    • Rieder, M.1    Brzozka, K.2    Pfaller, C.K.3    Cox, J.H.4    Stitz, L.5    Conzelmann, K.K.6
  • 134
    • 84887145383 scopus 로고    scopus 로고
    • Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production
    • Wang S, Wang K, Lin R, Zheng C. Herpes simplex virus 1 serine/threonine kinase US3 hyperphosphorylates IRF3 and inhibits beta interferon production. J Virol (2013) 87:12814-27. doi:10.1128/JVI.02355-13.
    • (2013) J Virol , vol.87 , pp. 12814-12827
    • Wang, S.1    Wang, K.2    Lin, R.3    Zheng, C.4
  • 135
    • 84869120419 scopus 로고    scopus 로고
    • Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation
    • Bentz GL, Shackelford J, Pagano JS. Epstein-Barr virus latent membrane protein 1 regulates the function of interferon regulatory factor 7 by inducing its sumoylation. J Virol (2012) 86:12251-61. doi:10.1128/JVI.01407-12.
    • (2012) J Virol , vol.86 , pp. 12251-12261
    • Bentz, G.L.1    Shackelford, J.2    Pagano, J.S.3
  • 136
    • 84883289749 scopus 로고    scopus 로고
    • Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain
    • Arnold MM, Barro M, Patton JT. Rotavirus NSP1 mediates degradation of interferon regulatory factors through targeting of the dimerization domain. J Virol (2013) 87:9813-21. doi:10.1128/JVI.01146-13.
    • (2013) J Virol , vol.87 , pp. 9813-9821
    • Arnold, M.M.1    Barro, M.2    Patton, J.T.3
  • 138
    • 35148863054 scopus 로고    scopus 로고
    • Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression
    • Lefort S, Soucy-Faulkner A, Grandvaux N, Flamand L. Binding of Kaposi's sarcoma-associated herpesvirus K-bZIP to interferon-responsive factor 3 elements modulates antiviral gene expression. J Virol (2007) 81:10950-60. doi:10.1128/JVI.00183-07.
    • (2007) J Virol , vol.81 , pp. 10950-10960
    • Lefort, S.1    Soucy-Faulkner, A.2    Grandvaux, N.3    Flamand, L.4
  • 139
    • 33947627724 scopus 로고    scopus 로고
    • Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: potential role in blocking IFN-beta induction
    • Melroe GT, Silva L, Schaffer PA, Knipe DM. Recruitment of activated IRF-3 and CBP/p300 to herpes simplex virus ICP0 nuclear foci: potential role in blocking IFN-beta induction. Virology (2007) 360:305-21. doi:10.1016/j.virol.2006.10.028.
    • (2007) Virology , vol.360 , pp. 305-321
    • Melroe, G.T.1    Silva, L.2    Schaffer, P.A.3    Knipe, D.M.4
  • 140
    • 84991730506 scopus 로고    scopus 로고
    • The vaccinia virus K1 ankyrin repeat protein inhibits NF-kB activation by preventing RelA acetylation
    • Bravo Cruz AG, Shisler JL. The vaccinia virus K1 ankyrin repeat protein inhibits NF-kB activation by preventing RelA acetylation. J Gen Virol (2016) 97:2691-702. doi:10.1099/jgv.0.000576.
    • (2016) J Gen Virol , vol.97 , pp. 2691-2702
    • Bravo Cruz, A.G.1    Shisler, J.L.2
  • 141
    • 84866327131 scopus 로고    scopus 로고
    • Vaccinia virus protein C4 inhibits NF-kappaB activation and promotes virus virulence
    • Ember SW, Ren H, Ferguson BJ, Smith GL. Vaccinia virus protein C4 inhibits NF-kappaB activation and promotes virus virulence. J Gen Virol (2012) 93:2098-108. doi:10.1099/vir.0.045070-0.
    • (2012) J Gen Virol , vol.93 , pp. 2098-2108
    • Ember, S.W.1    Ren, H.2    Ferguson, B.J.3    Smith, G.L.4
  • 142
    • 84883292814 scopus 로고    scopus 로고
    • Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP
    • Xing J, Ni L, Wang S, Wang K, Lin R, Zheng C. Herpes simplex virus 1-encoded tegument protein VP16 abrogates the production of beta interferon (IFN) by inhibiting NF-kappaB activation and blocking IFN regulatory factor 3 to recruit its coactivator CBP. J Virol (2013) 87:9788-801. doi:10.1128/JVI.01440-13.
    • (2013) J Virol , vol.87 , pp. 9788-9801
    • Xing, J.1    Ni, L.2    Wang, S.3    Wang, K.4    Lin, R.5    Zheng, C.6
  • 143
    • 84904675153 scopus 로고    scopus 로고
    • Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation
    • Wang K, Ni L, Wang S, Zheng C. Herpes simplex virus 1 protein kinase US3 hyperphosphorylates p65/RelA and dampens NF-kappaB activation. J Virol (2014) 88:7941-51. doi:10.1128/JVI.03394-13.
    • (2014) J Virol , vol.88 , pp. 7941-7951
    • Wang, K.1    Ni, L.2    Wang, S.3    Zheng, C.4
  • 144
    • 26444489068 scopus 로고    scopus 로고
    • Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist
    • Best SM, Morris KL, Shannon JG, Robertson SJ, Mitzel DN, Park GS, et al. Inhibition of interferon-stimulated JAK-STAT signaling by a tick-borne flavivirus and identification of NS5 as an interferon antagonist. J Virol (2005) 79:12828-39. doi:10.1128/JVI.79.20.12828-12839.2005.
    • (2005) J Virol , vol.79 , pp. 12828-12839
    • Best, S.M.1    Morris, K.L.2    Shannon, J.G.3    Robertson, S.J.4    Mitzel, D.N.5    Park, G.S.6
  • 145
    • 33744943788 scopus 로고    scopus 로고
    • Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism
    • Lin RJ, Chang BL, Yu HP, Liao CL, Lin YL. Blocking of interferon-induced Jak-Stat signaling by Japanese encephalitis virus NS5 through a protein tyrosine phosphatase-mediated mechanism. J Virol (2006) 80:5908-18. doi:10.1128/JVI.02714-05.
    • (2006) J Virol , vol.80 , pp. 5908-5918
    • Lin, R.J.1    Chang, B.L.2    Yu, H.P.3    Liao, C.L.4    Lin, Y.L.5
  • 146
    • 84930341933 scopus 로고    scopus 로고
    • Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms
    • Verweij MC, Wellish M, Whitmer T, Malouli D, Lapel M, Jonjic S, et al. Varicella viruses inhibit interferon-stimulated JAK-STAT signaling through multiple mechanisms. PLoS Pathog (2015) 11:e1004901. doi:10.1371/journal.ppat.1004901.
    • (2015) PLoS Pathog , vol.11
    • Verweij, M.C.1    Wellish, M.2    Whitmer, T.3    Malouli, D.4    Lapel, M.5    Jonjic, S.6
  • 147
    • 77949373371 scopus 로고    scopus 로고
    • The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling
    • Laurent-Rolle M, Boer EF, Lubick KJ, Wolfinbarger JB, Carmody AB, Rockx B, et al. The NS5 protein of the virulent West Nile virus NY99 strain is a potent antagonist of type I interferon-mediated JAK-STAT signaling. J Virol (2010) 84:3503-15. doi:10.1128/JVI.01161-09.
    • (2010) J Virol , vol.84 , pp. 3503-3515
    • Laurent-Rolle, M.1    Boer, E.F.2    Lubick, K.J.3    Wolfinbarger, J.B.4    Carmody, A.B.5    Rockx, B.6
  • 148
    • 84875994162 scopus 로고    scopus 로고
    • Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling
    • Morrison J, Laurent-Rolle M, Maestre AM, Rajsbaum R, Pisanelli G, Simon V, et al. Dengue virus co-opts UBR4 to degrade STAT2 and antagonize type I interferon signaling. PLoS Pathog (2013) 9:e1003265. doi:10.1371/journal.ppat.1003265.
    • (2013) PLoS Pathog , vol.9
    • Morrison, J.1    Laurent-Rolle, M.2    Maestre, A.M.3    Rajsbaum, R.4    Pisanelli, G.5    Simon, V.6
  • 150
    • 84877790291 scopus 로고    scopus 로고
    • Hepatitis C virus targets the interferon-alpha JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes
    • Stevenson NJ, Bourke NM, Ryan EJ, Binder M, Fanning L, Johnston JA, et al. Hepatitis C virus targets the interferon-alpha JAK/STAT pathway by promoting proteasomal degradation in immune cells and hepatocytes. FEBS Lett (2013) 587:1571-8. doi:10.1016/j.febslet.2013.03.041.
    • (2013) FEBS Lett , vol.587 , pp. 1571-1578
    • Stevenson, N.J.1    Bourke, N.M.2    Ryan, E.J.3    Binder, M.4    Fanning, L.5    Johnston, J.A.6
  • 151
    • 33947399733 scopus 로고    scopus 로고
    • Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase
    • Elliott J, Lynch OT, Suessmuth Y, Qian P, Boyd CR, Burrows JF, et al. Respiratory syncytial virus NS1 protein degrades STAT2 by using the Elongin-Cullin E3 ligase. J Virol (2007) 81:3428-36. doi:10.1128/JVI.02303-06.
    • (2007) J Virol , vol.81 , pp. 3428-3436
    • Elliott, J.1    Lynch, O.T.2    Suessmuth, Y.3    Qian, P.4    Boyd, C.R.5    Burrows, J.F.6
  • 152
    • 70349239030 scopus 로고    scopus 로고
    • Paramyxovirus disruption of interferon signal transduction: STATus report
    • Ramachandran A, Horvath CM. Paramyxovirus disruption of interferon signal transduction: STATus report. J Interferon Cytokine Res (2009) 29:531-7. doi:10.1089/jir.2009.0070.
    • (2009) J Interferon Cytokine Res , vol.29 , pp. 531-537
    • Ramachandran, A.1    Horvath, C.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.