-
1
-
-
63649113699
-
Origin and function of ubiquitin-like proteins
-
Hochstrasser M. 2009. Origin and function of ubiquitin-like proteins. Nature 458:422-29
-
(2009)
Nature
, vol.458
, pp. 422-429
-
-
Hochstrasser, M.1
-
2
-
-
70350150000
-
The emerging complexity of protein ubiquitination
-
Komander D. 2009. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans. 37:937-53
-
(2009)
Biochem. Soc. Trans.
, vol.37
, pp. 937-953
-
-
Komander, D.1
-
3
-
-
67349256160
-
Ubiquitin-like protein activation by E1 enzymes: The apex for downstream signalling pathways
-
Schulman BA, Harper JW. 2009. Ubiquitin-like protein activation by E1 enzymes: the apex for downstream signalling pathways. Nat. Rev. Mol. Cell Biol. 10:319-31
-
(2009)
Nat. Rev. Mol. Cell Biol.
, vol.10
, pp. 319-331
-
-
Schulman, B.A.1
Harper, J.W.2
-
4
-
-
79958262459
-
Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing
-
Mishra SK, Ammon T, Popowicz GM, Krajewski M, Nagel RJ, et al. 2011. Role of the ubiquitin-like protein Hub1 in splice-site usage and alternative splicing. Nature 474:173-78
-
(2011)
Nature
, vol.474
, pp. 173-178
-
-
Mishra, S.K.1
Ammon, T.2
Popowicz, G.M.3
Krajewski, M.4
Nagel, R.J.5
-
5
-
-
84880278483
-
The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice
-
Tatsumi K, Yamamoto-Mukai H, Shimizu R, Waguri S, Sou YS, et al. 2011. The Ufm1-activating enzyme Uba5 is indispensable for erythroid differentiation in mice. Nat. Commun. 2:181
-
(2011)
Nat. Commun.
, vol.2
, pp. 181
-
-
Tatsumi, K.1
Yamamoto-Mukai, H.2
Shimizu, R.3
Waguri, S.4
Sou, Y.S.5
-
7
-
-
78649396592
-
The SUMO pathway: Emerging mechanisms that shape specificity, conjugation and recognition
-
Gareau JR, Lima CD. 2010. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat. Rev. Mol. Cell Biol. 11:861-71
-
(2010)
Nat. Rev. Mol. Cell Biol.
, vol.11
, pp. 861-871
-
-
Gareau, J.R.1
Lima, C.D.2
-
8
-
-
77952566949
-
Mechanisms, regulation and consequences of protein SUMOylation
-
Wilkinson KA, Henley JM. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochem. J. 428:133-45
-
(2010)
Biochem. J.
, vol.428
, pp. 133-145
-
-
Wilkinson, K.A.1
Henley, J.M.2
-
9
-
-
79251577061
-
The regulation of autophagy: Unanswered questions
-
Chen Y, Klionsky DJ. 2011. The regulation of autophagy: unanswered questions. J. Cell Sci. 124:161-70
-
(2011)
J. Cell Sci.
, vol.124
, pp. 161-170
-
-
Chen, Y.1
Klionsky, D.J.2
-
10
-
-
0030455748
-
A novel ubiquitin-likemodificationmodulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex
-
MatunisMJ, Coutavas E, BlobelG. 1996. A novel ubiquitin- likemodificationmodulates the partitioning of the Ran-GTPase-activating protein RanGAP1 between the cytosol and the nuclear pore complex. J. Cell Biol. 135:1457-70
-
(1996)
J. Cell Biol.
, vol.135
, pp. 1457-1470
-
-
Matunis, M.J.1
Coutavas, E.2
Blobel, G.3
-
11
-
-
0030932134
-
A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2
-
Mahajan R, Delphin C, Guan T, Gerace L, Melchior F. 1997. A small ubiquitin-related polypeptide involved in targeting RanGAP1 to nuclear pore complex protein RanBP2. Cell 88:97-107
-
(1997)
Cell
, vol.88
, pp. 97-107
-
-
Mahajan, R.1
Delphin, C.2
Guan, T.3
Gerace, L.4
Melchior, F.5
-
12
-
-
0035929557
-
Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9
-
Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, et al. 2001. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J. Biol. Chem. 276:35368-74
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 35368-35374
-
-
Tatham, M.H.1
Jaffray, E.2
Vaughan, O.A.3
Desterro, J.M.4
Botting, C.H.5
-
13
-
-
50249096810
-
Sumo-1 function is dispensable in normal mouse development
-
Zhang FP, Mikkonen L, Toppari J, Palvimo JJ, Thesleff I, Janne OA. 2008. Sumo-1 function is dispensable in normal mouse development. Mol. Cell. Biol. 28:5381-90
-
(2008)
Mol. Cell. Biol.
, vol.28
, pp. 5381-5390
-
-
Zhang, F.P.1
Mikkonen, L.2
Toppari, J.3
Palvimo, J.J.4
Thesleff, I.5
Janne, O.A.6
-
14
-
-
59349108844
-
Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3
-
Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR. 2008. Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J. Cell Sci. 121:4106-13
-
(2008)
J. Cell Sci.
, vol.121
, pp. 4106-4113
-
-
Evdokimov, E.1
Sharma, P.2
Lockett, S.J.3
Lualdi, M.4
Kuehn, M.R.5
-
15
-
-
76449095017
-
Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish
-
Yuan H, Zhou J, Deng M, Liu X, Le Bras M, et al. 2010. Small ubiquitin-related modifier paralogs are indispensable but functionally redundant during early development of zebrafish. Cell Res. 20:185-96
-
(2010)
Cell Res.
, vol.20
, pp. 185-196
-
-
Yuan, H.1
Zhou, J.2
Deng, M.3
Liu, X.4
Le Bras, M.5
-
16
-
-
9444260454
-
Distinct in vivo dynamics of vertebrate SUMO paralogues
-
Ayaydin F, Dasso M. 2004. Distinct in vivo dynamics of vertebrate SUMO paralogues. Mol. Biol. Cell 15:5208-18
-
(2004)
Mol. Biol. Cell
, vol.15
, pp. 5208-5218
-
-
Ayaydin, F.1
Dasso, M.2
-
17
-
-
33846019234
-
Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics
-
Vertegaal AC, Andersen JS, Ogg SC, Hay RT, Mann M, Lamond AI. 2006. Distinct and overlapping sets of SUMO-1 and SUMO-2 target proteins revealed by quantitative proteomics. Mol. Cell Proteomics 5:2298-310
-
(2006)
Mol. Cell Proteomics
, vol.5
, pp. 2298-2310
-
-
Vertegaal, A.C.1
Andersen, J.S.2
Ogg, S.C.3
Hay, R.T.4
Mann, M.5
Lamond, A.I.6
-
18
-
-
14644402420
-
A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers
-
Rosas-Acosta G, Russell WK, Deyrieux A, Russell DH, Wilson VG. 2005. A universal strategy for proteomic studies of SUMO and other ubiquitin-like modifiers. Mol. Cell Proteomics 4:56-72
-
(2005)
Mol. Cell Proteomics
, vol.4
, pp. 56-72
-
-
Rosas-Acosta, G.1
Russell, W.K.2
Deyrieux, A.3
Russell, D.H.4
Wilson, V.G.5
-
19
-
-
10844253933
-
Global shifts in protein sumoylation in response to electrophile and oxidative stress
-
Manza LL, Codreanu SG, Stamer SL, Smith DL, Wells KS, et al. 2004. Global shifts in protein sumoylation in response to electrophile and oxidative stress. Chem. Res. Toxicol. 17:1706-15
-
(2004)
Chem. Res. Toxicol.
, vol.17
, pp. 1706-1715
-
-
Manza, L.L.1
Codreanu, S.G.2
Stamer, S.L.3
Smith, D.L.4
Wells, K.S.5
-
20
-
-
40849115019
-
SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis
-
Zhang XD, Goeres J, Zhang H, Yen TJ, Porter AC, Matunis MJ. 2008. SUMO-2/3 modification and binding regulate the association of CENP-E with kinetochores and progression through mitosis. Mol. Cell 29:729-41
-
(2008)
Mol. Cell
, vol.29
, pp. 729-741
-
-
Zhang, X.D.1
Goeres, J.2
Zhang, H.3
Yen, T.J.4
Porter, A.C.5
Matunis, M.J.6
-
21
-
-
33748188499
-
PIASy mediates NEMO sumoylation and NFkappaB activation in response to genotoxic stress
-
Mabb AM, Wuerzberger-Davis SM, Miyamoto S. 2006. PIASy mediates NEMO sumoylation and NFkappaB activation in response to genotoxic stress. Nat. Cell Biol. 8:986-93
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 986-993
-
-
Mabb, A.M.1
Wuerzberger-Davis, S.M.2
Miyamoto, S.3
-
22
-
-
33845970925
-
Parallel SUMOylation-dependent pathways mediate gene-and signal-specific transrepression by LXRs and PPARgamma
-
Ghisletti S, Huang W, Ogawa S, Pascual G, Lin ME, et al. 2007. Parallel SUMOylation-dependent pathways mediate gene-and signal-specific transrepression by LXRs and PPARgamma. Mol. Cell 25:57-70
-
(2007)
Mol. Cell
, vol.25
, pp. 57-70
-
-
Ghisletti, S.1
Huang, W.2
Ogawa, S.3
Pascual, G.4
Lin, M.E.5
-
23
-
-
79960907159
-
SUMOylation of Blimp-1 promotes its proteasomal degradation
-
Shimshon L, Michaeli A, Hadar R, Nutt SL, David Y, et al. 2011. SUMOylation of Blimp-1 promotes its proteasomal degradation. FEBS Lett. 585:2405-9
-
(2011)
FEBS Lett.
, vol.585
, pp. 2405-2409
-
-
Shimshon, L.1
Michaeli, A.2
Hadar, R.3
Nutt, S.L.4
David, Y.5
-
24
-
-
0034054669
-
Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3
-
Saitoh H, Hinchey J. 2000. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J. Biol. Chem. 275:6252-58
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 6252-6258
-
-
Saitoh, H.1
Hinchey, J.2
-
25
-
-
33646353695
-
Assembly of a polymeric chain of SUMO1 on human topoisomerase i in vitro
-
Yang M, Hsu CT, Ting CY, Liu LF, Hwang J. 2006. Assembly of a polymeric chain of SUMO1 on human topoisomerase I in vitro. J. Biol. Chem. 281:8264-74
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 8264-8274
-
-
Yang, M.1
Hsu, C.T.2
Ting, C.Y.3
Liu, L.F.4
Hwang, J.5
-
26
-
-
0037059619
-
The nucleoporin RanBP2 has SUMO1 E3 ligase activity
-
Pichler A, Gast A, Seeler JS, Dejean A, Melchior F. 2002. The nucleoporin RanBP2 has SUMO1 E3 ligase activity. Cell 108:109-20
-
(2002)
Cell
, vol.108
, pp. 109-120
-
-
Pichler, A.1
Gast, A.2
Seeler, J.S.3
Dejean, A.4
Melchior, F.5
-
27
-
-
39049093685
-
In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy
-
Matic I, Van HagenM, Schimmel J, Macek B, Ogg SC, et al. 2008. In vivo identification of human small ubiquitin-like modifier polymerization sites by high accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell Proteomics 7:132-44
-
(2008)
Mol. Cell Proteomics
, vol.7
, pp. 132-144
-
-
Matic, I.1
Van Hagen, M.2
Schimmel, J.3
MacEk, B.4
Ogg, S.C.5
-
28
-
-
33745360876
-
Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software
-
Pedrioli PG, Raught B, Zhang XD, Rogers R, Aitchison J, et al. 2006. Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software. Nat. Methods 3:533-39
-
(2006)
Nat. Methods
, vol.3
, pp. 533-539
-
-
Pedrioli, P.G.1
Raught, B.2
Zhang, X.D.3
Rogers, R.4
Aitchison, J.5
-
29
-
-
0242414786
-
The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast
-
Bylebyl GR, Belichenko I, Johnson ES. 2003. The SUMO isopeptidase Ulp2 prevents accumulation of SUMO chains in yeast. J. Biol. Chem. 278:44113-20
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 44113-44120
-
-
Bylebyl, G.R.1
Belichenko, I.2
Johnson, E.S.3
-
30
-
-
5144219680
-
Identification of a SUMO-binding motif that recognizes SUMO-modified proteins
-
Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. 2004. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc. Natl. Acad. Sci. USA 101:14373-78
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 14373-14378
-
-
Song, J.1
Durrin, L.K.2
Wilkinson, T.A.3
Krontiris, T.G.4
Chen, Y.5
-
31
-
-
33744940842
-
Specification of SUMO1-and SUMO2-interacting motifs
-
Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. 2006. Specification of SUMO1-and SUMO2-interacting motifs. J. Biol. Chem. 281:16117-27
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 16117-16127
-
-
Hecker, C.M.1
Rabiller, M.2
Haglund, K.3
Bayer, P.4
Dikic, I.5
-
32
-
-
28844455305
-
Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: A reversal of the bound orientation
-
Song J, Zhang Z, HuW, Chen Y. 2005. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J. Biol. Chem. 280:40122-29
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 40122-40129
-
-
Song, J.1
Zhang, Z.2
Huw Chen, Y.3
-
33
-
-
34547683267
-
SUMO junction-what's your function? New insights through SUMO-interacting motifs
-
Kerscher O. 2007. SUMO junction-what's your function? New insights through SUMO-interacting motifs. EMBO Rep. 8:550-55
-
(2007)
EMBO Rep.
, vol.8
, pp. 550-555
-
-
Kerscher, O.1
-
34
-
-
44449109533
-
Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25
-
Meulmeester E, Kunze M, Hsiao HH, Urlaub H, Melchior F. 2008. Mechanism and consequences for paralog-specific sumoylation of ubiquitin-specific protease 25. Mol. Cell 30:610-19
-
(2008)
Mol. Cell
, vol.30
, pp. 610-619
-
-
Meulmeester, E.1
Kunze, M.2
Hsiao, H.H.3
Urlaub, H.4
Melchior, F.5
-
35
-
-
57649198342
-
Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification
-
Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, et al. 2008. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J. Biol. Chem. 283:29405-15
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 29405-29415
-
-
Zhu, J.1
Zhu, S.2
Guzzo, C.M.3
Ellis, N.A.4
Sung, K.S.5
-
36
-
-
79953331726
-
Structural and functional roles of Daxx SIM phosphorylation in SUMOparalog-selective binding and apoptosis modulation
-
Chang CC, Naik MT, Huang YS, Jeng JC, Liao PH, et al. 2011. Structural and functional roles of Daxx SIM phosphorylation in SUMOparalog-selective binding and apoptosis modulation. Mol. Cell 42:62-74
-
(2011)
Mol. Cell
, vol.42
, pp. 62-74
-
-
Chang, C.C.1
Naik, M.T.2
Huang, Y.S.3
Jeng, J.C.4
Liao, P.H.5
-
37
-
-
59649087451
-
Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling
-
Stehmeier P, Muller S. 2009. Phospho-regulatedSUMOinteractionmodules connect the SUMOsystem to CK2 signaling. Mol. Cell 33:400-9
-
(2009)
Mol. Cell
, vol.33
, pp. 400-409
-
-
Stehmeier, P.1
Muller, S.2
-
38
-
-
64749093273
-
Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex
-
Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. 2009. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol. Cell 34:145-54
-
(2009)
Mol. Cell
, vol.34
, pp. 145-154
-
-
Ouyang, J.1
Shi, Y.2
Valin, A.3
Xuan, Y.4
Gill, G.5
-
40
-
-
43049093756
-
RNF4 is a poly-SUMOspecific E3 ubiquitin ligase required for arsenic-induced PML degradation
-
Tatham MH, GeoffroyMC, Shen L, Plechanovova A, HattersleyN, et al. 2008. RNF4 is a poly-SUMOspecific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat. Cell Biol. 10:538-46
-
(2008)
Nat. Cell Biol.
, vol.10
, pp. 538-546
-
-
Tatham, M.H.1
Geoffroy, M.C.2
Shen, L.3
Plechanovova, A.4
Hattersley, N.5
-
41
-
-
70450255284
-
PARP-1 transcriptional activity is regulated by sumoylation upon heat shock
-
Martin N, Schwamborn K, Schreiber V, Werner A, Guillier C, et al. 2009. PARP-1 transcriptional activity is regulated by sumoylation upon heat shock. EMBO J. 28:3534-48
-
(2009)
EMBO J.
, vol.28
, pp. 3534-3548
-
-
Martin, N.1
Schwamborn, K.2
Schreiber, V.3
Werner, A.4
Guillier, C.5
-
42
-
-
50649104647
-
Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates
-
Mullen JR, Brill SJ. 2008. Activation of the Slx5-Slx8 ubiquitin ligase by poly-small ubiquitin-like modifier conjugates. J. Biol. Chem. 283:19912-21
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 19912-19921
-
-
Mullen, J.R.1
Brill, S.J.2
-
43
-
-
84856621090
-
The SUMO-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax
-
Fryrear KA, Guo X, Kerscher O, Semmes OJ. 2011. The SUMO-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax. Blood 119:1173-81
-
(2011)
Blood
, vol.119
, pp. 1173-1181
-
-
Fryrear, K.A.1
Guo, X.2
Kerscher, O.3
Semmes, O.J.4
-
44
-
-
77955286868
-
Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase
-
Mullen JR, Chen CF, Brill SJ. 2010. Wss1 is a SUMO-dependent isopeptidase that interacts genetically with the Slx5-Slx8 SUMO-targeted ubiquitin ligase. Mol. Cell. Biol. 30:3737-48
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3737-3748
-
-
Mullen, J.R.1
Chen, C.F.2
Brill, S.J.3
-
45
-
-
79956340760
-
Isoform-specificmonobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design
-
Gilbreth RN, Truong K, Madu I, Koide A, Wojcik JB, et al. 2011. Isoform-specificmonobody inhibitors of small ubiquitin-related modifiers engineered using structure-guided library design. Proc. Natl. Acad. Sci. USA 108:7751-56
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 7751-7756
-
-
Gilbreth, R.N.1
Truong, K.2
Madu, I.3
Koide, A.4
Wojcik, J.B.5
-
46
-
-
20444384040
-
Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex
-
Reverter D, Lima CD. 2005. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature 435:687-92
-
(2005)
Nature
, vol.435
, pp. 687-692
-
-
Reverter, D.1
Lima, C.D.2
-
47
-
-
61649103141
-
Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1
-
Zhu S, Goeres J, Sixt KM, Bekes M, Zhang XD, et al. 2009. Protection from isopeptidase-mediated deconjugation regulates paralog-selective sumoylation of RanGAP1. Mol. Cell 33:570-80
-
(2009)
Mol. Cell
, vol.33
, pp. 570-580
-
-
Zhu, S.1
Goeres, J.2
Sixt, K.M.3
Bekes, M.4
Zhang, X.D.5
-
48
-
-
4744370425
-
The RanBP2 SUMO E3 ligase is neither HECT-nor RING-type
-
Pichler A, Knipscheer P, Saitoh H, Sixma TK, Melchior F. 2004. The RanBP2 SUMO E3 ligase is neither HECT-nor RING-type. Nat. Struct. Mol. Biol. 11:984-91
-
(2004)
Nat. Struct. Mol. Biol.
, vol.11
, pp. 984-991
-
-
Pichler, A.1
Knipscheer, P.2
Saitoh, H.3
Sixma, T.K.4
Melchior, F.5
-
49
-
-
11444271001
-
Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection
-
Tatham MH, Kim S, Jaffray E, Song J, Chen Y, Hay RT. 2005. Unique binding interactions among Ubc9, SUMO and RanBP2 reveal a mechanism for SUMO paralog selection. Nat. Struct. Mol. Biol. 12:67-74
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 67-74
-
-
Tatham, M.H.1
Kim, S.2
Jaffray, E.3
Song, J.4
Chen, Y.5
Hay, R.T.6
-
50
-
-
79957704504
-
Distinctive properties of ArabidopsisSUMOparalogs support the in vivo predominant role of AtSUMO1/2 isoforms
-
Castano-Miquel L, Segui J, Lois LM. 2011. Distinctive properties of ArabidopsisSUMOparalogs support the in vivo predominant role of AtSUMO1/2 isoforms. Biochem. J. 436:581-90
-
(2011)
Biochem. J.
, vol.436
, pp. 581-590
-
-
Castano-Miquel, L.1
Segui, J.2
Lois, L.M.3
-
51
-
-
67649173012
-
System-wide changes to SUMO modifications in response to heat shock
-
Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, et al. 2009. System-wide changes to SUMO modifications in response to heat shock. Sci. Signal. 2:ra24
-
(2009)
Sci. Signal.
, vol.2
-
-
Golebiowski, F.1
Matic, I.2
Tatham, M.H.3
Cole, C.4
Yin, Y.5
-
52
-
-
35348904953
-
RSUME, a small RWD-containing protein, enhancesSUMOconjugation and stabilizesHIF-1alpha during hypoxia
-
Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Silberstein S, et al. 2007. RSUME, a small RWD-containing protein, enhancesSUMOconjugation and stabilizesHIF-1alpha during hypoxia. Cell 131:309-23
-
(2007)
Cell
, vol.131
, pp. 309-323
-
-
Carbia-Nagashima, A.1
Gerez, J.2
Perez-Castro, C.3
Paez-Pereda, M.4
Silberstein, S.5
-
53
-
-
77958020584
-
PIASy stimulates HIF1alpha SUMOylation and negatively regulates HIF1alpha activity in response to hypoxia
-
Kang X, Li J, Zou Y, Yi J, Zhang H, et al. 2010. PIASy stimulates HIF1alpha SUMOylation and negatively regulates HIF1alpha activity in response to hypoxia. Oncogene 29:5568-78
-
(2010)
Oncogene
, vol.29
, pp. 5568-5578
-
-
Kang, X.1
Li, J.2
Zou, Y.3
Yi, J.4
Zhang, H.5
-
54
-
-
3543018486
-
Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses
-
Zhou W, Ryan JJ, Zhou H. 2004. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J. Biol. Chem. 279:32262-68
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 32262-32268
-
-
Zhou, W.1
Ryan, J.J.2
Zhou, H.3
-
55
-
-
31544432283
-
Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes
-
Bossis G, Melchior F. 2006. Regulation of SUMOylation by reversible oxidation of SUMO conjugating enzymes. Mol. Cell 21:349-57
-
(2006)
Mol. Cell
, vol.21
, pp. 349-357
-
-
Bossis, G.1
Melchior, F.2
-
56
-
-
77951235215
-
SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress
-
Han Y, Huang C, Sun X, Xiang B, Wang M, et al. 2010. SENP3-mediated de-conjugation of SUMO2/3 from promyelocytic leukemia is correlated with accelerated cell proliferation under mild oxidative stress. J. Biol. Chem. 285:12906-15
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 12906-12915
-
-
Han, Y.1
Huang, C.2
Sun, X.3
Xiang, B.4
Wang, M.5
-
57
-
-
70349213234
-
SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation
-
Huang C, Han Y, Wang Y, Sun X, Yan S, et al. 2009. SENP3 is responsible for HIF-1 transactivation under mild oxidative stress via p300 de-SUMOylation. EMBO J. 28:2748-62
-
(2009)
EMBO J.
, vol.28
, pp. 2748-2762
-
-
Huang, C.1
Han, Y.2
Wang, Y.3
Sun, X.4
Yan, S.5
-
58
-
-
50849095506
-
A stress-dependent SUMO4 sumoylation of its substrate proteins
-
WeiW, Yang P, Pang J, Zhang S, Wang Y, et al. 2008. A stress-dependent SUMO4 sumoylation of its substrate proteins. Biochem. Biophys. Res. Commun. 375:454-59
-
(2008)
Biochem. Biophys. Res. Commun.
, vol.375
, pp. 454-459
-
-
Wei, W.1
Yang, P.2
Pang, J.3
Zhang, S.4
Wang, Y.5
-
59
-
-
62949206599
-
Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity
-
Wang CY, Yang P, Li M, Gong F. 2009. Characterization of a negative feedback network between SUMO4 expression and NFkappaB transcriptional activity. Biochem. Biophys. Res. Commun. 381:477-81
-
(2009)
Biochem. Biophys. Res. Commun.
, vol.381
, pp. 477-481
-
-
Wang, C.Y.1
Yang, P.2
Li, M.3
Gong, F.4
-
60
-
-
78650153662
-
Pathogen-mediated posttranslational modifications: A re-emerging field
-
Ribet D, Cossart P. 2010. Pathogen-mediated posttranslational modifications: a re-emerging field. Cell 143:694-702
-
(2010)
Cell
, vol.143
, pp. 694-702
-
-
Ribet, D.1
Cossart, P.2
-
61
-
-
67649391002
-
Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection
-
Isaacson MK, Ploegh HL. 2009. Ubiquitination, ubiquitin-like modifiers, and deubiquitination in viral infection. Cell Host Microbe 5:559-70
-
(2009)
Cell Host Microbe
, vol.5
, pp. 559-570
-
-
Isaacson, M.K.1
Ploegh, H.L.2
-
62
-
-
77949329517
-
Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific
-
Chang PC, Izumiya Y, Wu CY, Fitzgerald LD, Campbell M, et al. 2010. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes a SUMO E3 ligase that is SIM-dependent and SUMO-2/3-specific. J. Biol. Chem. 285:5266-73
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5266-5273
-
-
Chang, P.C.1
Izumiya, Y.2
Wu, C.Y.3
Fitzgerald, L.D.4
Campbell, M.5
-
63
-
-
80053459914
-
A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence
-
BoutellC, Cuchet-Lourenco D, Vanni E, Orr A, GlassM, et al. 2011.A viral ubiquitin ligase has substrate preferential SUMO targeted ubiquitin ligase activity that counteracts intrinsic antiviral defence. PLoS Pathog. 7:e1002245
-
(2011)
PLoS Pathog.
, vol.7
-
-
Boutell, C.1
Cuchet-Lourenco, D.2
Vanni, E.3
Orr, A.4
Glass, M.5
-
64
-
-
78651233952
-
Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2
-
Marcos-Villar L, Campagna M, Lopitz-Otsoa F, Gallego P, Gonzalez-Santamaria J, et al. 2011. Covalent modification by SUMO is required for efficient disruption of PML oncogenic domains by Kaposi's sarcoma-associated herpesvirus latent protein LANA2. J. Gen. Virol. 92:188-94
-
(2011)
J. Gen. Virol.
, vol.92
, pp. 188-194
-
-
Marcos-Villar, L.1
Campagna, M.2
Lopitz-Otsoa, F.3
Gallego, P.4
Gonzalez-Santamaria, J.5
-
65
-
-
77954982420
-
Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth
-
Kim ET, Kim YE, Huh YH, Ahn JH. 2010. Role of noncovalent SUMO binding by the human cytomegalovirus IE2 transactivator in lytic growth. J. Virol. 84:8111-23
-
(2010)
J. Virol.
, vol.84
, pp. 8111-8123
-
-
Kim, E.T.1
Kim, Y.E.2
Huh, Y.H.3
Ahn, J.H.4
-
66
-
-
84855823939
-
Regulation of vaccinia virus e3 protein by small ubiquitin-like modifier proteins
-
Gonzalez-Santamaria J, Campagna M, Garcia MA, Marcos-Villar L, GonzalezD, et al. 2011. Regulation of vaccinia virus e3 protein by small ubiquitin-like modifier proteins. J. Virol. 85:12890-900
-
(2011)
J. Virol.
, vol.85
, pp. 12890-12900
-
-
Gonzalez-Santamaria, J.1
Campagna, M.2
Garcia, M.A.3
Gonzalezd, M.L.4
-
67
-
-
80052341054
-
Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin
-
Wang L, Oliver SL, Sommer M, Rajamani J, Reichelt M, Arvin AM. 2011. Disruption of PML nuclear bodies is mediated by ORF61 SUMO-interacting motifs and required for varicella-zoster virus pathogenesis in skin. PLoS Pathog. 7:e1002157
-
(2011)
PLoS Pathog.
, vol.7
-
-
Wang, L.1
Oliver, S.L.2
Sommer, M.3
Rajamani, J.4
Reichelt, M.5
Arvin, A.M.6
-
68
-
-
53249154203
-
Function and regulation of protein neddylation "protein modifications: Beyond the usual suspects" review series
-
Rabut G, PeterM. 2008. Function and regulation of protein neddylation. "Protein modifications: beyond the usual suspects" review series. EMBO Rep. 9:969-76
-
(2008)
EMBO Rep.
, vol.9
, pp. 969-976
-
-
Rabut, G.1
Peter, M.2
-
69
-
-
79751469547
-
NEDD8pathways in cancer, sine quibus non
-
Watson IR, IrwinMS, OhhM. 2011.NEDD8pathways in cancer, sine quibus non. Cancer Cell 19:168-76
-
(2011)
Cancer Cell
, vol.19
, pp. 168-176
-
-
Watson, I.R.1
Irwin, M.S.2
Ohh, M.3
-
70
-
-
50149089376
-
Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1
-
a. Souphron J, Waddell MB, Paydar A, Tokgoz-Gromley Z, Roussel MF, Schulman BA. 2008. Structural dissection of a gating mechanism preventing misactivation of ubiquitin by NEDD8's E1. Biochemistry 47:8961-69
-
(2008)
Biochemistry
, vol.47
, pp. 8961-8969
-
-
Souphron, J.1
Waddell, M.B.2
Paydar, A.3
Tokgoz-Gromley, Z.4
Roussel, M.F.5
Schulman, B.A.6
-
71
-
-
40949086767
-
Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2
-
Huang DT, Zhuang M, Ayrault O, Schulman BA. 2008. Identification of conjugation specificity determinants unmasks vestigial preference for ubiquitin within the NEDD8 E2. Nat. Struct. Mol. Biol. 15:280-87
-
(2008)
Nat. Struct. Mol. Biol.
, vol.15
, pp. 280-287
-
-
Huang, D.T.1
Zhuang, M.2
Ayrault, O.3
Schulman, B.A.4
-
72
-
-
84862908377
-
Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes
-
Hjerpe R, Thomas Y, Chen J, Zemla A, Curran S, et al. 2011. Changes in the ratio of free NEDD8 to ubiquitin triggers NEDDylation by ubiquitin enzymes. Biochem. J. 441(Part 3):927-36
-
(2011)
Biochem. J.
, vol.441
, Issue.PART 3
, pp. 927-936
-
-
Hjerpe, R.1
Thomas, Y.2
Chen, J.3
Zemla, A.4
Curran, S.5
-
73
-
-
76749166648
-
An improved SUMmOnbased methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages
-
Jeram SM, Srikumar T, Zhang XD, Anne EisenhauerH, Rogers R, et al. 2010. An improved SUMmOnbased methodology for the identification of ubiquitin and ubiquitin-like protein conjugation sites identifies novel ubiquitin-like protein chain linkages. Proteomics 10:254-65
-
(2010)
Proteomics
, vol.10
, pp. 254-265
-
-
Jeram, S.M.1
Srikumar, T.2
Zhang, X.D.3
Eisenhauerh, A.4
Rogers, R.5
-
74
-
-
44449129585
-
A targeted proteomic analysis of the ubiquitin-like modifier Nedd8 and associated proteins
-
Jones J, Wu K, Yang Y, Guerrero C, Nillegoda N, et al. 2008. A targeted proteomic analysis of the ubiquitin-like modifier Nedd8 and associated proteins. J. Proteome Res. 7:1274-87
-
(2008)
J. Proteome Res.
, vol.7
, pp. 1274-1287
-
-
Jones, J.1
Wu, K.2
Yang, Y.3
Guerrero, C.4
Nillegoda, N.5
-
75
-
-
84934876123
-
Control of cullin-ring ubiquitin ligase activity by Nedd8
-
Deshaies RJ, Emberley ED, Saha A. 2010. Control of cullin-ring ubiquitin ligase activity by Nedd8. Subcell. Biochem. 54:41-56
-
(2010)
Subcell. Biochem.
, vol.54
, pp. 41-56
-
-
Deshaies, R.J.1
Emberley, E.D.2
Saha, A.3
-
76
-
-
78649980427
-
Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases
-
Broemer M, Tenev T, Rigbolt KT, Hempel S, Blagoev B, et al. 2010. Systematic in vivo RNAi analysis identifies IAPs as NEDD8-E3 ligases. Mol. Cell 40:810-22
-
(2010)
Mol. Cell
, vol.40
, pp. 810-822
-
-
Broemer, M.1
Tenev, T.2
Rigbolt, K.T.3
Hempel, S.4
Blagoev, B.5
-
77
-
-
55449124589
-
DEN1 deneddylates non-cullin proteins in vivo
-
Chan Y, Yoon J, Wu JT, Kim HJ, Pan KT, et al. 2008. DEN1 deneddylates non-cullin proteins in vivo. J. Cell Sci. 121:3218-23
-
(2008)
J. Cell Sci.
, vol.121
, pp. 3218-3223
-
-
Chan, Y.1
Yoon, J.2
Wu, J.T.3
Kim, H.J.4
Pan, K.T.5
-
78
-
-
61449120240
-
Structural basis and specificity of human otubain 1-mediated deubiquitination
-
EdelmannMJ, Iphofer A, AkutsuM, Altun M, di Gleria K, et al. 2009. Structural basis and specificity of human otubain 1-mediated deubiquitination. Biochem. J. 418:379-90
-
(2009)
Biochem. J.
, vol.418
, pp. 379-390
-
-
Edelmann, M.J.1
Iphofer, A.2
Akutsu, M.3
Altun, M.4
Di Gleria, K.5
-
79
-
-
50449108516
-
Structural insights into NEDD8 activation of cullin-RING ligases: Conformational control of conjugation
-
Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. 2008. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995-1006
-
(2008)
Cell
, vol.134
, pp. 995-1006
-
-
Duda, D.M.1
Borg, L.A.2
Scott, D.C.3
Hunt, H.W.4
Hammel, M.5
Schulman, B.A.6
-
80
-
-
53349121021
-
Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation
-
Saha A, Deshaies RJ. 2008. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32:21-31
-
(2008)
Mol. Cell
, vol.32
, pp. 21-31
-
-
Saha, A.1
Deshaies, R.J.2
-
81
-
-
50449110781
-
Autoinhibitory regulation of SCFmediated ubiquitination by human cullin 1's C-terminal tail
-
Yamoah K, Oashi T, Sarikas A, Gazdoiu S, Osman R, Pan ZQ. 2008. Autoinhibitory regulation of SCFmediated ubiquitination by human cullin 1's C-terminal tail. Proc. Natl. Acad. Sci. USA 105:12230-35
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 12230-12235
-
-
Yamoah, K.1
Oashi, T.2
Sarikas, A.3
Gazdoiu, S.4
Osman, R.5
Pan, Z.Q.6
-
82
-
-
70349339322
-
Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization
-
Merlet J, Burger J, Gomes JE, Pintard L. 2009. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol. Life Sci. 66:1924-38
-
(2009)
Cell Mol. Life Sci.
, vol.66
, pp. 1924-1938
-
-
Merlet, J.1
Burger, J.2
Gomes, J.E.3
Pintard, L.4
-
83
-
-
27144525246
-
Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation
-
Wu JT, Lin HC, Hu YC, Chien CT. 2005. Neddylation and deneddylation regulate Cul1 and Cul3 protein accumulation. Nat. Cell Biol. 7:1014-20
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 1014-1020
-
-
Wu, J.T.1
Lin, H.C.2
Hu, Y.C.3
Chien, C.T.4
-
84
-
-
22344458341
-
The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex
-
He Q, Cheng P, Liu Y. 2005. The COP9 signalosome regulates the Neurospora circadian clock by controlling the stability of the SCFFWD-1 complex. Genes Dev. 19:1518-31
-
(2005)
Genes Dev.
, vol.19
, pp. 1518-1531
-
-
He, Q.1
Cheng, P.2
Liu, Y.3
-
85
-
-
69749123290
-
F-box-directed CRL complex assembly and regulation by the CSN and CAND1
-
Schmidt MW, McQuary PR, Wee S, Hofmann K, Wolf DA. 2009. F-box-directed CRL complex assembly and regulation by the CSN and CAND1. Mol. Cell 35:586-97
-
(2009)
Mol. Cell
, vol.35
, pp. 586-597
-
-
Schmidt, M.W.1
McQuary, P.R.2
Wee, S.3
Hofmann, K.4
Wolf, D.A.5
-
86
-
-
17344364820
-
CSN facilitates cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability
-
Wee S, Geyer RK, Toda T, Wolf DA. 2005. CSN facilitates cullin-RING ubiquitin ligase function by counteracting autocatalytic adapter instability. Nat. Cell Biol. 7:387-91
-
(2005)
Nat. Cell Biol.
, vol.7
, pp. 387-391
-
-
Wee, S.1
Geyer, R.K.2
Toda, T.3
Wolf, D.A.4
-
87
-
-
0037509945
-
Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzymeUbp12p
-
Zhou C, Wee S, Rhee E, Naumann M, Dubiel W, Wolf DA. 2003. Fission yeast COP9/signalosome suppresses cullin activity through recruitment of the deubiquitylating enzymeUbp12p. Mol. Cell 11:927-38
-
(2003)
Mol. Cell
, vol.11
, pp. 927-938
-
-
Zhou, C.1
Wee, S.2
Rhee, E.3
Naumann, M.4
Dubiel, W.5
Wolf, D.A.6
-
88
-
-
0036929129
-
NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases
-
Liu J, Furukawa M, Matsumoto T, Xiong Y. 2002. NEDD8 modification of CUL1 dissociates p120(CAND1), an inhibitor of CUL1-SKP1 binding and SCF ligases. Mol. Cell 10:1511-18
-
(2002)
Mol. Cell
, vol.10
, pp. 1511-1518
-
-
Liu, J.1
Furukawa, M.2
Matsumoto, T.3
Xiong, Y.4
-
89
-
-
0036924046
-
CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex
-
Zheng J, Yang X, Harrell JM, Ryzhikov S, Shim EH, et al. 2002. CAND1 binds to unneddylated CUL1 and regulates the formation of SCF ubiquitin E3 ligase complex. Mol. Cell 10:1519-26
-
(2002)
Mol. Cell
, vol.10
, pp. 1519-1526
-
-
Zheng, J.1
Yang, X.2
Harrell, J.M.3
Ryzhikov, S.4
Shim, E.H.5
-
90
-
-
60549091914
-
E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification
-
Huang DT, Ayrault O, Hunt HW, Taherbhoy AM, Duda DM, et al. 2009. E2-RING expansion of the NEDD8 cascade confers specificity to cullin modification. Mol. Cell 33:483-95
-
(2009)
Mol. Cell
, vol.33
, pp. 483-495
-
-
Huang, D.T.1
Ayrault, O.2
Hunt, H.W.3
Taherbhoy, A.M.4
Duda, D.M.5
-
91
-
-
0032727343
-
The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2
-
Kamura T, Conrad MN, Yan Q, Conaway RC, Conaway JW. 1999. The Rbx1 subunit of SCF and VHL E3 ubiquitin ligase activates Rub1 modification of cullins Cdc53 and Cul2. Genes Dev. 13:2928-33
-
(1999)
Genes Dev.
, vol.13
, pp. 2928-2933
-
-
Kamura, T.1
Conrad, M.N.2
Yan, Q.3
Conaway, R.C.4
Conaway, J.W.5
-
92
-
-
79961029062
-
A RING E3-substrate complex poised for ubiquitin-like protein transfer: Structural insights into cullin-RING ligases
-
Calabrese MF, Scott DC, Duda DM, Grace CR, Kurinov I, et al. 2011. A RING E3-substrate complex poised for ubiquitin-like protein transfer: structural insights into cullin-RING ligases. Nat. Struct. Mol. Biol. 18:947-49
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 947-949
-
-
Calabrese, M.F.1
Scott, D.C.2
Duda, D.M.3
Grace, C.R.4
Kurinov, I.5
-
93
-
-
38149035042
-
Dcn1 functions as a scaffoldtype E3 ligase for cullin neddylation
-
Kurz T, Chou YC, Willems AR, Meyer-SchallerN, Hecht ML, et al. 2008. Dcn1 functions as a scaffoldtype E3 ligase for cullin neddylation. Mol. Cell 29:23-35
-
(2008)
Mol. Cell
, vol.29
, pp. 23-35
-
-
Kurz, T.1
Chou, Y.C.2
Willems, A.R.3
Meyer-Schaller, N.4
Hecht, M.L.5
-
94
-
-
21744455599
-
The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae
-
Kurz T, Ozlu N, Rudolf F, O'Rourke SM, Luke B, et al. 2005. The conserved protein DCN-1/Dcn1p is required for cullin neddylation in C. elegans and S. cerevisiae. Nature 435:1257-61
-
(2005)
Nature
, vol.435
, pp. 1257-1261
-
-
Kurz, T.1
Ozlu, N.2
Rudolf, F.3
O'Rourke, S.M.4
Luke, B.5
-
95
-
-
77956500977
-
A dual E3 mechanism for Rub1 ligation to Cdc53
-
Scott DC, Monda JK, Grace CR, Duda DM, Kriwacki RW, et al. 2010. A dual E3 mechanism for Rub1 ligation to Cdc53. Mol. Cell 39:784-96
-
(2010)
Mol. Cell
, vol.39
, pp. 784-796
-
-
Scott, D.C.1
Monda, J.K.2
Grace, C.R.3
Duda, D.M.4
Kriwacki, R.W.5
-
96
-
-
80555131132
-
N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex
-
Scott DC, Monda JK, Bennett EJ, Harper JW, Schulman BA. 2011. N-terminal acetylation acts as an avidity enhancer within an interconnected multiprotein complex. Science 334:674-78
-
(2011)
Science
, vol.334
, pp. 674-678
-
-
Scott, D.C.1
Monda, J.K.2
Bennett, E.J.3
Harper, J.W.4
Schulman, B.A.5
-
97
-
-
68149084883
-
The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes
-
Meyer-Schaller N, Chou YC, Sumara I, Martin DD, Kurz T, et al. 2009. The human Dcn1-like protein DCNL3 promotes Cul3 neddylation at membranes. Proc. Natl. Acad. Sci. USA 106:12365-70
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 12365-12370
-
-
Meyer-Schaller, N.1
Chou, Y.C.2
Sumara, I.3
Martin, D.D.4
Kurz, T.5
-
98
-
-
79953215745
-
SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex
-
HuangG, Kaufman AJ, Ramanathan Y, Singh B. 2011. SCCRO (DCUN1D1) promotes nuclear translocation and assembly of the neddylation E3 complex. J. Biol. Chem. 286:10297-304
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 10297-10304
-
-
Huang Kaufman G, A.J.1
Ramanathan, Y.2
Singh, B.3
-
99
-
-
79960897923
-
The TFIIH subunit Tfb3 regulates cullin neddylation
-
Rabut G, Le DezG, Verma R, Makhnevych T, Knebel A, et al. 2011. The TFIIH subunit Tfb3 regulates cullin neddylation. Mol. Cell 43:488-95
-
(2011)
Mol. Cell
, vol.43
, pp. 488-495
-
-
Rabut, G.1
Le Dez, G.2
Verma, R.3
Makhnevych, T.4
Knebel, A.5
-
100
-
-
0035824559
-
Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1
-
Kamitani T, Kito K, Fukuda-Kamitani T, Yeh ET. 2001. Targeting of NEDD8 and its conjugates for proteasomal degradation by NUB1. J. Biol. Chem. 276:46655-60
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 46655-46660
-
-
Kamitani, T.1
Kito, K.2
Fukuda-Kamitani, T.3
Yeh, E.T.4
-
101
-
-
77951073143
-
NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways
-
Liu G, Xirodimas DP. 2010. NUB1 promotes cytoplasmic localization of p53 through cooperation of the NEDD8 and ubiquitin pathways. Oncogene 29:2252-61
-
(2010)
Oncogene
, vol.29
, pp. 2252-2261
-
-
Liu, G.1
Xirodimas, D.P.2
-
102
-
-
40549112996
-
Specific inhibition of Mdm2-mediated neddylation by Tip60
-
Dohmesen C, KoeppelM, Dobbelstein M. 2008. Specific inhibition of Mdm2-mediated neddylation by Tip60. Cell Cycle 7:222-31
-
(2008)
Cell Cycle
, vol.7
, pp. 222-231
-
-
Dohmesen, C.1
Koeppel, M.2
Dobbelstein, M.3
-
103
-
-
78149334271
-
Tbata modulates thymic stromal cell proliferation and thymus function
-
Flomerfelt FA, El Kassar N, Gurunathan C, Chua KS, League SC, et al. 2010. Tbata modulates thymic stromal cell proliferation and thymus function. J. Exp. Med. 207:2521-32
-
(2010)
J. Exp. Med.
, vol.207
, pp. 2521-2532
-
-
Flomerfelt, F.A.1
El Kassar, N.2
Gurunathan, C.3
Chua, K.S.4
League, S.C.5
-
104
-
-
77950519653
-
A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases
-
Gastaldello S, Hildebrand S, Faridani O, Callegari S, Palmkvist M, et al. 2010. A deneddylase encoded by Epstein-Barr virus promotes viral DNA replication by regulating the activity of cullin-RING ligases. Nat. Cell Biol. 12:351-61
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 351-361
-
-
Gastaldello, S.1
Hildebrand, S.2
Faridani, O.3
Callegari, S.4
Palmkvist, M.5
-
105
-
-
29744463885
-
A deubiquitinating activity is conserved in the large tegument protein of the Herpesviridae
-
Schlieker C, Korbel GA, Kattenhorn LM, Ploegh HL. 2005. A deubiquitinating activity is conserved in the large tegument protein of the Herpesviridae. J. Virol. 79:15582-5
-
(2005)
J. Virol.
, vol.79
, pp. 15582-15585
-
-
Schlieker, C.1
Korbel, G.A.2
Kattenhorn, L.M.3
Ploegh, H.L.4
-
106
-
-
33745186215
-
Chlamydia trachomatisderived deubiquitinating enzymes in mammalian cells during infection
-
Misaghi S, Balsara ZR, Catic A, Spooner E, Ploegh HL, Starnbach MN. 2006. Chlamydia trachomatisderived deubiquitinating enzymes in mammalian cells during infection. Mol. Microbiol. 61:142-50
-
(2006)
Mol. Microbiol.
, vol.61
, pp. 142-150
-
-
Misaghi, S.1
Balsara, Z.R.2
Catic, A.3
Spooner, E.4
Ploegh, H.L.5
Starnbach, M.N.6
-
107
-
-
77949901727
-
Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3
-
Artavanis-Tsakonas K, Weihofen WA, Antos JM, Coleman BI, Comeaux CA, et al. 2010. Characterization and structural studies of the Plasmodium falciparum ubiquitin and Nedd8 hydrolase UCHL3. J. Biol. Chem. 285:6857-66
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 6857-6866
-
-
Artavanis-Tsakonas, K.1
Weihofen, W.A.2
Antos, J.M.3
Coleman, B.I.4
Comeaux, C.A.5
-
108
-
-
34248678452
-
Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution
-
Frickel EM, Quesada V, Muething L, Gubbels MJ, Spooner E, et al. 2007. Apicomplexan UCHL3 retains dual specificity for ubiquitin and Nedd8 throughout evolution. Cell Microbiol. 9:1601-10
-
(2007)
Cell Microbiol.
, vol.9
, pp. 1601-1610
-
-
Frickel, E.M.1
Quesada, V.2
Muething, L.3
Gubbels, M.J.4
Spooner, E.5
-
109
-
-
77956296853
-
Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family
-
Cui J, Yao Q, Li S, Ding X, Lu Q, et al. 2010. Glutamine deamidation and dysfunction of ubiquitin/NEDD8 induced by a bacterial effector family. Science 329:1215-18
-
(2010)
Science
, vol.329
, pp. 1215-1218
-
-
Cui, J.1
Yao, Q.2
Li, S.3
Ding, X.4
Lu, Q.5
-
110
-
-
78149309149
-
Pathogenic bacteria targetNEDD8-conjugated cullins to hijack host-cell signaling pathways
-
Jubelin G, Taieb F, DudaDM, Hsu Y, Samba-Louaka A, et al. 2010. Pathogenic bacteria targetNEDD8-conjugated cullins to hijack host-cell signaling pathways. PLoS Pathog. 6:e1001128
-
(2010)
PLoS Pathog.
, vol.6
-
-
Jubelin, G.1
Taieb, F.2
Dudadm Hsu, Y.3
Samba-Louaka, A.4
-
111
-
-
35648973301
-
Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species
-
Kumar A, Wu H, Collier-Hyams LS, Hansen JM, Li T, et al. 2007. Commensal bacteria modulate cullin-dependent signaling via generation of reactive oxygen species. EMBO J. 26:4457-66
-
(2007)
EMBO J.
, vol.26
, pp. 4457-4466
-
-
Kumar, A.1
Wu, H.2
Collier-Hyams, L.S.3
Hansen, J.M.4
Li, T.5
-
112
-
-
79952841638
-
The NEDD8 conjugation pathway and its relevance in cancer biology and therapy
-
Soucy TA, Dick LR, Smith PG, Milhollen MA, Brownell JE. 2010. The NEDD8 conjugation pathway and its relevance in cancer biology and therapy. Genes Cancer 1:708-16
-
(2010)
Genes Cancer
, vol.1
, pp. 708-716
-
-
Soucy, T.A.1
Dick, L.R.2
Smith, P.G.3
Milhollen, M.A.4
Brownell, J.E.5
-
113
-
-
64749098830
-
An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer
-
Soucy TA, Smith PG, Milhollen MA, Berger AJ, Gavin JM, et al. 2009. An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer. Nature 458:732-36
-
(2009)
Nature
, vol.458
, pp. 732-736
-
-
Soucy, T.A.1
Smith, P.G.2
Milhollen, M.A.3
Berger, A.J.4
Gavin, J.M.5
-
114
-
-
73649110303
-
Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: The NEDD8 E1 inhibitorMLN4924 forms a NEDD8-AMP mimetic in situ
-
Brownell JE, Sintchak MD, Gavin JM, Liao H, Bruzzese FJ, et al. 2010. Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitorMLN4924 forms a NEDD8-AMP mimetic in situ. Mol. Cell 37:102-11
-
(2010)
Mol. Cell
, vol.37
, pp. 102-111
-
-
Brownell, J.E.1
Sintchak, M.D.2
Gavin, J.M.3
Liao, H.4
Bruzzese, F.J.5
-
115
-
-
33847001685
-
ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP
-
Okumura F, Zou W, Zhang DE. 2007. ISG15 modification of the eIF4E cognate 4EHP enhances cap structure-binding activity of 4EHP. Genes Dev. 21:255-60
-
(2007)
Genes Dev.
, vol.21
, pp. 255-260
-
-
Okumura, F.1
Zou, W.2
Zhang, D.E.3
-
116
-
-
33645217490
-
The interferon-inducible ubiquitin-protein isopeptide ligase E3) EFP also functions as an ISG15 E3 ligase
-
Zou W, Zhang DE. 2006. The interferon-inducible ubiquitin-protein isopeptide ligase (E3) EFP also functions as an ISG15 E3 ligase. J. Biol. Chem. 281:3989-94
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 3989-3994
-
-
Zou, W.1
Zhang, D.E.2
-
117
-
-
0037155882
-
UBP43 (USP18) specifically removes ISG15 from conjugated proteins
-
Malakhov MP, Malakhova OA, Kim KI, Ritchie KJ, Zhang DE. 2002. UBP43 (USP18) specifically removes ISG15 from conjugated proteins. J. Biol. Chem. 277:9976-81
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 9976-9981
-
-
Malakhov, M.P.1
Malakhova, O.A.2
Kim, K.I.3
Ritchie, K.J.4
Zhang, D.E.5
-
118
-
-
39849091629
-
Screen for ISG15-crossreactive deubiquitinases
-
Catic A, Fiebiger E, Korbel GA, Blom D, Galardy PJ, PloeghHL. 2007. Screen for ISG15-crossreactive deubiquitinases. PLoS One 2:e679
-
(2007)
PLoS One
, vol.2
-
-
Catic, A.1
Fiebiger, E.2
Korbel, G.A.3
Blom, D.4
Galardy, P.J.5
Ploegh, H.L.6
-
119
-
-
79953314427
-
Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21
-
Ye Y, Akutsu M, Reyes-Turcu F, Enchev RI, Wilkinson KD, Komander D. 2011. Polyubiquitin binding and cross-reactivity in the USP domain deubiquitinase USP21. EMBO Rep. 12:350-57
-
(2011)
EMBO Rep.
, vol.12
, pp. 350-357
-
-
Ye, Y.1
Akutsu, M.2
Reyes-Turcu, F.3
Enchev, R.I.4
Wilkinson, K.D.5
Komander, D.6
-
120
-
-
27644498395
-
Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo
-
Lenschow DJ, Giannakopoulos NV, Gunn LJ, Johnston C, O'Guin AK, et al. 2005. Identification of interferon-stimulated gene 15 as an antiviral molecule during Sindbis virus infection in vivo. J. Virol. 79:13974-83
-
(2005)
J. Virol.
, vol.79
, pp. 13974-13983
-
-
Lenschow, D.J.1
Giannakopoulos, N.V.2
Gunn, L.J.3
Johnston, C.4
O'Guin, A.K.5
-
121
-
-
33846603312
-
IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses
-
Lenschow DJ, Lai C, Frias-Staheli N, Giannakopoulos NV, Lutz A, et al. 2007. IFN-stimulated gene 15 functions as a critical antiviral molecule against influenza, herpes, and Sindbis viruses. Proc. Natl. Acad. Sci. USA 104:1371-76
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 1371-1376
-
-
Lenschow, D.J.1
Lai, C.2
Frias-Staheli, N.3
Giannakopoulos, N.V.4
Lutz, A.5
-
122
-
-
59649112605
-
ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus
-
Giannakopoulos NV, Arutyunova E, Lai C, Lenschow DJ, Haas AL, Virgin HW. 2009. ISG15 Arg151 and the ISG15-conjugating enzyme UbE1L are important for innate immune control of Sindbis virus. J. Virol. 83:1602-10
-
(2009)
J. Virol.
, vol.83
, pp. 1602-1610
-
-
Giannakopoulos, N.V.1
Arutyunova, E.2
Lai, C.3
Lenschow, D.J.4
Haas, A.L.5
Virgin, H.W.6
-
123
-
-
58149502576
-
Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection
-
Lai C, Struckhoff JJ, Schneider J, Martinez-Sobrido L, Wolff T, et al. 2009. Mice lacking the ISG15 E1 enzyme UbE1L demonstrate increased susceptibility to both mouse-adapted and non-mouse-adapted influenza B virus infection. J. Virol. 83:1147-51
-
(2009)
J. Virol.
, vol.83
, pp. 1147-1151
-
-
Lai, C.1
Struckhoff, J.J.2
Schneider, J.3
Martinez-Sobrido, L.4
Wolff, T.5
-
124
-
-
11144294823
-
Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection
-
Ritchie KJ, Hahn CS, Kim KI, Yan M, Rosario D, et al. 2004. Role of ISG15 protease UBP43 (USP18) in innate immunity to viral infection. Nat. Med. 10:1374-78
-
(2004)
Nat. Med.
, vol.10
, pp. 1374-1378
-
-
Ritchie, K.J.1
Hahn, C.S.2
Kim, K.I.3
Yan, M.4
Rosario, D.5
-
125
-
-
30644470650
-
Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling
-
Kim KI, Yan M, Malakhova O, Luo JK, Shen MF, et al. 2006. Ube1L and protein ISGylation are not essential for alpha/beta interferon signaling. Mol. Cell. Biol. 26:472-79
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 472-479
-
-
Kim, K.I.1
Yan, M.2
Malakhova, O.3
Luo, J.K.4
Shen, M.F.5
-
126
-
-
22544474366
-
ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus
-
Osiak A, Utermohlen O, Niendorf S, Horak I, Knobeloch KP. 2005. ISG15, an interferon-stimulated ubiquitin-like protein, is not essential for STAT1 signaling and responses against vesicular stomatitis and lymphocytic choriomeningitis virus. Mol. Cell. Biol. 25:6338-45
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 6338-6345
-
-
Osiak, A.1
Utermohlen, O.2
Niendorf, S.3
Horak, I.4
Knobeloch, K.P.5
-
127
-
-
77954726570
-
The interferon stimulated gene 15 functions as a proviral factor for the hepatitis C virus and as a regulator of the IFN response
-
Broering R, Zhang X, Kottilil S, Trippler M, Jiang M, et al. 2010. The interferon stimulated gene 15 functions as a proviral factor for the hepatitis C virus and as a regulator of the IFN response. Gut 59:1111-19
-
(2010)
Gut
, vol.59
, pp. 1111-1119
-
-
Broering, R.1
Zhang, X.2
Kottilil, S.3
Trippler, M.4
Jiang, M.5
-
128
-
-
77958142546
-
Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A
-
Kim MJ, Yoo JY. 2010. Inhibition of hepatitis C virus replication by IFN-mediated ISGylation of HCV-NS5A. J. Immunol. 185:4311-18
-
(2010)
J. Immunol.
, vol.185
, pp. 4311-4318
-
-
Kim, M.J.1
Yoo, J.Y.2
-
129
-
-
0035253852
-
Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein
-
Yuan W, Krug RM. 2001. Influenza B virus NS1 protein inhibits conjugation of the interferon (IFN)-induced ubiquitin-like ISG15 protein. EMBO J. 20:362-71
-
(2001)
EMBO J.
, vol.20
, pp. 362-371
-
-
Yuan, W.1
Krug, R.M.2
-
130
-
-
45149122553
-
Different roles for two ubiquitin-like domains of ISG15 in protein modification
-
Chang YG, Yan XZ, Xie YY, Gao XC, Song AX, et al. 2008. Different roles for two ubiquitin-like domains of ISG15 in protein modification. J. Biol. Chem. 283:13370-77
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 13370-13377
-
-
Chang, Y.G.1
Yan, X.Z.2
Xie, Y.Y.3
Gao, X.C.4
Song, A.X.5
-
131
-
-
77950873763
-
Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins
-
Sridharan H, Zhao C, Krug RM. 2010. Species specificity of the NS1 protein of influenza B virus: NS1 binds only human and non-human primate ubiquitin-like ISG15 proteins. J. Biol. Chem. 285:7852-56
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 7852-7856
-
-
Sridharan, H.1
Zhao, C.2
Krug, R.M.3
-
132
-
-
77951480439
-
Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein
-
Versteeg GA, Hale BG, Van Boheemen S, WolffT, Lenschow DJ, Garcia-Sastre A. 2010. Species-specific antagonism of host ISGylation by the influenza B virus NS1 protein. J. Virol. 84:5423-30
-
(2010)
J. Virol.
, vol.84
, pp. 5423-5430
-
-
Versteeg, G.A.1
Hale, B.G.2
Van Boheemen, S.3
Wolfft Lenschow, D.J.4
Garcia-Sastre, A.5
-
133
-
-
48249105524
-
Vaccinia virus E3 protein prevents the antiviral action of ISG15
-
Guerra S, Caceres A, Knobeloch KP, Horak I, EstebanM. 2008. Vaccinia virus E3 protein prevents the antiviral action of ISG15. PLoS Pathog. 4:e1000096
-
(2008)
PLoS Pathog.
, vol.4
-
-
Guerra, S.1
Caceres, A.2
Knobeloch, K.P.3
Horak, I.4
Esteban, M.5
-
134
-
-
36749007273
-
Ovarian tumor domain-containing viral proteases evade ubiquitin-and ISG15-dependent innate immune responses
-
Frias-Staheli N, Giannakopoulos NV, Kikkert M, Taylor SL, Bridgen A, et al. 2007. Ovarian tumor domain-containing viral proteases evade ubiquitin-and ISG15-dependent innate immune responses. Cell Host Microbe 2:404-16
-
(2007)
Cell Host Microbe
, vol.2
, pp. 404-416
-
-
Frias-Staheli, N.1
Giannakopoulos, N.V.2
Kikkert, M.3
Taylor, S.L.4
Bridgen, A.5
-
135
-
-
77950806384
-
Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases
-
Clementz MA, Chen Z, Banach BS, Wang Y, Sun L, et al. 2010. Deubiquitinating and interferon antagonism activities of coronavirus papain-like proteases. J. Virol. 84:4619-29
-
(2010)
J. Virol.
, vol.84
, pp. 4619-4629
-
-
Clementz, M.A.1
Chen, Z.2
Banach, B.S.3
Wang, Y.4
Sun, L.5
-
136
-
-
34548651826
-
Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease
-
LindnerHA, Lytvyn V, Qi H, Lachance P, Ziomek E, Menard R. 2007. Selectivity in ISG15 and ubiquitin recognition by the SARS coronavirus papain-like protease. Arch. Biochem. Biophys. 466:8-14
-
(2007)
Arch. Biochem. Biophys.
, vol.466
, pp. 8-14
-
-
Lindner, H.A.1
Lytvyn, V.2
Qi, H.3
Lachance, P.4
Ziomek, E.5
Menard, R.6
-
137
-
-
80051752880
-
Deubiquitination activity associated with hepatitis e virus putative papain-like cysteine protease
-
Karpe YA, Lole KS. 2011. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. J. Gen. Virol. 92:2088-92
-
(2011)
J. Gen. Virol.
, vol.92
, pp. 2088-2092
-
-
Karpe, Y.A.1
Lole, K.S.2
-
138
-
-
79952301200
-
Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains
-
Akutsu M, Ye Y, Virdee S, Chin JW, Komander D. 2011. Molecular basis for ubiquitin and ISG15 cross-reactivity in viral ovarian tumor domains. Proc. Natl. Acad. Sci. USA 108:2228-33
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 2228-2233
-
-
Akutsu, M.1
Ye, Y.2
Virdee, S.3
Chin, J.W.4
Komander, D.5
-
139
-
-
79952290477
-
Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domaincontaining protease
-
James TW, Frias-Staheli N, Bacik JP, Levingston Macleod JM, Khajehpour M, et al. 2011. Structural basis for the removal of ubiquitin and interferon-stimulated gene 15 by a viral ovarian tumor domaincontaining protease. Proc. Natl. Acad. Sci. USA 108:2222-27
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 2222-2227
-
-
James, T.W.1
Frias-Staheli, N.2
Bacik, J.P.3
Levingston MacLeod, J.M.4
Khajehpour, M.5
-
140
-
-
22544487172
-
Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways
-
Zhao C, Denison C, Huibregtse JM, Gygi S, Krug RM. 2005. Human ISG15 conjugation targets both IFN-induced and constitutively expressed proteins functioning in diverse cellular pathways. Proc. Natl. Acad. Sci. USA 102:10200-5
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 10200-10205
-
-
Zhao, C.1
Denison, C.2
Huibregtse, J.M.3
Gygi, S.4
Krug, R.M.5
-
141
-
-
64049089383
-
ISG15 modification of filamin B negatively regulates the type i interferon-induced JNK signalling pathway
-
Jeon YJ, Choi JS, Lee JY, Yu KR, Kim SM, et al. 2009. ISG15 modification of filamin B negatively regulates the type I interferon-induced JNK signalling pathway. EMBO Rep. 10:374-80
-
(2009)
EMBO Rep.
, vol.10
, pp. 374-380
-
-
Jeon, Y.J.1
Choi, J.S.2
Lee, J.Y.3
Yu, K.R.4
Kim, S.M.5
-
142
-
-
77951991690
-
Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification
-
Shi HX, Yang K, Liu X, Liu XY, Wei B, et al. 2010. Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol. 30:2424-36
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 2424-2436
-
-
Shi, H.X.1
Yang, K.2
Liu, X.3
Liu, X.Y.4
Wei, B.5
-
143
-
-
76649140147
-
ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells
-
Zhao C, Hsiang TY, Kuo RL, Krug RM. 2010. ISG15 conjugation system targets the viral NS1 protein in influenza A virus-infected cells. Proc. Natl. Acad. Sci. USA 107:2253-58
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 2253-2258
-
-
Zhao, C.1
Hsiang, T.Y.2
Kuo, R.L.3
Krug, R.M.4
-
144
-
-
77954753259
-
Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein
-
Tang Y, Zhong G, Zhu L, Liu X, Shan Y, et al. 2010. Herc5 attenuates influenza A virus by catalyzing ISGylation of viral NS1 protein. J. Immunol. 184:5777-90
-
(2010)
J. Immunol.
, vol.184
, pp. 5777-5790
-
-
Tang, Y.1
Zhong, G.2
Zhu, L.3
Liu, X.4
Shan, Y.5
-
145
-
-
44049102828
-
ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response
-
Malakhova OA, Zhang DE. 2008. ISG15 inhibits Nedd4 ubiquitin E3 activity and enhances the innate antiviral response. J. Biol. Chem. 283:8783-87
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 8783-8787
-
-
Malakhova, O.A.1
Zhang, D.E.2
-
146
-
-
41649084195
-
ISG15 inhibits Ebola VP40 VLP budding in an L-domaindependent manner by blocking Nedd4 ligase activity
-
Okumura A, Pitha PM, Harty RN. 2008. ISG15 inhibits Ebola VP40 VLP budding in an L-domaindependent manner by blocking Nedd4 ligase activity. Proc. Natl. Acad. Sci. USA 105:3974-79
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3974-3979
-
-
Okumura, A.1
Pitha, P.M.2
Harty, R.N.3
-
147
-
-
31944435603
-
Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15
-
Okumura A, Lu G, Pitha-Rowe I, Pitha PM. 2006. Innate antiviral response targets HIV-1 release by the induction of ubiquitin-like protein ISG15. Proc. Natl. Acad. Sci. USA 103:1440-45
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 1440-1445
-
-
Okumura, A.1
Lu, G.2
Pitha-Rowe, I.3
Pitha, P.M.4
-
148
-
-
79960406323
-
Mechanism of inhibition of retrovirus release from cells by interferoninduced gene ISG15
-
Kuang Z, Seo EJ, Leis J. 2011. Mechanism of inhibition of retrovirus release from cells by interferoninduced gene ISG15. J. Virol. 85:7153-61
-
(2011)
J. Virol.
, vol.85
, pp. 7153-7161
-
-
Kuang, Z.1
Seo, E.J.2
Leis, J.3
-
149
-
-
24344477111
-
ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity
-
Takeuchi T, Yokosawa H. 2005. ISG15 modification of Ubc13 suppresses its ubiquitin-conjugating activity. Biochem. Biophys. Res. Commun. 336:9-13
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.336
, pp. 9-13
-
-
Takeuchi, T.1
Yokosawa, H.2
-
150
-
-
24344449085
-
ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin
-
Zou W, Papov V, Malakhova O, Kim KI, Dao C, et al. 2005. ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun. 336:61-68
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.336
, pp. 61-68
-
-
Zou, W.1
Papov, V.2
Malakhova, O.3
Kim, K.I.4
Dao, C.5
-
151
-
-
31544460359
-
Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway
-
Desai SD, Haas AL, Wood LM, Tsai YC, Pestka S, et al. 2006. Elevated expression of ISG15 in tumor cells interferes with the ubiquitin/26S proteasome pathway. Cancer Res. 66:921-28
-
(2006)
Cancer Res.
, vol.66
, pp. 921-928
-
-
Desai, S.D.1
Haas, A.L.2
Wood, L.M.3
Tsai, Y.C.4
Pestka, S.5
-
152
-
-
78651488457
-
Interferon-stimulated gene 15 and the protein ISGylation system
-
Zhang D, Zhang DE. 2011. Interferon-stimulated gene 15 and the protein ISGylation system. J. Interferon Cytokine Res. 31:119-30
-
(2011)
J. Interferon Cytokine Res.
, vol.31
, pp. 119-130
-
-
Zhang, D.1
Zhang, D.E.2
-
153
-
-
77953114765
-
The ISG15 conjugation system broadly targets newly synthesized proteins: Implications for the antiviral function of ISG15
-
Durfee LA, LyonN, Seo K, Huibregtse JM. 2010. The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell 38:722-32
-
(2010)
Mol. Cell
, vol.38
, pp. 722-732
-
-
Durfee, L.A.1
Lyon, N.2
Seo, K.3
Huibregtse, J.M.4
-
154
-
-
0030292679
-
In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine
-
D'Cunha J, Ramanujam S, Wagner RJ, Witt PL, Knight E Jr, Borden EC. 1996. In vitro and in vivo secretion of human ISG15, an IFN-induced immunomodulatory cytokine. J. Immunol. 157:4100-8
-
(1996)
J. Immunol.
, vol.157
, pp. 4100-4108
-
-
Cunha J, D.'.1
Ramanujam, S.2
Wagner, R.J.3
Witt, P.L.4
Knight Jr., E.5
Borden, E.C.6
-
155
-
-
0025996034
-
A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma
-
Recht M, Borden EC, Knight E Jr. 1991. A human 15-kDa IFN-induced protein induces the secretion of IFN-gamma. J. Immunol. 147:2617-23
-
(1991)
J. Immunol.
, vol.147
, pp. 2617-2623
-
-
Recht, M.1
Borden, E.C.2
Knight Jr., E.3
-
156
-
-
0037096808
-
Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells
-
Padovan E, Terracciano L, Certa U, Jacobs B, Reschner A, et al. 2002. Interferon stimulated gene 15 constitutively produced by melanoma cells induces e-cadherin expression on human dendritic cells. Cancer Res. 62:3453-58
-
(2002)
Cancer Res.
, vol.62
, pp. 3453-3458
-
-
Padovan, E.1
Terracciano, L.2
Certa, U.3
Jacobs, B.4
Reschner, A.5
-
157
-
-
0041328885
-
Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor
-
Owhashi M, Taoka Y, Ishii K, Nakazawa S, Uemura H, Kambara H. 2003. Identification of a ubiquitin family protein as a novel neutrophil chemotactic factor. Biochem. Biophys. Res. Commun. 309:533-39
-
(2003)
Biochem. Biophys. Res. Commun.
, vol.309
, pp. 533-539
-
-
Owhashi, M.1
Taoka, Y.2
Ishii, K.3
Nakazawa, S.4
Uemura, H.5
Kambara, H.6
-
158
-
-
80055100405
-
ISG15 is critical in the control of chikungunya virus infection independent of UbE1L-mediated conjugation
-
Werneke SW, Schilte C, Rohatgi A, Monte KJ, Michault A, et al. 2011. ISG15 is critical in the control of chikungunya virus infection independent of UbE1L-mediated conjugation. PLoS Pathog. 7:e1002322
-
(2011)
PLoS Pathog.
, vol.7
-
-
Werneke, S.W.1
Schilte, C.2
Rohatgi, A.3
Monte, K.J.4
Michault, A.5
-
159
-
-
33745761009
-
UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity
-
Malakhova OA, KimKI, Luo JK, ZouW, KumarKG, et al. 2006. UBP43 is a novel regulator of interferon signaling independent of its ISG15 isopeptidase activity. EMBO J. 25:2358-67
-
(2006)
EMBO J.
, vol.25
, pp. 2358-2367
-
-
Malakhova, O.A.1
Kimki Luo, J.K.2
Kumarkg, Z.3
-
160
-
-
0037443090
-
Protein ISGylation modulates the JAK-STAT signaling pathway
-
Malakhova OA, Yan M, Malakhov MP, Yuan Y, Ritchie KJ, et al. 2003. Protein ISGylation modulates the JAK-STAT signaling pathway. Genes Dev. 17:455-60
-
(2003)
Genes Dev.
, vol.17
, pp. 455-460
-
-
Malakhova, O.A.1
Yan, M.2
Malakhov, M.P.3
Yuan, Y.4
Ritchie, K.J.5
-
161
-
-
0036714980
-
Dysregulation of protein modification by ISG15 results in brain cell injury
-
Ritchie KJ, Malakhov MP, Hetherington CJ, Zhou L, Little MT, et al. 2002. Dysregulation of protein modification by ISG15 results in brain cell injury. Genes Dev. 16:2207-12
-
(2002)
Genes Dev.
, vol.16
, pp. 2207-2212
-
-
Ritchie, K.J.1
Malakhov, M.P.2
Hetherington, C.J.3
Zhou, L.4
Little, M.T.5
-
162
-
-
28544442690
-
Reexamination of the role of ubiquitinlike modifier ISG15 in the phenotype of UBP43-deficient mice
-
Knobeloch KP, UtermohlenO, Kisser A, Prinz M, Horak I. 2005. Reexamination of the role of ubiquitinlike modifier ISG15 in the phenotype of UBP43-deficient mice. Mol. Cell. Biol. 25:11030-34
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 11030-11034
-
-
Knobeloch, K.P.1
Utermohlen, O.2
Kisser, A.3
Prinz, M.4
Horak, I.5
-
163
-
-
58749106092
-
The level of hepatitis B virus replication is not affected by protein ISG15modification but is reduced by inhibition of UBP43 (USP18) expression
-
Kim JH, Luo JK, Zhang DE. 2008. The level of hepatitis B virus replication is not affected by protein ISG15modification but is reduced by inhibition of UBP43 (USP18) expression. J. Immunol. 181:6467-72
-
(2008)
J. Immunol.
, vol.181
, pp. 6467-6472
-
-
Kim, J.H.1
Luo, J.K.2
Zhang, D.E.3
-
164
-
-
80052764047
-
FAT10: Activated by UBA6 and functioning in protein degradation
-
PelzerC, Groettrup M. 2010. FAT10: activated by UBA6 and functioning in protein degradation. Subcell. Biochem. 54:238-46
-
(2010)
Subcell. Biochem.
, vol.54
, pp. 238-246
-
-
Pelzer, C.1
Groettrup, M.2
-
165
-
-
84856720655
-
USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis
-
Aichem A, Pelzer C, Lukasiak S, Kalveram B, Sheppard PW, et al. 2010. USE1 is a bispecific conjugating enzyme for ubiquitin and FAT10, which FAT10ylates itself in cis. Nat. Commun. 1:13
-
(2010)
Nat. Commun.
, vol.1
, pp. 13
-
-
Aichem, A.1
Pelzer, C.2
Lukasiak, S.3
Kalveram, B.4
Sheppard, P.W.5
-
166
-
-
34748884321
-
E1-L2 activates both ubiquitin and FAT10
-
Chiu YH, Sun Q, Chen ZJ. 2007. E1-L2 activates both ubiquitin and FAT10. Mol. Cell 27:1014-23
-
(2007)
Mol. Cell
, vol.27
, pp. 1014-1023
-
-
Chiu, Y.H.1
Sun, Q.2
Chen, Z.J.3
-
167
-
-
17644376207
-
FAT10, a ubiquitin-independent signal for proteasomal degradation
-
Hipp MS, Kalveram B, Raasi S, Groettrup M, Schmidtke G. 2005. FAT10, a ubiquitin-independent signal for proteasomal degradation. Mol. Cell. Biol. 25:3483-91
-
(2005)
Mol. Cell. Biol.
, vol.25
, pp. 3483-3491
-
-
Hipp, M.S.1
Kalveram, B.2
Raasi, S.3
Groettrup, M.4
Schmidtke, G.5
-
168
-
-
58649086714
-
Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L
-
Schmidtke G, Kalveram B, Groettrup M. 2009. Degradation of FAT10 by the 26S proteasome is independent of ubiquitylation but relies on NUB1L. FEBS Lett. 583:591-94
-
(2009)
FEBS Lett.
, vol.583
, pp. 591-594
-
-
Schmidtke, G.1
Kalveram, B.2
Groettrup, M.3
-
169
-
-
33746023341
-
The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10
-
Schmidtke G, Kalveram B, Weber E, Bochtler P, Lukasiak S, et al. 2006. The UBA domains of NUB1L are required for binding but not for accelerated degradation of the ubiquitin-like modifier FAT10. J. Biol. Chem. 281:20045-54
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 20045-20054
-
-
Schmidtke, G.1
Kalveram, B.2
Weber, E.3
Bochtler, P.4
Lukasiak, S.5
-
170
-
-
84855413453
-
FAT10 is a proteasomal degradation signal which is itself regulated by ubiquitination
-
Buchsbaum S, Bercovich B, Ciechanover A. 2011. FAT10 is a proteasomal degradation signal which is itself regulated by ubiquitination. Mol. Biol. Cell 23:225-32
-
(2011)
Mol. Biol. Cell
, vol.23
, pp. 225-232
-
-
Buchsbaum, S.1
Bercovich, B.2
Ciechanover, A.3
-
171
-
-
77949362894
-
The ubiquitin-like protein FAT10 mediates NF-kappaB activation
-
Gong P, Canaan A, Wang B, Leventhal J, Snyder A, et al. 2010. The ubiquitin-like protein FAT10 mediates NF-kappaB activation. J. Am. Soc. Nephrol. 21:316-26
-
(2010)
J. Am. Soc. Nephrol.
, vol.21
, pp. 316-326
-
-
Gong, P.1
Canaan, A.2
Wang, B.3
Leventhal, J.4
Snyder, A.5
-
172
-
-
79955068157
-
FAT10 modifies p53 and upregulates its transcriptional activity
-
Li T, Santockyte R, Yu S, Shen RF, Tekle E, et al. 2011. FAT10 modifies p53 and upregulates its transcriptional activity. Arch. Biochem. Biophys. 509:164-69
-
(2011)
Arch. Biochem. Biophys.
, vol.509
, pp. 164-169
-
-
Li, T.1
Santockyte, R.2
Yu, S.3
Shen, R.F.4
Tekle, E.5
-
173
-
-
59649085296
-
Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system
-
Ebstein F, Lange N, Urban S, Seifert U, Kruger E, Kloetzel PM. 2009. Maturation of human dendritic cells is accompanied by functional remodelling of the ubiquitin-proteasome system. Int. J. Biochem. Cell Biol. 41:1205-15
-
(2009)
Int. J. Biochem. Cell Biol.
, vol.41
, pp. 1205-1215
-
-
Ebstein, F.1
Lange, N.2
Urban, S.3
Seifert, U.4
Kruger, E.5
Kloetzel, P.M.6
-
174
-
-
33745456782
-
FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences
-
Canaan A, Yu X, Booth CJ, Lian J, Lazar I, et al. 2006. FAT10/diubiquitin-like protein-deficient mice exhibit minimal phenotypic differences. Mol. Cell. Biol. 26:5180-89
-
(2006)
Mol. Cell. Biol.
, vol.26
, pp. 5180-5189
-
-
Canaan, A.1
Yu, X.2
Booth, C.J.3
Lian, J.4
Lazar, I.5
-
175
-
-
70350325586
-
FAT10: A novel mediator of Vpr-induced apoptosis in human immunodeficiency virus-associated nephropathy
-
Snyder A, Alsauskas Z, Gong P, Rosenstiel PE, Klotman ME, et al. 2009. FAT10: a novel mediator of Vpr-induced apoptosis in human immunodeficiency virus-associated nephropathy. J. Virol. 83:11983-88
-
(2009)
J. Virol.
, vol.83
, pp. 11983-11988
-
-
Snyder, A.1
Alsauskas, Z.2
Gong, P.3
Rosenstiel, P.E.4
Klotman, M.E.5
-
176
-
-
61349200777
-
Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites
-
Jeram SM, Srikumar T, Pedrioli PG, Raught B. 2009. Using mass spectrometry to identify ubiquitin and ubiquitin-like protein conjugation sites. Proteomics 9:922-34
-
(2009)
Proteomics
, vol.9
, pp. 922-934
-
-
Jeram, S.M.1
Srikumar, T.2
Pedrioli, P.G.3
Raught, B.4
-
177
-
-
70349971457
-
The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis
-
Nakamura M, Shimosaki S. 2009. The ubiquitin-like protein monoclonal nonspecific suppressor factor beta conjugates to endophilin II and regulates phagocytosis. FEBS J. 276:6355-63
-
(2009)
FEBS J.
, vol.276
, pp. 6355-6363
-
-
Nakamura, M.1
Shimosaki, S.2
-
178
-
-
33745198691
-
The ubiquitin-like protein MNSFbeta regulatesERK-MAPKcascade
-
NakamuraM, Yamaguchi S. 2006. The ubiquitin-like protein MNSFbeta regulatesERK-MAPKcascade. J. Biol. Chem. 281:16861-69
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 16861-16869
-
-
Nakamura, M.1
Yamaguchi, S.2
-
179
-
-
0032588118
-
Ubiquitin-like polypeptide inhibits the proliferative response of T cells in vivo
-
Kondoh T, Nakamura M, Nabika T, Yoshimura Y, Tanigawa Y. 1999. Ubiquitin-like polypeptide inhibits the proliferative response of T cells in vivo. Immunobiology 200:140-49
-
(1999)
Immunobiology
, vol.200
, pp. 140-149
-
-
Kondoh, T.1
Nakamura, M.2
Nabika, T.3
Yoshimura, Y.4
Tanigawa, Y.5
-
180
-
-
3142519570
-
A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier
-
Komatsu M, Chiba T, Tatsumi K, Iemura S, Tanida I, et al. 2004. A novel protein-conjugating system for Ufm1, a ubiquitin-fold modifier. EMBO J. 23:1977-86
-
(2004)
EMBO J.
, vol.23
, pp. 1977-1986
-
-
Komatsu, M.1
Chiba, T.2
Tatsumi, K.3
Iemura, S.4
Tanida, I.5
-
181
-
-
77949312862
-
A novel type of E3 ligase for the Ufm1 conjugation system
-
Tatsumi K, Sou YS, Tada N, Nakamura E, Iemura S, et al. 2010. A novel type of E3 ligase for the Ufm1 conjugation system. J. Biol. Chem. 285:5417-27
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 5417-5427
-
-
Tatsumi, K.1
Sou, Y.S.2
Tada, N.3
Nakamura, E.4
Iemura, S.5
-
182
-
-
78751672975
-
Autophagy in immunity and inflammation
-
Levine B, MizushimaN, VirginHW. 2011. Autophagy in immunity and inflammation. Nature 469:323-35
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
183
-
-
51049118332
-
The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy "protein modifications: Beyond the usual suspects" review series
-
Geng J, Klionsky DJ. 2008. The Atg8 and Atg12 ubiquitin-like conjugation systems in macroautophagy. "Protein modifications: beyond the usual suspects" review series. EMBO Rep. 9:859-64
-
(2008)
EMBO Rep.
, vol.9
, pp. 859-864
-
-
Geng, J.1
Klionsky, D.J.2
-
184
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. 2008. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol. Biol. Cell 19:2092-100
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
185
-
-
38049098543
-
The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy
-
Hanada T, Noda NN, Satomi Y, Ichimura Y, Fujioka Y, et al. 2007. The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282:37298-302
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 37298-37302
-
-
Hanada, T.1
Noda, N.N.2
Satomi, Y.3
Ichimura, Y.4
Fujioka, Y.5
-
186
-
-
77955637249
-
ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death
-
Radoshevich L, Murrow L, Chen N, Fernandez E, Roy S, et al. 2010. ATG12 conjugation to ATG3 regulates mitochondrial homeostasis and cell death. Cell 142:590-600
-
(2010)
Cell
, vol.142
, pp. 590-600
-
-
Radoshevich, L.1
Murrow, L.2
Chen, N.3
Fernandez, E.4
Roy, S.5
-
187
-
-
80555144189
-
Atg8 transfer from Atg7 to Atg3: A distinctive E1-E2 architecture and mechanism in the autophagy pathway
-
Taherbhoy AM, Tait SW, Kaiser SE, Williams AH, Deng A, et al. 2011. Atg8 transfer from Atg7 to Atg3: a distinctive E1-E2 architecture and mechanism in the autophagy pathway. Mol. Cell 44:451-61
-
(2011)
Mol. Cell
, vol.44
, pp. 451-461
-
-
Taherbhoy, A.M.1
Tait, S.W.2
Kaiser, S.E.3
Williams, A.H.4
Deng, A.5
-
188
-
-
80555144181
-
Structural basis of Atg8 activation by a homodimeric E1, Atg7
-
Noda NN, Satoo K, Fujioka Y, Kumeta H, Ogura K, et al. 2011. Structural basis of Atg8 activation by a homodimeric E1, Atg7. Mol. Cell 44:462-75
-
(2011)
Mol. Cell
, vol.44
, pp. 462-475
-
-
Noda, N.N.1
Satoo, K.2
Fujioka, Y.3
Kumeta, H.4
Ogura, K.5
-
189
-
-
82955247613
-
Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8
-
Hong SB, Kim BW, Lee KE, Kim SW, Jeon H, et al. 2011. Insights into noncanonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat. Struct. Mol. Biol. 18:1323-30
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 1323-1330
-
-
Hong, S.B.1
Kim, B.W.2
Lee, K.E.3
Kim, S.W.4
Jeon, H.5
-
190
-
-
34447099450
-
Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion
-
Nakatogawa H, Ichimura Y, Ohsumi Y. 2007. Atg8, a ubiquitin-like protein required for autophagosome formation, mediates membrane tethering and hemifusion. Cell 130:165-78
-
(2007)
Cell
, vol.130
, pp. 165-178
-
-
Nakatogawa, H.1
Ichimura, Y.2
Ohsumi, Y.3
-
191
-
-
47549092694
-
Atg8 controls phagophore expansion during autophagosome formation
-
Xie Z, Nair U, Klionsky DJ. 2008. Atg8 controls phagophore expansion during autophagosome formation. Mol. Biol. Cell 19:3290-98
-
(2008)
Mol. Biol. Cell
, vol.19
, pp. 3290-3298
-
-
Xie, Z.1
Nair, U.2
Klionsky, D.J.3
-
192
-
-
79960798816
-
SNARE proteins are required for macroautophagy
-
Nair U, Jotwani A, Geng J, Gammoh N, Richerson D, et al. 2011. SNARE proteins are required for macroautophagy. Cell 146:290-302
-
(2011)
Cell
, vol.146
, pp. 290-302
-
-
Nair, U.1
Jotwani, A.2
Geng, J.3
Gammoh, N.4
Richerson, D.5
-
193
-
-
79960774898
-
Autophagosome precursor maturation requires homotypic fusion
-
Moreau K, RavikumarB, RennaM, Puri C, RubinszteinDC. 2011. Autophagosome precursor maturation requires homotypic fusion. Cell 146:303-17
-
(2011)
Cell
, vol.146
, pp. 303-317
-
-
Moreau, K.1
Ravikumar, B.2
Renna, M.3
Puri, C.4
Rubinsztein, D.C.5
-
195
-
-
77953728406
-
GABARAPL1 (GEC1) associates with autophagic vesicles
-
Chakrama FZ, Seguin-Py S, Le Grand JN, Fraichard A, Delage-Mourroux R, et al. 2010. GABARAPL1 (GEC1) associates with autophagic vesicles. Autophagy 6:495-505
-
(2010)
Autophagy
, vol.6
, pp. 495-505
-
-
Chakrama, F.Z.1
Seguin-Py, S.2
Le Grand, J.N.3
Fraichard, A.4
Delage-Mourroux, R.5
-
196
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. 2010. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J. 29:1792-802
-
(2010)
EMBO J.
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
197
-
-
79954544250
-
LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis
-
Weidberg H, Shpilka T, Shvets E, Abada A, Shimron F, Elazar Z. 2011. LC3 and GATE-16 N termini mediate membrane fusion processes required for autophagosome biogenesis. Dev. Cell 20:444-54
-
(2011)
Dev. Cell
, vol.20
, pp. 444-454
-
-
Weidberg, H.1
Shpilka, T.2
Shvets, E.3
Abada, A.4
Shimron, F.5
Elazar, Z.6
-
198
-
-
0037012104
-
Structure of GABARAP in two conformations: Implications for GABA(A) receptor localization and tubulin binding
-
Coyle JE, Qamar S, Rajashankar KR, Nikolov DB. 2002. Structure of GABARAP in two conformations: implications for GABA(A) receptor localization and tubulin binding. Neuron 33:63-74
-
(2002)
Neuron
, vol.33
, pp. 63-74
-
-
Coyle, J.E.1
Qamar, S.2
Rajashankar, K.R.3
Nikolov, D.B.4
-
199
-
-
4644362024
-
In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy
-
Ichimura Y, Imamura Y, Emoto K, Umeda M, Noda T, Ohsumi Y. 2004. In vivo and in vitro reconstitution of Atg8 conjugation essential for autophagy. J. Biol. Chem. 279:40584-92
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 40584-40592
-
-
Ichimura, Y.1
Imamura, Y.2
Emoto, K.3
Umeda, M.4
Noda, T.5
Ohsumi, Y.6
-
200
-
-
79952422876
-
OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation
-
Itoh T, Kanno E, Uemura T, Waguri S, Fukuda M. 2011. OATL1, a novel autophagosome-resident Rab33B-GAP, regulates autophagosomal maturation. J. Cell Biol. 192:839-53
-
(2011)
J. Cell Biol.
, vol.192
, pp. 839-853
-
-
Itoh, T.1
Kanno, E.2
Uemura, T.3
Waguri, S.4
Fukuda, M.5
-
202
-
-
60849099049
-
A role for NBR1 in autophagosomal degradation of ubiquitinated substrates
-
Kirkin V, Lamark T, Sou YS, Bjorkoy G, Nunn JL, et al. 2009. A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol. Cell 33:505-16
-
(2009)
Mol. Cell
, vol.33
, pp. 505-516
-
-
Kirkin, V.1
Lamark, T.2
Sou, Y.S.3
Bjorkoy, G.4
Nunn, J.L.5
-
203
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M, Waguri S, Koike M, Sou YS, Ueno T, et al. 2007. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 131:1149-63
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
Waguri, S.2
Koike, M.3
Sou, Y.S.4
Ueno, T.5
-
204
-
-
74049153002
-
Nix is a selective autophagy receptor for mitochondrial clearance
-
Novak I, Kirkin V, McEwan DG, Zhang J, Wild P, et al. 2010. Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep. 11:45-51
-
(2010)
EMBO Rep.
, vol.11
, pp. 45-51
-
-
Novak, I.1
Kirkin, V.2
McEwan, D.G.3
Zhang, J.4
Wild, P.5
-
206
-
-
70350450808
-
The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria
-
Thurston TL, Ryzhakov G, Bloor S, von Muhlinen N, Randow F. 2009. The TBK1 adaptor and autophagy receptorNDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215-21
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1215-1221
-
-
Thurston, T.L.1
Ryzhakov, G.2
Bloor, S.3
Von Muhlinen, N.4
Randow, F.5
-
207
-
-
79960804104
-
Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth
-
Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, et al. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228-33
-
(2011)
Science
, vol.333
, pp. 228-233
-
-
Wild, P.1
Farhan, H.2
McEwan, D.G.3
Wagner, S.4
Rogov, V.V.5
-
208
-
-
74049126112
-
The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway
-
Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:5909-16
-
(2009)
J. Immunol.
, vol.183
, pp. 5909-5916
-
-
Zheng, Y.T.1
Shahnazari, S.2
Brech, A.3
Lamark, T.4
Johansen, T.5
Brumell, J.H.6
-
209
-
-
77949997805
-
Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties
-
Ponpuak M, Davis AS, Roberts EA, Delgado MA, Dinkins C, et al. 2010. Delivery of cytosolic components by autophagic adaptor protein p62 endows autophagosomes with unique antimicrobial properties. Immunity 32:329-41
-
(2010)
Immunity
, vol.32
, pp. 329-341
-
-
Ponpuak, M.1
Davis, A.S.2
Roberts, E.A.3
Delgado, M.A.4
Dinkins, C.5
-
210
-
-
57249083972
-
Structural basis of target recognition by Atg8/LC3 during selective autophagy
-
Noda NN, Kumeta H, Nakatogawa H, Satoo K, Adachi W, et al. 2008. Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13:1211-18
-
(2008)
Genes Cells
, vol.13
, pp. 1211-1218
-
-
Noda, N.N.1
Kumeta, H.2
Nakatogawa, H.3
Satoo, K.4
Adachi, W.5
-
211
-
-
77950484269
-
Atg8-family interacting motif crucial for selective autophagy
-
Noda NN, Ohsumi Y, Inagaki F. 2010. Atg8-family interacting motif crucial for selective autophagy. FEBS Lett. 584:1379-85
-
(2010)
FEBS Lett.
, vol.584
, pp. 1379-1385
-
-
Noda, N.N.1
Ohsumi, Y.2
Inagaki, F.3
-
212
-
-
79959950861
-
Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes
-
Shvets E, Abada A, Weidberg H, Elazar Z. 2011. Dissecting the involvement of LC3B and GATE-16 in p62 recruitment into autophagosomes. Autophagy 7:683-88
-
(2011)
Autophagy
, vol.7
, pp. 683-688
-
-
Shvets, E.1
Abada, A.2
Weidberg, H.3
Elazar, Z.4
-
213
-
-
53049103308
-
Structural basis for sorting mechanism of p62 in selective autophagy
-
Ichimura Y, Kumanomidou T, Sou YS, Mizushima T, Ezaki J, et al. 2008. Structural basis for sorting mechanism of p62 in selective autophagy. J. Biol. Chem. 283:22847-57
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 22847-22857
-
-
Ichimura, Y.1
Kumanomidou, T.2
Sou, Y.S.3
Mizushima, T.4
Ezaki, J.5
-
214
-
-
79959498837
-
Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1
-
Rozenknop A, Rogov VV, RogovaNY, Lohr F, Guntert P, et al. 2011. Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J. Mol. Biol. 410:477-87
-
(2011)
J. Mol. Biol.
, vol.410
, pp. 477-487
-
-
Rozenknop, A.1
Rogov, V.V.2
Rogovany Lohr, F.3
Guntert, P.4
-
215
-
-
0347695019
-
A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L
-
Hemelaar J, Lelyveld VS, Kessler BM, Ploegh HL. 2003. A single protease, Apg4B, is specific for the autophagy-related ubiquitin-like proteins GATE-16, MAP1-LC3, GABARAP, and Apg8L. J. Biol.Chem. 278:51841-50
-
(2003)
J. Biol.Chem.
, vol.278
, pp. 51841-51850
-
-
Hemelaar, J.1
Lelyveld, V.S.2
Kessler, B.M.3
Ploegh, H.L.4
-
216
-
-
77957653753
-
Autophagy, proteases and the sense of balance
-
Cabrera S, MarinoG, Fernandez AF, Lopez-Otin C. 2010. Autophagy, proteases and the sense of balance. Autophagy 6:961-63
-
(2010)
Autophagy
, vol.6
, pp. 961-963
-
-
Cabrera, S.1
Marino, G.2
Fernandez, A.F.3
Lopez-Otin, C.4
-
217
-
-
69649090647
-
Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis
-
Betin VM, Lane JD. 2009. Caspase cleavage of Atg4D stimulates GABARAP-L1 processing and triggers mitochondrial targeting and apoptosis. J. Cell Sci. 122:2554-66
-
(2009)
J. Cell Sci.
, vol.122
, pp. 2554-2566
-
-
Betin, V.M.1
Lane, J.D.2
-
218
-
-
34247186472
-
Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4
-
Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z. 2007. Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J. 26:1749-60
-
(2007)
EMBO J.
, vol.26
, pp. 1749-1760
-
-
Scherz-Shouval, R.1
Shvets, E.2
Fass, E.3
Shorer, H.4
Gil, L.5
Elazar, Z.6
-
219
-
-
77951215334
-
Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy
-
Nair U, Cao Y, Xie Z, Klionsky DJ. 2010. Roles of the lipid-binding motifs of Atg18 and Atg21 in the cytoplasm to vacuole targeting pathway and autophagy. J. Biol. Chem. 285:11476-88
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 11476-11488
-
-
Nair, U.1
Cao, Y.2
Xie, Z.3
Klionsky, D.J.4
-
220
-
-
79959214387
-
Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system
-
Burroughs AM, Iyer LM, Aravind L. 2011. Functional diversification of the RING finger and other binuclear treble clef domains in prokaryotes and the early evolution of the ubiquitin system. Mol. Biosyst. 7:2261-77
-
(2011)
Mol. Biosyst.
, vol.7
, pp. 2261-2277
-
-
Burroughs, A.M.1
Iyer, L.M.2
Aravind, L.3
-
221
-
-
33747219426
-
The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains
-
Iyer LM, BurroughsAM, AravindL. 2006. The prokaryotic antecedents of the ubiquitin-signaling system and the early evolution of ubiquitin-like beta-grasp domains. Genome Biol. 7:R60
-
(2006)
Genome Biol.
, vol.7
-
-
Iyer, L.M.1
Aravindl, B.2
-
222
-
-
0035167185
-
Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation
-
Rudolph MJ, Wuebbens MM, Rajagopalan KV, Schindelin H. 2001. Crystal structure of molybdopterin synthase and its evolutionary relationship to ubiquitin activation. Nat. Struct. Biol. 8:42-46
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 42-46
-
-
Rudolph, M.J.1
Wuebbens, M.M.2
Rajagopalan, K.V.3
Schindelin, H.4
-
223
-
-
0035170874
-
Solution structure of ThiS and implications for the evolutionary roots of ubiquitin
-
Wang C, Xi J, Begley TP, Nicholson LK. 2001. Solution structure of ThiS and implications for the evolutionary roots of ubiquitin. Nat. Struct. Biol. 8:47-51
-
(2001)
Nat. Struct. Biol.
, vol.8
, pp. 47-51
-
-
Wang, C.1
Xi, J.2
Begley, T.P.3
Nicholson, L.K.4
-
224
-
-
66149175454
-
Natural history of the E1-like superfamily: Implication for adenylation, sulfur transfer, and ubiquitin conjugation
-
Burroughs AM, Iyer LM, Aravind L. 2009. Natural history of the E1-like superfamily: implication for adenylation, sulfur transfer, and ubiquitin conjugation. Proteins 75:895-910
-
(2009)
Proteins
, vol.75
, pp. 895-910
-
-
Burroughs, A.M.1
Iyer, L.M.2
Aravind, L.3
-
225
-
-
0035891318
-
Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex
-
Lake MW, Wuebbens MM, Rajagopalan KV, Schindelin H. 2001. Mechanism of ubiquitin activation revealed by the structure of a bacterial MoeB-MoaD complex. Nature 414:325-29
-
(2001)
Nature
, vol.414
, pp. 325-329
-
-
Lake, M.W.1
Wuebbens, M.M.2
Rajagopalan, K.V.3
Schindelin, H.4
-
226
-
-
0035902526
-
Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: Identification of an acyldisulfide-linked protein-protein conjugate that is functionally analogous to the ubiquitin/E1 complex
-
Xi J, Ge Y, Kinsland C, McLafferty FW, Begley TP. 2001. Biosynthesis of the thiazole moiety of thiamin in Escherichia coli: identification of an acyldisulfide-linked protein-protein conjugate that is functionally analogous to the ubiquitin/E1 complex. Proc. Natl. Acad. Sci. USA 98:8513-18
-
(2001)
Proc. Natl. Acad. Sci. USA
, vol.98
, pp. 8513-8518
-
-
Xi, J.1
Ge, Y.2
Kinsland, C.3
McLafferty, F.W.4
Begley, T.P.5
-
227
-
-
0034677757
-
A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes
-
Furukawa K, Mizushima N, Noda T, Ohsumi Y. 2000. A protein conjugation system in yeast with homology to biosynthetic enzyme reaction of prokaryotes. J. Biol. Chem. 275:7462-65
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 7462-7465
-
-
Furukawa, K.1
Mizushima, N.2
Noda, T.3
Ohsumi, Y.4
-
228
-
-
33746803334
-
Solution structure of Urm1 and its implications for the origin of protein modifiers
-
Xu J, Zhang J, Wang L, Zhou J, Huang H, et al. 2006. Solution structure of Urm1 and its implications for the origin of protein modifiers. Proc. Natl. Acad. Sci. USA 103:11625-30
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 11625-11630
-
-
Xu, J.1
Zhang, J.2
Wang, L.3
Zhou, J.4
Huang, H.5
-
229
-
-
23644446309
-
Three-dimensional structure of the AAH26994.1 protein from Mus musculus, a putative eukaryotic Urm1
-
Singh S, Tonelli M, Tyler RC, Bahrami A, Lee MS, Markley JL. 2005. Three-dimensional structure of the AAH26994.1 protein from Mus musculus, a putative eukaryotic Urm1. Protein Sci. 14:2095-102
-
(2005)
Protein Sci.
, vol.14
, pp. 2095-2102
-
-
Singh, S.1
Tonelli, M.2
Tyler, R.C.3
Bahrami, A.4
Lee, M.S.5
Markley, J.L.6
-
230
-
-
62249160690
-
Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA
-
Leidel S, Pedrioli PG, Bucher T, Brost R, Costanzo M, et al. 2009. Ubiquitin-related modifier Urm1 acts as a sulphur carrier in thiolation of eukaryotic transfer RNA. Nature 458:228-32
-
(2009)
Nature
, vol.458
, pp. 228-232
-
-
Leidel, S.1
Pedrioli, P.G.2
Bucher, T.3
Brost, R.4
Costanzo, M.5
-
231
-
-
62549117409
-
Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions
-
Noma A, Sakaguchi Y, Suzuki T. 2009. Mechanistic characterization of the sulfur-relay system for eukaryotic 2-thiouridine biogenesis at tRNA wobble positions. Nucleic Acids Res. 37:1335-52
-
(2009)
Nucleic Acids Res.
, vol.37
, pp. 1335-1352
-
-
Noma, A.1
Sakaguchi, Y.2
Suzuki, T.3
-
232
-
-
57449121400
-
A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway
-
Schlieker CD, Van der Veen AG, Damon JR, Spooner E, Ploegh HL. 2008. A functional proteomics approach links the ubiquitin-related modifier Urm1 to a tRNA modification pathway. Proc. Natl. Acad. Sci. USA 105:18255-60
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 18255-18260
-
-
Schlieker, C.D.1
Van Der Veen, A.G.2
Damon, J.R.3
Spooner, E.4
Ploegh, H.L.5
-
233
-
-
45749124348
-
The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins
-
Schmitz J, Chowdhury MM, Hanzelmann P, Nimtz M, Lee EY, et al. 2008. The sulfurtransferase activity of Uba4 presents a link between ubiquitin-like protein conjugation and activation of sulfur carrier proteins. Biochemistry 47:6479-89
-
(2008)
Biochemistry
, vol.47
, pp. 6479-6489
-
-
Schmitz, J.1
Chowdhury, M.M.2
Hanzelmann, P.3
Nimtz, M.4
Lee, E.Y.5
-
234
-
-
54449085541
-
A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor forMOCS3, a protein involved in molybdenum cofactor biosynthesis
-
Marelja Z, Stocklein W, Nimtz M, Leimkuhler S. 2008. A novel role for human Nfs1 in the cytoplasm: Nfs1 acts as a sulfur donor forMOCS3, a protein involved in molybdenum cofactor biosynthesis. J. Biol. Chem. 283:25178-85
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 25178-25185
-
-
Marelja, Z.1
Stocklein, W.2
Nimtz, M.3
Leimkuhler, S.4
-
235
-
-
1942533536
-
Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans
-
Matthies A, Rajagopalan KV, Mendel RR, Leimkuhler S. 2004. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans. Proc. Natl. Acad. Sci. USA 101:5946-51
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 5946-5951
-
-
Matthies, A.1
Rajagopalan, K.V.2
Mendel, R.R.3
Leimkuhler, S.4
-
236
-
-
41149096112
-
Crystal structure of the dimeric Urm1 from the yeast Saccharomyces cerevisiae
-
Yu J, Zhou CZ. 2008. Crystal structure of the dimeric Urm1 from the yeast Saccharomyces cerevisiae. Proteins 71:1050-55
-
(2008)
Proteins
, vol.71
, pp. 1050-1055
-
-
Yu, J.1
Zhou, C.Z.2
-
237
-
-
55549137731
-
Thio-modification of yeast cytosolic tRNA requires a ubiquitinrelated system that resembles bacterial sulfur transfer systems
-
Nakai Y, Nakai M, Hayashi H. 2008. Thio-modification of yeast cytosolic tRNA requires a ubiquitinrelated system that resembles bacterial sulfur transfer systems. J. Biol. Chem. 283:27469-76
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 27469-27476
-
-
Nakai, Y.1
Nakai, M.2
Hayashi, H.3
-
238
-
-
46449083572
-
Bringing order to translation: The contributions of transfer RNA anticodon-domain modifications
-
Agris PF. 2008. Bringing order to translation: the contributions of transfer RNA anticodon-domain modifications. EMBO Rep. 9:629-35
-
(2008)
EMBO Rep.
, vol.9
, pp. 629-635
-
-
Agris, P.F.1
-
239
-
-
1842582668
-
Yeast Nfs1p is involved in thiomodification of both mitochondrial and cytoplasmic tRNAs
-
Nakai Y, Umeda N, Suzuki T, Nakai M, Hayashi H, et al. 2004. Yeast Nfs1p is involved in thiomodification of both mitochondrial and cytoplasmic tRNAs. J. Biol. Chem. 279:12363-68
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 12363-12368
-
-
Nakai, Y.1
Umeda, N.2
Suzuki, T.3
Nakai, M.4
Hayashi, H.5
-
240
-
-
34447518814
-
A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast
-
Bjork GR, Huang B, Persson OP, Bystrom AS. 2007. A conserved modified wobble nucleoside (mcm5s2U) in lysyl-tRNA is required for viability in yeast. RNA 13:1245-55
-
(2007)
RNA
, vol.13
, pp. 1245-1255
-
-
Bjork, G.R.1
Huang, B.2
Persson, O.P.3
Bystrom, A.S.4
-
241
-
-
44449147412
-
The conserved wobble uridine tRNA thiolase Ctu1-Ctu2 is required tomaintain genome integrity
-
DewezM, Bauer F, Dieu M, Raes M, Vandenhaute J, Hermand D. 2008. The conserved wobble uridine tRNA thiolase Ctu1-Ctu2 is required tomaintain genome integrity. Proc. Natl. Acad. Sci. USA 105:5459-64
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 5459-5464
-
-
Dewez Bauer M, F.1
Dieu, M.2
Raes, M.3
Vandenhaute, J.4
Hermand, D.5
-
242
-
-
52949102950
-
A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2-thiouridine in Saccharomyces cerevisiae
-
Huang B, Lu J, Bystrom AS. 2008. A genome-wide screen identifies genes required for formation of the wobble nucleoside 5-methoxycarbonylmethyl-2- thiouridine in Saccharomyces cerevisiae. RNA 14:2183-94
-
(2008)
RNA
, vol.14
, pp. 2183-2194
-
-
Huang, B.1
Lu, J.2
Bystrom, A.S.3
-
243
-
-
68249089400
-
Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants
-
Chen C, Tuck S, Bystrom AS. 2009. Defects in tRNA modification associated with neurological and developmental dysfunctions in Caenorhabditis elegans elongator mutants. PLoS Genet. 5:e1000561
-
(2009)
PLoS Genet.
, vol.5
-
-
Chen, C.1
Tuck, S.2
Bystrom, A.S.3
-
244
-
-
0142216125
-
Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p
-
Goehring AS, Rivers DM, Sprague GF Jr. 2003. Attachment of the ubiquitin-related protein Urm1p to the antioxidant protein Ahp1p. Eukaryot. Cell 2:930-36
-
(2003)
Eukaryot. Cell
, vol.2
, pp. 930-936
-
-
Goehring, A.S.1
Rivers, D.M.2
Sprague Jr., G.F.3
-
245
-
-
0344824569
-
Urmylation: A ubiquitin-like pathway that functions during invasive growth and budding in yeast
-
Goehring AS, Rivers DM, Sprague GF Jr. 2003. Urmylation: a ubiquitin-like pathway that functions during invasive growth and budding in yeast. Mol. Biol. Cell 14:4329-41
-
(2003)
Mol. Biol. Cell
, vol.14
, pp. 4329-4341
-
-
Goehring, A.S.1
Rivers, D.M.2
Sprague Jr., G.F.3
-
246
-
-
15444371415
-
An early step in wobble uridine tRNA modification requires the Elongator complex
-
Huang B, JohanssonMJ, Bystrom AS. 2005. An early step in wobble uridine tRNA modification requires the Elongator complex. RNA 11:424-36
-
(2005)
RNA
, vol.11
, pp. 424-436
-
-
Huang, B.1
Johansson, M.J.2
Bystrom, A.S.3
-
247
-
-
0035901529
-
Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin
-
Frohloff F, Fichtner L, JablonowskiD, BreunigKD, SchaffrathR. 2001. Saccharomyces cerevisiae Elongator mutations confer resistance to the Kluyveromyces lactis zymocin. EMBO J. 20:1993-2003
-
(2001)
EMBO J.
, vol.20
, pp. 1993-2003
-
-
Frohloff, F.1
Fichtner, L.2
Jablonowski, D.3
Breunig, K.D.4
Schaffrath, R.5
-
248
-
-
79952142375
-
Role of the ubiquitin-like proteinUrm1 as a noncanonical lysine-directed protein modifier
-
Van der Veen AG, Schorpp K, Schlieker C, Buti L, Damon JR, et al. 2011. Role of the ubiquitin-like proteinUrm1 as a noncanonical lysine-directed protein modifier. Proc. Natl. Acad. Sci. USA 108:1763-70
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 1763-1770
-
-
Van Der Veen, A.G.1
Schorpp, K.2
Schlieker, C.3
Buti, L.4
Damon, J.R.5
-
249
-
-
77951527421
-
Pupylation versus ubiquitylation: Tagging for proteasome-dependent degradation
-
Burns KE, Darwin KH. 2010. Pupylation versus ubiquitylation: tagging for proteasome-dependent degradation. Cell Microbiol. 12:424-31
-
(2010)
Cell Microbiol.
, vol.12
, pp. 424-431
-
-
Burns, K.E.1
Darwin, K.H.2
-
250
-
-
73849149089
-
Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii
-
Humbard MA, Miranda HV, Lim JM, Krause DJ, Pritz JR, et al. 2010. Ubiquitin-like small archaeal modifier proteins (SAMPs) in Haloferax volcanii. Nature 463:54-60
-
(2010)
Nature
, vol.463
, pp. 54-60
-
-
Humbard, M.A.1
Miranda, H.V.2
Lim, J.M.3
Krause, D.J.4
Pritz, J.R.5
-
251
-
-
79251595632
-
Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins
-
Ranjan N, Damberger FF, Sutter M, Allain FH, Weber-Ban E. 2010. Solution structure and activation mechanism of ubiquitin-like small archaeal modifier proteins. J. Mol. Biol. 405:1040-55
-
(2010)
J. Mol. Biol.
, vol.405
, pp. 1040-1055
-
-
Ranjan, N.1
Damberger, F.F.2
Sutter, M.3
Allain, F.H.4
Weber-Ban, E.5
-
252
-
-
79952729890
-
E1-and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea
-
Miranda HV, Nembhard N, Su D, Hepowit N, Krause DJ, et al. 2011. E1-and ubiquitin-like proteins provide a direct link between protein conjugation and sulfur transfer in archaea. Proc. Natl. Acad. Sci. USA 108:4417-22
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 4417-4422
-
-
Miranda, H.V.1
Nembhard, N.2
Su, D.3
Hepowit, N.4
Krause, D.J.5
-
253
-
-
79955598535
-
Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group
-
Nunoura T, Takaki Y, Kakuta J, Nishi S, Sugahara J, et al. 2010. Insights into the evolution of Archaea and eukaryotic protein modifier systems revealed by the genome of a novel archaeal group. Nucleic Acids Res. 39:3204-23
-
(2010)
Nucleic Acids Res.
, vol.39
, pp. 3204-3223
-
-
Nunoura, T.1
Takaki, Y.2
Kakuta, J.3
Nishi, S.4
Sugahara, J.5
-
255
-
-
10244223979
-
Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast
-
Yashiroda H, Tanaka K. 2004. Hub1 is an essential ubiquitin-like protein without functioning as a typical modifier in fission yeast. Genes Cells 9:1189-97
-
(2004)
Genes Cells
, vol.9
, pp. 1189-1197
-
-
Yashiroda, H.1
Tanaka, K.2
-
256
-
-
0347724031
-
The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP
-
Luders J, Pyrowolakis G, Jentsch S. 2003. The ubiquitin-like protein HUB1 forms SDS-resistant complexes with cellular proteins in the absence of ATP. EMBO Rep. 4:1169-74
-
(2003)
EMBO Rep.
, vol.4
, pp. 1169-1174
-
-
Luders, J.1
Pyrowolakis, G.2
Jentsch, S.3
-
257
-
-
11144276022
-
Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast
-
Wilkinson CR, Dittmar GA, Ohi MD, Uetz P, Jones N, Finley D. 2004. Ubiquitin-like protein Hub1 is required for pre-mRNA splicing and localization of an essential splicing factor in fission yeast. Curr. Biol. CB 14:2283-88
-
(2004)
Curr. Biol. CB
, vol.14
, pp. 2283-2288
-
-
Wilkinson, C.R.1
Dittmar, G.A.2
Ohi, M.D.3
Uetz, P.4
Jones, N.5
Finley, D.6
-
258
-
-
76149086512
-
FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport
-
Pankiv S, Alemu EA, Brech A, Bruun JA, Lamark T, et al. 2010. FYCO1 is a Rab7 effector that binds to LC3 and PI3P to mediate microtubule plus end-directed vesicle transport. J. Cell Biol. 188:253-69
-
(2010)
J. Cell Biol.
, vol.188
, pp. 253-269
-
-
Pankiv, S.1
Alemu, E.A.2
Brech, A.3
Bruun, J.A.4
Lamark, T.5
|