-
1
-
-
68649096389
-
Cytoplasmic nucleic acid sensors in antiviral immunity
-
Ranjan P, Bowzard JB, Schwerzmann JW, Jeisy-Scott V, Fujita T, Sambhara S (2009) Cytoplasmic nucleic acid sensors in antiviral immunity. Trends Mol Med 15: 359-368
-
(2009)
Trends Mol Med
, vol.15
, pp. 359-368
-
-
Ranjan, P.1
Bowzard, J.B.2
Schwerzmann, J.W.3
Jeisy-Scott, V.4
Fujita, T.5
Sambhara, S.6
-
2
-
-
66249094862
-
Origin and evolution of the RIG-I like RNA helicase gene family
-
Zou J, Chang M, Nie P, Secombes CJ (2009) Origin and evolution of the RIG-I like RNA helicase gene family. BMC Evol Biol 9: 85
-
(2009)
BMC Evol Biol
, vol.9
, pp. 85
-
-
Zou, J.1
Chang, M.2
Nie, P.3
Secombes, C.J.4
-
3
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, Taira K, Akira S, Fujita T (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5: 730-737
-
(2004)
Nat Immunol
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
Kikuchi, M.2
Natsukawa, T.3
Shinobu, N.4
Imaizumi, T.5
Miyagishi, M.6
Taira, K.7
Akira, S.8
Fujita, T.9
-
4
-
-
68049089651
-
Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee M, et al (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31: 25-34
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
-
5
-
-
67749133995
-
5′-Triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A, et al (2009) 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci USA 106: 12067-12072
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
-
6
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski E, Lunardi T, Mccarthy AA, Louber J, Brunel J, Grigorov B, Gerlier D, Cusack S (2011) Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147: 423-435
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
Lunardi, T.2
Mccarthy, A.A.3
Louber, J.4
Brunel, J.5
Grigorov, B.6
Gerlier, D.7
Cusack, S.8
-
7
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack MU, et al (2007) TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446: 916-920
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
-
8
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng W, Sun L, Jiang X, Chen X, Hou F, Adhikari A, Xu M, Chen ZJ (2010) Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141: 315-330
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
Sun, L.2
Jiang, X.3
Chen, X.4
Hou, F.5
Adhikari, A.6
Xu, M.7
Chen, Z.J.8
-
9
-
-
84862994793
-
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
-
Jiang X, Kinch LN, Brautigam Ca, Chen X, Du F, Grishin NV, Chen ZJ (2012) Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36: 959-973
-
(2012)
Immunity
, vol.36
, pp. 959-973
-
-
Jiang, X.1
Kinch, L.N.2
Brautigam, C.A.3
Chen, X.4
Du, F.5
Grishin, N.V.6
Chen, Z.J.7
-
10
-
-
24144461689
-
Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3
-
Seth RB, Sun L, Ea C-K, Chen ZJ (2005) Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 122: 669-682
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
Sun, L.2
Ea, C.-K.3
Chen, Z.J.4
-
11
-
-
24944538819
-
VISA is an adapter protein required for virus-triggered IFN-b signaling
-
Xu L-G, Wang Y-Y, Han K-J, Li L-Y, Zhai Z, Shu H-B (2005) VISA is an adapter protein required for virus-triggered IFN-b signaling. Mol Cell 19: 727-740
-
(2005)
Mol Cell
, vol.19
, pp. 727-740
-
-
Xu, L.-G.1
Wang, Y.-Y.2
Han, K.-J.3
Li, L.-Y.4
Zhai, Z.5
Shu, H.-B.6
-
12
-
-
27144440476
-
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
-
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, Bartenschlager R, Tschopp J (2005) Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437: 1167-1172
-
(2005)
Nature
, vol.437
, pp. 1167-1172
-
-
Meylan, E.1
Curran, J.2
Hofmann, K.3
Moradpour, D.4
Binder, M.5
Bartenschlager, R.6
Tschopp, J.7
-
13
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
-
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, Ishii KJ, Takeuchi O, Akira S (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6: 981-988
-
(2005)
Nat Immunol
, vol.6
, pp. 981-988
-
-
Kawai, T.1
Takahashi, K.2
Sato, S.3
Coban, C.4
Kumar, H.5
Kato, H.6
Ishii, K.J.7
Takeuchi, O.8
Akira, S.9
-
14
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen Zhijian J (2011) MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146: 448-461
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
Sun, L.2
Zheng, H.3
Skaug, B.4
Jiang, Q.-X.5
Chen Zhijian, J.6
-
15
-
-
77957666242
-
Virus-infection or 5′ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1
-
Onoguchi K, Onomoto K, Takamatsu S, Jogi M, Takemura A, Morimoto S, Julkunen I, Namiki H, Yoneyama M, Fujita T (2010) Virus-infection or 5′ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog 6: E1001012
-
(2010)
PLoS Pathog
, vol.6
-
-
Onoguchi, K.1
Onomoto, K.2
Takamatsu, S.3
Jogi, M.4
Takemura, A.5
Morimoto, S.6
Julkunen, I.7
Namiki, H.8
Yoneyama, M.9
Fujita, T.10
-
16
-
-
0036710523
-
Multiple signaling pathways leading to the activation of interferon regulatory factor 3
-
Servant MJ, Grandvaux N, Hiscott J (2002) Multiple signaling pathways leading to the activation of interferon regulatory factor 3. Biochem Pharmacol 64: 985-992
-
(2002)
Biochem Pharmacol
, vol.64
, pp. 985-992
-
-
Servant, M.J.1
Grandvaux, N.2
Hiscott, J.3
-
17
-
-
0038363463
-
Triggering the interferon antiviral response through an IKK-related pathway
-
Sharma S, tenOever BR, Grandvaux N, Zhou G-P, Lin R, Hiscott J (2003) Triggering the interferon antiviral response through an IKK-related pathway. Science 300: 1148-1151
-
(2003)
Science
, vol.300
, pp. 1148-1151
-
-
Sharma, S.1
TenOever, B.R.2
Grandvaux, N.3
Zhou, G.-P.4
Lin, R.5
Hiscott, J.6
-
18
-
-
41949113742
-
The enhanceosome
-
Panne D (2008) The enhanceosome. Curr Opin Struct Biol 18: 236-242
-
(2008)
Curr Opin Struct Biol
, vol.18
, pp. 236-242
-
-
Panne, D.1
-
19
-
-
77952503750
-
Peroxisomes are signaling platforms for antiviral innate immunity
-
Dixit E, et al (2010) Peroxisomes are signaling platforms for antiviral innate immunity. Cell 141: 668-681
-
(2010)
Cell
, vol.141
, pp. 668-681
-
-
Dixit, E.1
-
20
-
-
60749124538
-
Cytosolic viral sensor RIG-I is a 5′-triphosphatedependent translocase on double-stranded RNA
-
Myong S, Cui S, Cornish PV, Kirchhofer A, GackMU, Jung JU, Hopfner K-P, Ha T (2009) Cytosolic viral sensor RIG-I is a 5′-triphosphatedependent translocase on double-stranded RNA. Science 323: 1070-1074
-
(2009)
Science
, vol.323
, pp. 1070-1074
-
-
Myong, S.1
Cui, S.2
Cornish, P.V.3
Kirchhofer, A.4
Gack, M.U.5
Jung, J.U.6
Hopfner, K.-P.7
Ha, T.8
-
21
-
-
75749140581
-
RIG-I detects viral genomic RNA during negative-strand RNA virus infection
-
Rehwinkel J, et al (2010) RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140: 397-408
-
(2010)
Cell
, vol.140
, pp. 397-408
-
-
Rehwinkel, J.1
-
22
-
-
79952910124
-
Differential recognition of viral RNA by RIG-I
-
Baum A, García-Sastre A (2011) Differential recognition of viral RNA by RIG-I. Virulence 2: 166-169
-
(2011)
Virulence
, vol.2
, pp. 166-169
-
-
Baum, A.1
García-Sastre, A.2
-
23
-
-
77957997708
-
Preference of RIG-I for short viral RNA molecules in infected cells revealed by nextgeneration sequencing
-
Baum A, Sachidanandam R, García-Sastre A (2010) Preference of RIG-I for short viral RNA molecules in infected cells revealed by nextgeneration sequencing. Proc Natl Acad Sci USA 107: 16303-16308
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 16303-16308
-
-
Baum, A.1
Sachidanandam, R.2
García-Sastre, A.3
-
24
-
-
33745839246
-
Sendai virus defectiveinterfering genomes and the activation of interferon-beta
-
Strahle L, Garcin D, Kolakofsky D (2006) Sendai virus defectiveinterfering genomes and the activation of interferon-beta. Virology 351: 101-111
-
(2006)
Virology
, vol.351
, pp. 101-111
-
-
Strahle, L.1
Garcin, D.2
Kolakofsky, D.3
-
25
-
-
77955481642
-
The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain
-
Lu C, Xu H, Ranjith-Kumar CT, Brooks MT, Hou TY, Hu F, Herr AB, Strong RK, Kao CC, Li P (2010) The structural basis of 5′ triphosphate double-stranded RNA recognition by RIG-I C-terminal domain. Structure 18: 1032-1043
-
(2010)
Structure
, vol.18
, pp. 1032-1043
-
-
Lu, C.1
Xu, H.2
Ranjith-Kumar, C.T.3
Brooks, M.T.4
Hou, T.Y.5
Hu, F.6
Herr, A.B.7
Strong, R.K.8
Kao, C.C.9
Li, P.10
-
26
-
-
38649089789
-
The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I
-
Cui S, Eisenächer K, Kirchhofer A, Brzözka K, Lammens A, Lammens K, Fujita T, Conzelmann KK, Krug A, Hopfner KP (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29: 169-179
-
(2008)
Mol Cell
, vol.29
, pp. 169-179
-
-
Cui, S.1
Eisenächer, K.2
Kirchhofer, A.3
Brzözka, K.4
Lammens, A.5
Lammens, K.6
Fujita, T.7
Conzelmann, K.K.8
Krug, A.9
Hopfner, K.P.10
-
27
-
-
79960990301
-
Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I
-
Binder M, Eberle F, Seitz S, Mücke N, Hüber CM, Kiani N, Kaderali L, Lohmann V, Dalpke A, Bartenschlager R (2011) Molecular mechanism of signal perception and integration by the innate immune sensor retinoic acid-inducible gene-I (RIG-I). J Biol Chem 286: 27278-27287
-
(2011)
J Biol Chem
, vol.286
, pp. 27278-27287
-
-
Binder, M.1
Eberle, F.2
Seitz, S.3
Mücke, N.4
Hüber, C.M.5
Kiani, N.6
Kaderali, L.7
Lohmann, V.8
Dalpke, A.9
Bartenschlager, R.10
-
28
-
-
84862909216
-
Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition
-
Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, Walz T, Hur S (2011) Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc Natl Acad Sci USA 108: 21010-21015
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 21010-21015
-
-
Peisley, A.1
Lin, C.2
Wu, B.3
Orme-Johnson, M.4
Liu, M.5
Walz, T.6
Hur, S.7
-
29
-
-
84859427527
-
MDA5 cooperatively forms dimers and ATP sensitive filaments upon binding to dsRNA
-
Berke IC, Modis Y (2012) MDA5 cooperatively forms dimers and ATP sensitive filaments upon binding to dsRNA. EMBO J 31: 1714-1726
-
(2012)
EMBO J
, vol.31
, pp. 1714-1726
-
-
Berke, I.C.1
Modis, Y.2
|