-
1
-
-
85172535954
-
-
Diabetes fact sheet 312
-
World Health Organization. Diabetes fact sheet no. 312. 2015. http: //www.who.int/mediacentre/factsheets/fs312/en/index.html.
-
(2015)
-
-
-
2
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB. FGF-21 as a novel metabolic regulator. J Clin Invest 2005;115:1627–1635.
-
(2005)
J Clin Invest
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
3
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008;149:6018–6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
Chen, Y.6
Moller, D.E.7
Kharitonenkov, A.8
-
4
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, Stanislaus S, Chen M, Sivits G, Vonderfecht S, Hecht R, Li YS, Lindberg RA, Chen JL, Jung DY, Zhang Z, Ko HJ, Kim JK, Veniant MM. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 2009;58:250–259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
Stanislaus, S.4
Chen, M.5
Sivits, G.6
Vonderfecht, S.7
Hecht, R.8
Li, Y.S.9
Lindberg, R.A.10
Chen, J.L.11
Jung, D.Y.12
Zhang, Z.13
Ko, H.J.14
Kim, J.K.15
Veniant, M.M.16
-
5
-
-
42049084378
-
Actions and mode of actions of FGF19 subfamily members
-
Fukumoto S. Actions and mode of actions of FGF19 subfamily members. Endocr J 2008;55:23–31.
-
(2008)
Endocr J
, vol.55
, pp. 23-31
-
-
Fukumoto, S.1
-
6
-
-
77955814651
-
Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease
-
Itoh N. Hormone-like (endocrine) Fgfs: Their evolutionary history and roles in development, metabolism, and disease. Cell Tissue Res 2010;342:1–11.
-
(2010)
Cell Tissue Res
, vol.342
, pp. 1-11
-
-
Itoh, N.1
-
7
-
-
34247565954
-
Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
Goetz R, Beenken A, Ibrahimi OA, Kalinina J, Olsen SK, Eliseenkova AV, Xu C, Neubert TA, Zhang F, Linhardt RJ, Yu X, White KE, Inagaki T, Kliewer SA, Yamamoto M, Kurosu H, Ogawa Y, Kuro-o M, Lanske B, Razzaque MS, Mohammadi M. Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 2007;27:3417–3428.
-
(2007)
Mol Cell Biol
, vol.27
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
Kalinina, J.4
Olsen, S.K.5
Eliseenkova, A.V.6
Xu, C.7
Neubert, T.A.8
Zhang, F.9
Linhardt, R.J.10
Yu, X.11
White, K.E.12
Inagaki, T.13
Kliewer, S.A.14
Yamamoto, M.15
Kurosu, H.16
Ogawa, Y.17
Kuro-o, M.18
Lanske, B.19
Razzaque, M.S.20
Mohammadi, M.21
more..
-
8
-
-
34848869695
-
Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H, Choi M, Ogawa Y, Dickson AS, Goetz R, Eliseenkova AV, Mohammadi M, Rosenblatt KP, Kliewer SA, Kuro-o M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 2007;282:26687–26695.
-
(2007)
J Biol Chem
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-o, M.10
-
9
-
-
34047260591
-
FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23
-
Fukumoto S, Yamashita T. FGF23 is a hormone-regulating phosphate metabolism-unique biological characteristics of FGF23. Bone 2007;40:1190–1195.
-
(2007)
Bone
, vol.40
, pp. 1190-1195
-
-
Fukumoto, S.1
Yamashita, T.2
-
10
-
-
57849155278
-
FGF21 N- and C-termini play different roles in receptor interaction and activation
-
Yie J, Hecht R, Patel J, Stevens J, Wang W, Hawkins N, Steavenson S, Smith S, Winters D, Fisher S, Cai L, Belouski E, Chen C, Michaels ML, Li YS, Lindberg R, Wang M, Veniant M, Xu J. FGF21 N- and C-termini play different roles in receptor interaction and activation. FEBS Lett 2009;583:19–24.
-
(2009)
FEBS Lett
, vol.583
, pp. 19-24
-
-
Yie, J.1
Hecht, R.2
Patel, J.3
Stevens, J.4
Wang, W.5
Hawkins, N.6
Steavenson, S.7
Smith, S.8
Winters, D.9
Fisher, S.10
Cai, L.11
Belouski, E.12
Chen, C.13
Michaels, M.L.14
Li, Y.S.15
Lindberg, R.16
Wang, M.17
Veniant, M.18
Xu, J.19
-
11
-
-
75149170979
-
Fibroblast growth factor signalling: From development to cancer
-
Turner N, Grose R. Fibroblast growth factor signalling: From development to cancer. Nat Rev Cancer 2010;10:116–129.
-
(2010)
Nat Rev Cancer
, vol.10
, pp. 116-129
-
-
Turner, N.1
Grose, R.2
-
12
-
-
84863338708
-
Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB
-
Yang C, Jin C, Li X, Wang F, McKeehan WL, Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 2012;7:e33870.
-
(2012)
PLoS One
, vol.7
-
-
Yang, C.1
Jin, C.2
Li, X.3
Wang, F.4
McKeehan, W.L.5
Luo, Y.6
-
13
-
-
41649109108
-
BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M, Uehara Y, Motomura-Matsuzaka K, Oki J, Koyama Y, Kimura M, Asada M, Komi-Kuramochi A, Oka S, Imamura T. BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 2008;22:1006–1014.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
14
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
-
Kharitonenkov A, Dunbar JD, Bina HA, Bright S, Moyers JS, Zhang C, Ding L, Micanovic R, Mehrbod SF, Knierman MD, Hale JE, Coskun T, Shanafelt AB. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J Cell Physiol 2008;215:1–7.
-
(2008)
J Cell Physiol
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
Hale, J.E.11
Coskun, T.12
Shanafelt, A.B.13
-
15
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa Y, Kurosu H, Yamamoto M, Nandi A, Rosenblatt KP, Goetz R, Eliseenkova AV, Mohammadi M, Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 2007;104:7432–7437.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-o, M.9
-
16
-
-
84865741904
-
betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X, Boney-Montoya J, Owen BM, Bookout AL, Coate KC, Mangelsdorf DJ, Kliewer SA. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab 2012;16:387–393.
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
17
-
-
0030706168
-
A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway
-
Kouhara H, Hadari YR, Spivak-Kroizman T, Schilling J, Bar-Sagi D, Lax I, Schlessinger J. A lipid-anchored Grb2-binding protein that links FGF-receptor activation to the Ras/MAPK signaling pathway. Cell 1997;89:693–702.
-
(1997)
Cell
, vol.89
, pp. 693-702
-
-
Kouhara, H.1
Hadari, Y.R.2
Spivak-Kroizman, T.3
Schilling, J.4
Bar-Sagi, D.5
Lax, I.6
Schlessinger, J.7
-
18
-
-
0034333526
-
Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
-
Ito S, Kinoshita S, Shiraishi N, Nakagawa S, Sekine S, Fujimori T, Nabeshima YI. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech Dev 2000;98:115–119.
-
(2000)
Mech Dev
, vol.98
, pp. 115-119
-
-
Ito, S.1
Kinoshita, S.2
Shiraishi, N.3
Nakagawa, S.4
Sekine, S.5
Fujimori, T.6
Nabeshima, Y.I.7
-
19
-
-
84898473823
-
Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus
-
Dekker Nitert M, Barrett HL, Kubala MH, Scholz Romero K, Denny KJ, Woodruff TM, McIntyre HD, Callaway LK. Increased placental expression of fibroblast growth factor 21 in gestational diabetes mellitus. J Clin Endocrinol Metab 2014;99:E591–598.
-
(2014)
J Clin Endocrinol Metab
, vol.99
, pp. 591-598
-
-
Dekker Nitert, M.1
Barrett, H.L.2
Kubala, M.H.3
Scholz Romero, K.4
Denny, K.J.5
Woodruff, T.M.6
McIntyre, H.D.7
Callaway, L.K.8
-
20
-
-
84906605137
-
Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells
-
Wang XM, Song SS, Xiao H, Gao P, Li XJ, Si LY. Fibroblast growth factor 21 protects against high glucose induced cellular damage and dysfunction of endothelial nitric-oxide synthase in endothelial cells. Cell Physiol Biochem 2014;34:658–671.
-
(2014)
Cell Physiol Biochem
, vol.34
, pp. 658-671
-
-
Wang, X.M.1
Song, S.S.2
Xiao, H.3
Gao, P.4
Li, X.J.5
Si, L.Y.6
-
21
-
-
84901326911
-
FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway
-
Yaqoob U, Jagavelu K, Shergill U, de Assuncao T, Cao S, Shah VH. FGF21 promotes endothelial cell angiogenesis through a dynamin-2 and Rab5 dependent pathway. PLoS One 2014;9:e98130.
-
(2014)
PLoS One
, vol.9
-
-
Yaqoob, U.1
Jagavelu, K.2
Shergill, U.3
de Assuncao, T.4
Cao, S.5
Shah, V.H.6
-
22
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 2007;5:426–437.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
23
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, Ding X, Gautron L, Parameswara V, Li Y, Goetz R, Mohammadi M, Esser V, Elmquist JK, Gerard RD, Burgess SC, Hammer RE, Mangelsdorf DJ, Kliewer SA. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 2007;5:415–425.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
24
-
-
34447265235
-
PPARalpha is a key regulator of hepatic FGF21
-
Lundasen T, Hunt MC, Nilsson LM, Sanyal S, Angelin B, Alexson SE, Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 2007;360:437–440.
-
(2007)
Biochem Biophys Res Commun
, vol.360
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.6
Rudling, M.7
-
25
-
-
77957556136
-
Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo
-
Berglund ED, Kang L, Lee-Young RS, Hasenour CM, Lustig DG, Lynes SE, Donahue EP, Swift LL, Charron MJ, Wasserman DH. Glucagon and lipid interactions in the regulation of hepatic AMPK signaling and expression of PPARalpha and FGF21 transcripts in vivo. Am J Physiol Endocrinol Metab 2010;299:E607–614.
-
(2010)
Am J Physiol Endocrinol Metab
, vol.299
, pp. 607-614
-
-
Berglund, E.D.1
Kang, L.2
Lee-Young, R.S.3
Hasenour, C.M.4
Lustig, D.G.5
Lynes, S.E.6
Donahue, E.P.7
Swift, L.L.8
Charron, M.J.9
Wasserman, D.H.10
-
26
-
-
84922331368
-
Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop
-
Patel R, Bookout AL, Magomedova L, Owen BM, Consiglio GP, Shimizu M, Zhang Y, Mangelsdorf DJ, Kliewer SA, Cummins CL. Glucocorticoids regulate the metabolic hormone FGF21 in a feed-forward loop. Mol Endocrinol 2015;29:213–223.
-
(2015)
Mol Endocrinol
, vol.29
, pp. 213-223
-
-
Patel, R.1
Bookout, A.L.2
Magomedova, L.3
Owen, B.M.4
Consiglio, G.P.5
Shimizu, M.6
Zhang, Y.7
Mangelsdorf, D.J.8
Kliewer, S.A.9
Cummins, C.L.10
-
27
-
-
84862958488
-
Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5
-
Yu J, Zhao L, Wang A, Eleswarapu S, Ge X, Chen D, Jiang H. Growth hormone stimulates transcription of the fibroblast growth factor 21 gene in the liver through the signal transducer and activator of transcription 5. Endocrinology 2012;153:750–758.
-
(2012)
Endocrinology
, vol.153
, pp. 750-758
-
-
Yu, J.1
Zhao, L.2
Wang, A.3
Eleswarapu, S.4
Ge, X.5
Chen, D.6
Jiang, H.7
-
28
-
-
80053409251
-
Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes
-
Chen W, Hoo RL, Konishi M, Itoh N, Lee PC, Ye HY, Lam KS, Xu A. Growth hormone induces hepatic production of fibroblast growth factor 21 through a mechanism dependent on lipolysis in adipocytes. J Biol Chem 2011;286:34559–34566.
-
(2011)
J Biol Chem
, vol.286
, pp. 34559-34566
-
-
Chen, W.1
Hoo, R.L.2
Konishi, M.3
Itoh, N.4
Lee, P.C.5
Ye, H.Y.6
Lam, K.S.7
Xu, A.8
-
29
-
-
0015947147
-
Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men
-
Liljenquist JE, Bomboy JD, Lewis SB, Sinclair-Smith BC, Felts PW, Lacy WW, Crofford OB, Liddle GW. Effects of glucagon on lipolysis and ketogenesis in normal and diabetic men. J Clin Invest 1974;53:190–197.
-
(1974)
J Clin Invest
, vol.53
, pp. 190-197
-
-
Liljenquist, J.E.1
Bomboy, J.D.2
Lewis, S.B.3
Sinclair-Smith, B.C.4
Felts, P.W.5
Lacy, W.W.6
Crofford, O.B.7
Liddle, G.W.8
-
30
-
-
67749088181
-
Direct effect of glucocorticoids on lipolysis in adipocytes
-
Xu C, He J, Jiang H, Zu L, Zhai W, Pu S, Xu G. Direct effect of glucocorticoids on lipolysis in adipocytes. Mol Endocrinol 2009;23:1161–1170.
-
(2009)
Mol Endocrinol
, vol.23
, pp. 1161-1170
-
-
Xu, C.1
He, J.2
Jiang, H.3
Zu, L.4
Zhai, W.5
Pu, S.6
Xu, G.7
-
31
-
-
47549091766
-
Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting
-
Sakharova AA, Horowitz JF, Surya S, Goldenberg N, Harber MP, Symons K, Barkan A. Role of growth hormone in regulating lipolysis, proteolysis, and hepatic glucose production during fasting. J Clin Endocrinol Metab 2008;93:2755–2759.
-
(2008)
J Clin Endocrinol Metab
, vol.93
, pp. 2755-2759
-
-
Sakharova, A.A.1
Horowitz, J.F.2
Surya, S.3
Goldenberg, N.4
Harber, M.P.5
Symons, K.6
Barkan, A.7
-
32
-
-
71949094496
-
Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction
-
Sanchez J, Palou A, Pico C. Response to carbohydrate and fat refeeding in the expression of genes involved in nutrient partitioning and metabolism: striking effects on fibroblast growth factor-21 induction. Endocrinology 2009;150:5341–5350.
-
(2009)
Endocrinology
, vol.150
, pp. 5341-5350
-
-
Sanchez, J.1
Palou, A.2
Pico, C.3
-
33
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
Hondares E, Rosell M, Gonzalez FJ, Giralt M, Iglesias R, Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metab 2010;11:206–212.
-
(2010)
Cell Metab
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
34
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
-
Galman C, Lundasen T, Kharitonenkov A, Bina HA, Eriksson M, Hafstrom I, Dahlin M, Amark P, Angelin B, Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab 2008;8:169–174.
-
(2008)
Cell Metab
, vol.8
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
Bina, H.A.4
Eriksson, M.5
Hafstrom, I.6
Dahlin, M.7
Amark, P.8
Angelin, B.9
Rudling, M.10
-
35
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
Dushay J, Chui PC, Gopalakrishnan GS, Varela-Rey M, Crawley M, Fisher FM, Badman MK, Martinez-Chantar ML, Maratos-Flier E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010;139:456–463.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
Varela-Rey, M.4
Crawley, M.5
Fisher, F.M.6
Badman, M.K.7
Martinez-Chantar, M.L.8
Maratos-Flier, E.9
-
36
-
-
69949107891
-
Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man
-
Christodoulides C, Dyson P, Sprecher D, Tsintzas K, Karpe F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. J Clin Endocrinol Metab 2009;94:3594–3601.
-
(2009)
J Clin Endocrinol Metab
, vol.94
, pp. 3594-3601
-
-
Christodoulides, C.1
Dyson, P.2
Sprecher, D.3
Tsintzas, K.4
Karpe, F.5
-
37
-
-
79960947880
-
Paradoxical regulation of human FGF21 by both fasting and feeding signals: Is FGF21 a nutritional adaptation factor?
-
Uebanso T, Taketani Y, Yamamoto H, Amo K, Ominami H, Arai H, Takei Y, Masuda M, Tanimura A, Harada N, Yamanaka-Okumura H, Takeda E. Paradoxical regulation of human FGF21 by both fasting and feeding signals: Is FGF21 a nutritional adaptation factor? PLoS One 2011;6:e22976.
-
(2011)
PLoS One
, vol.6
-
-
Uebanso, T.1
Taketani, Y.2
Yamamoto, H.3
Amo, K.4
Ominami, H.5
Arai, H.6
Takei, Y.7
Masuda, M.8
Tanimura, A.9
Harada, N.10
Yamanaka-Okumura, H.11
Takeda, E.12
-
38
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009;150:4931–4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
39
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta Y, Nakamura H, Konishi M, Murata Y, Takagi H, Matsumura S, Inoue K, Fushiki T, Itoh N. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 2009;150:4625–4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
Murata, Y.4
Takagi, H.5
Matsumura, S.6
Inoue, K.7
Fushiki, T.8
Itoh, N.9
-
40
-
-
84907015381
-
FGF21 is an endocrine signal of protein restriction
-
Laeger T, Henagan TM, Albarado DC, Redman LM, Bray GA, Noland RC, Munzberg H, Hutson SM, Gettys TW, Schwartz MW, Morrison CD. FGF21 is an endocrine signal of protein restriction. J Clin Invest 2014;124:3913–3922.
-
(2014)
J Clin Invest
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
Henagan, T.M.2
Albarado, D.C.3
Redman, L.M.4
Bray, G.A.5
Noland, R.C.6
Munzberg, H.7
Hutson, S.M.8
Gettys, T.W.9
Schwartz, M.W.10
Morrison, C.D.11
-
41
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, Villarroya F. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem 2011;286:12983–12990.
-
(2011)
J Biol Chem
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
Gonzalez, F.J.4
Giralt, M.5
Mampel, T.6
Villarroya, F.7
-
42
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 2011;17:736–740.
-
(2011)
Mol Med
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
43
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 2012;26:271–281.
-
(2012)
Genes Dev
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
Spiegelman, B.M.11
-
44
-
-
84872070199
-
Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis
-
Lee P, Brychta RJ, Linderman J, Smith S, Chen KY, Celi FS. Mild cold exposure modulates fibroblast growth factor 21 (FGF21) diurnal rhythm in humans: relationship between FGF21 levels, lipolysis, and cold-induced thermogenesis. J Clin Endocrinol Metab 2013;98:E98–102.
-
(2013)
J Clin Endocrinol Metab
, vol.98
, pp. 98-102
-
-
Lee, P.1
Brychta, R.J.2
Linderman, J.3
Smith, S.4
Chen, K.Y.5
Celi, F.S.6
-
45
-
-
84929415426
-
Serum FGF21 levels are associated with brown adipose tissue activity in humans
-
Hanssen MJ, Broeders E, Samms RJ, Vosselman MJ, van der Lans AA, Cheng CC, Adams AC, van Marken Lichtenbelt WD, Schrauwen P. Serum FGF21 levels are associated with brown adipose tissue activity in humans. Sci Rep 2015;5:10275.
-
(2015)
Sci Rep
, vol.5
, pp. 10275
-
-
Hanssen, M.J.1
Broeders, E.2
Samms, R.J.3
Vosselman, M.J.4
van der Lans, A.A.5
Cheng, C.C.6
Adams, A.C.7
van Marken Lichtenbelt, W.D.8
Schrauwen, P.9
-
46
-
-
84893452569
-
Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans
-
Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, Perron RM, Werner CD, Phan GQ, Kammula US, Kebebew E, Pacak K, Chen KY, Celi FS. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab 2014;19:302–309.
-
(2014)
Cell Metab
, vol.19
, pp. 302-309
-
-
Lee, P.1
Linderman, J.D.2
Smith, S.3
Brychta, R.J.4
Wang, J.5
Idelson, C.6
Perron, R.M.7
Werner, C.D.8
Phan, G.Q.9
Kammula, U.S.10
Kebebew, E.11
Pacak, K.12
Chen, K.Y.13
Celi, F.S.14
-
47
-
-
84864283300
-
Muscles, exercise and obesity: Skeletal muscle as a secretory organ
-
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat Rev Endocrinol 2012;8:457–465.
-
(2012)
Nat Rev Endocrinol
, vol.8
, pp. 457-465
-
-
Pedersen, B.K.1
Febbraio, M.A.2
-
48
-
-
73249138414
-
Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia
-
Hojman P, Pedersen M, Nielsen AR, Krogh-Madsen R, Yfanti C, Akerstrom T, Nielsen S, Pedersen BK. Fibroblast growth factor-21 is induced in human skeletal muscles by hyperinsulinemia. Diabetes 2009;58:2797–2801.
-
(2009)
Diabetes
, vol.58
, pp. 2797-2801
-
-
Hojman, P.1
Pedersen, M.2
Nielsen, A.R.3
Krogh-Madsen, R.4
Yfanti, C.5
Akerstrom, T.6
Nielsen, S.7
Pedersen, B.K.8
-
49
-
-
79952120254
-
Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity
-
Mashili FL, Austin RL, Deshmukh AS, Fritz T, Caidahl K, Bergdahl K, Zierath JR, Chibalin AV, Moller DE, Kharitonenkov A, Krook A. Direct effects of FGF21 on glucose uptake in human skeletal muscle: Implications for type 2 diabetes and obesity. Diabetes Metab Res Rev 2011;27:286–297.
-
(2011)
Diabetes Metab Res Rev
, vol.27
, pp. 286-297
-
-
Mashili, F.L.1
Austin, R.L.2
Deshmukh, A.S.3
Fritz, T.4
Caidahl, K.5
Bergdahl, K.6
Zierath, J.R.7
Chibalin, A.V.8
Moller, D.E.9
Kharitonenkov, A.10
Krook, A.11
-
50
-
-
84907211065
-
FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling
-
Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J 2014;463:191–199.
-
(2014)
Biochem J
, vol.463
, pp. 191-199
-
-
Ribas, F.1
Villarroya, J.2
Hondares, E.3
Giralt, M.4
Villarroya, F.5
-
51
-
-
54849438574
-
FGF21 is an Akt-regulated myokine
-
Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K. FGF21 is an Akt-regulated myokine. FEBS Lett 2008;582:3805–3810.
-
(2008)
FEBS Lett
, vol.582
, pp. 3805-3810
-
-
Izumiya, Y.1
Bina, H.A.2
Ouchi, N.3
Akasaki, Y.4
Kharitonenkov, A.5
Walsh, K.6
-
52
-
-
84877149547
-
Acute exercise induces FGF21 expression in mice and in healthy humans
-
Kim KH, Kim SH, Min YK, Yang HM, Lee JB, Lee MS. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One 2013;8:e63517.
-
(2013)
PLoS One
, vol.8
-
-
Kim, K.H.1
Kim, S.H.2
Min, Y.K.3
Yang, H.M.4
Lee, J.B.5
Lee, M.S.6
-
53
-
-
84861655836
-
Exercise increases serum fibroblast growth factor 21 (FGF21) levels
-
Cuevas-Ramos D, Almeda-Valdes P, Meza-Arana CE, Brito-Cordova G, Gomez-Perez FJ, Mehta R, Oseguera-Moguel J, Aguilar-Salinas CA. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One 2012;7:e38022.
-
(2012)
PLoS One
, vol.7
-
-
Cuevas-Ramos, D.1
Almeda-Valdes, P.2
Meza-Arana, C.E.3
Brito-Cordova, G.4
Gomez-Perez, F.J.5
Mehta, R.6
Oseguera-Moguel, J.7
Aguilar-Salinas, C.A.8
-
54
-
-
84862928486
-
Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes
-
Xiao Y, Xu A, Law LS, Chen C, Li H, Li X, Yang L, Liu S, Zhou Z, Lam KS. Distinct changes in serum fibroblast growth factor 21 levels in different subtypes of diabetes. J Clin Endocrinol Metab 2012;97:E54–58.
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. 54-58
-
-
Xiao, Y.1
Xu, A.2
Law, L.S.3
Chen, C.4
Li, H.5
Li, X.6
Yang, L.7
Liu, S.8
Zhou, Z.9
Lam, K.S.10
-
55
-
-
84925728502
-
Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls
-
Zibar K, Blaslov K, Bulum T, Cuca JK, Smircic-Duvnjak L. Basal and postprandial change in serum fibroblast growth factor-21 concentration in type 1 diabetic mellitus and in healthy controls. Endocrine 2015;48:848–855.
-
(2015)
Endocrine
, vol.48
, pp. 848-855
-
-
Zibar, K.1
Blaslov, K.2
Bulum, T.3
Cuca, J.K.4
Smircic-Duvnjak, L.5
-
56
-
-
84921325509
-
Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function
-
Kim JH, Bae KH, Choi YK, Go Y, Choe M, Jeon YH, Lee HW, Koo SH, Perfield JW, 2nd, Harris RA, Lee IK, Park KG. Fibroblast growth factor 21 analogue LY2405319 lowers blood glucose in streptozotocin-induced insulin-deficient diabetic mice by restoring brown adipose tissue function. Diabetes Obes Metab 2015;17:161–169.
-
(2015)
Diabetes Obes Metab
, vol.17
, pp. 161-169
-
-
Kim, J.H.1
Bae, K.H.2
Choi, Y.K.3
Go, Y.4
Choe, M.5
Jeon, Y.H.6
Lee, H.W.7
Koo, S.H.8
Perfield, J.W.9
Harris, R.A.10
Lee, I.K.11
Park, K.G.12
-
57
-
-
70350093621
-
Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice
-
Johnson CL, Weston JY, Chadi SA, Fazio EN, Huff MW, Kharitonenkov A, Koester A, Pin CL. Fibroblast growth factor 21 reduces the severity of cerulein-induced pancreatitis in mice. Gastroenterology 2009;137:1795–1804.
-
(2009)
Gastroenterology
, vol.137
, pp. 1795-1804
-
-
Johnson, C.L.1
Weston, J.Y.2
Chadi, S.A.3
Fazio, E.N.4
Huff, M.W.5
Kharitonenkov, A.6
Koester, A.7
Pin, C.L.8
-
58
-
-
84900551689
-
Silencing of the fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1
-
Johnson CL, Mehmood R, Laing SW, Stepniak CV, Kharitonenkov A, Pin CL. Silencing of the fibroblast growth factor 21 gene is an underlying cause of acinar cell injury in mice lacking MIST1. Am J Physiol Endocrinol Metab 2014;306:E916–928.
-
(2014)
Am J Physiol Endocrinol Metab
, vol.306
, pp. 916-928
-
-
Johnson, C.L.1
Mehmood, R.2
Laing, S.W.3
Stepniak, C.V.4
Kharitonenkov, A.5
Pin, C.L.6
-
59
-
-
77957376253
-
Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer K, Bookout AL, Ding X, Kurosu H, John GB, Wang L, Goetz R, Mohammadi M, Kuro-o M, Mangelsdorf DJ, Kliewer SA. Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol 2010;24:2050–2064.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
Kurosu, H.4
John, G.B.5
Wang, L.6
Goetz, R.7
Mohammadi, M.8
Kuro-o, M.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
-
60
-
-
78049297991
-
Obesity is a fibroblast growth factor 21 (FGF21)-resistant state
-
Fisher FM, Chui PC, Antonellis PJ, Bina HA, Kharitonenkov A, Flier JS, Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010;59:2781–2789.
-
(2010)
Diabetes
, vol.59
, pp. 2781-2789
-
-
Fisher, F.M.1
Chui, P.C.2
Antonellis, P.J.3
Bina, H.A.4
Kharitonenkov, A.5
Flier, J.S.6
Maratos-Flier, E.7
-
61
-
-
48349146527
-
Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
-
Zhang X, Yeung DC, Karpisek M, Stejskal D, Zhou ZG, Liu F, Wong RL, Chow WS, Tso AW, Lam KS, Xu A. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 2008;57:1246–1253.
-
(2008)
Diabetes
, vol.57
, pp. 1246-1253
-
-
Zhang, X.1
Yeung, D.C.2
Karpisek, M.3
Stejskal, D.4
Zhou, Z.G.5
Liu, F.6
Wong, R.L.7
Chow, W.S.8
Tso, A.W.9
Lam, K.S.10
Xu, A.11
-
62
-
-
84891684837
-
High glucose represses beta-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling
-
So WY, Cheng Q, Chen L, Evans-Molina C, Xu A, Lam KS, Leung PS. High glucose represses beta-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor gamma signaling. Diabetes 2013;62:3751–3759.
-
(2013)
Diabetes
, vol.62
, pp. 3751-3759
-
-
So, W.Y.1
Cheng, Q.2
Chen, L.3
Evans-Molina, C.4
Xu, A.5
Lam, K.S.6
Leung, P.S.7
-
63
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C, Chen MM, Stanislaus S, Chinookoswong N, Hager T, Wang M, Veniant MM, Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 2012;153:69–80.
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
Chinookoswong, N.4
Hager, T.5
Wang, M.6
Veniant, M.M.7
Xu, J.8
-
64
-
-
84861996283
-
Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: A longitudinal analysis
-
Reinehr T, Woelfle J, Wunsch R, Roth CL. Fibroblast growth factor 21 (FGF-21) and its relation to obesity, metabolic syndrome, and nonalcoholic fatty liver in children: A longitudinal analysis. J Clin Endocrinol Metab 2012;97:2143–2150.
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. 2143-2150
-
-
Reinehr, T.1
Woelfle, J.2
Wunsch, R.3
Roth, C.L.4
-
65
-
-
68149091653
-
Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance
-
Chavez AO, Molina-Carrion M, Abdul-Ghani MA, Folli F, Defronzo RA, Tripathy D. Circulating fibroblast growth factor-21 is elevated in impaired glucose tolerance and type 2 diabetes and correlates with muscle and hepatic insulin resistance. Diabetes Care 2009;32:1542–1546.
-
(2009)
Diabetes Care
, vol.32
, pp. 1542-1546
-
-
Chavez, A.O.1
Molina-Carrion, M.2
Abdul-Ghani, M.A.3
Folli, F.4
Defronzo, R.A.5
Tripathy, D.6
-
66
-
-
84859531060
-
Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: The Baltimore longitudinal study of aging
-
Semba RD, Sun K, Egan JM, Crasto C, Carlson OD, Ferrucci L. Relationship of serum fibroblast growth factor 21 with abnormal glucose metabolism and insulin resistance: The Baltimore longitudinal study of aging. J Clin Endocrinol Metab 2012;97:1375–1382.
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. 1375-1382
-
-
Semba, R.D.1
Sun, K.2
Egan, J.M.3
Crasto, C.4
Carlson, O.D.5
Ferrucci, L.6
-
67
-
-
84855473367
-
High plasma level of fibroblast growth factor 21 is an independent predictor of type 2 diabetes: A 5.4-year population-based prospective study in Chinese subjects
-
Chen C, Cheung BM, Tso AW, Wang Y, Law LS, Ong KL, Wat NM, Xu A, Lam KS. High plasma level of fibroblast growth factor 21 is an independent predictor of type 2 diabetes: A 5.4-year population-based prospective study in Chinese subjects. Diabetes Care 2011;34:2113–2115.
-
(2011)
Diabetes Care
, vol.34
, pp. 2113-2115
-
-
Chen, C.1
Cheung, B.M.2
Tso, A.W.3
Wang, Y.4
Law, L.S.5
Ong, K.L.6
Wat, N.M.7
Xu, A.8
Lam, K.S.9
-
68
-
-
80055055627
-
Effects of short-term continuous subcutaneous insulin infusion on fasting plasma fibroblast growth factor-21 levels in patients with newly diagnosed type 2 diabetes mellitus
-
Yang M, Dong J, Liu H, Li L, Yang G. Effects of short-term continuous subcutaneous insulin infusion on fasting plasma fibroblast growth factor-21 levels in patients with newly diagnosed type 2 diabetes mellitus. PLoS One 2011;6:e26359.
-
(2011)
PLoS One
, vol.6
-
-
Yang, M.1
Dong, J.2
Liu, H.3
Li, L.4
Yang, G.5
-
69
-
-
84885039863
-
Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors
-
Chow WS, Xu A, Woo YC, Tso AW, Cheung SC, Fong CH, Tse HF, Chau MT, Cheung BM, Lam KS. Serum fibroblast growth factor-21 levels are associated with carotid atherosclerosis independent of established cardiovascular risk factors. Arterioscler Thromb Vasc Biol 2013;33:2454–2459.
-
(2013)
Arterioscler Thromb Vasc Biol
, vol.33
, pp. 2454-2459
-
-
Chow, W.S.1
Xu, A.2
Woo, Y.C.3
Tso, A.W.4
Cheung, S.C.5
Fong, C.H.6
Tse, H.F.7
Chau, M.T.8
Cheung, B.M.9
Lam, K.S.10
-
70
-
-
78650850911
-
Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile
-
Lin Z, Wu Z, Yin X, Liu Y, Yan X, Lin S, Xiao J, Wang X, Feng W, Li X. Serum levels of FGF-21 are increased in coronary heart disease patients and are independently associated with adverse lipid profile. PLoS One 2010;5:e15534.
-
(2010)
PLoS One
, vol.5
-
-
Lin, Z.1
Wu, Z.2
Yin, X.3
Liu, Y.4
Yan, X.5
Lin, S.6
Xiao, J.7
Wang, X.8
Feng, W.9
Li, X.10
-
71
-
-
79954525448
-
Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese
-
Lin Z, Zhou Z, Liu Y, Gong Q, Yan X, Xiao J, Wang X, Lin S, Feng W, Li X. Circulating FGF21 levels are progressively increased from the early to end stages of chronic kidney diseases and are associated with renal function in Chinese. PLoS One 2011;6:e18398.
-
(2011)
PLoS One
, vol.6
-
-
Lin, Z.1
Zhou, Z.2
Liu, Y.3
Gong, Q.4
Yan, X.5
Xiao, J.6
Wang, X.7
Lin, S.8
Feng, W.9
Li, X.10
-
72
-
-
84927596453
-
Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria
-
Lee CH, Hui EY, Woo YC, Yeung CY, Chow WS, Yuen MM, Fong CH, Xu A, Lam KS. Circulating fibroblast growth factor 21 levels predict progressive kidney disease in subjects with type 2 diabetes and normoalbuminuria. J Clin Endocrinol Metab 2015;100:1368–1375.
-
(2015)
J Clin Endocrinol Metab
, vol.100
, pp. 1368-1375
-
-
Lee, C.H.1
Hui, E.Y.2
Woo, Y.C.3
Yeung, C.Y.4
Chow, W.S.5
Yuen, M.M.6
Fong, C.H.7
Xu, A.8
Lam, K.S.9
-
73
-
-
79955052166
-
Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis
-
Dasarathy S, Yang Y, McCullough AJ, Marczewski S, Bennett C, Kalhan SC. Elevated hepatic fatty acid oxidation, high plasma fibroblast growth factor 21, and fasting bile acids in nonalcoholic steatohepatitis. Eur J Gastroenterol Hepatol 2011;23:382–388.
-
(2011)
Eur J Gastroenterol Hepatol
, vol.23
, pp. 382-388
-
-
Dasarathy, S.1
Yang, Y.2
McCullough, A.J.3
Marczewski, S.4
Bennett, C.5
Kalhan, S.C.6
-
74
-
-
77957359658
-
Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride
-
Li H, Fang Q, Gao F, Fan J, Zhou J, Wang X, Zhang H, Pan X, Bao Y, Xiang K, Xu A, Jia W. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol 2010;53:934–940.
-
(2010)
J Hepatol
, vol.53
, pp. 934-940
-
-
Li, H.1
Fang, Q.2
Gao, F.3
Fan, J.4
Zhou, J.5
Wang, X.6
Zhang, H.7
Pan, X.8
Bao, Y.9
Xiang, K.10
Xu, A.11
Jia, W.12
-
75
-
-
77956519052
-
Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease
-
Yilmaz Y, Eren F, Yonal O, Kurt R, Aktas B, Celikel CA, Ozdogan O, Imeryuz N, Kalayci C, Avsar E. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest 2010;40:887–892.
-
(2010)
Eur J Clin Invest
, vol.40
, pp. 887-892
-
-
Yilmaz, Y.1
Eren, F.2
Yonal, O.3
Kurt, R.4
Aktas, B.5
Celikel, C.A.6
Ozdogan, O.7
Imeryuz, N.8
Kalayci, C.9
Avsar, E.10
-
76
-
-
69249093921
-
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
-
Berglund ED, Li CY, Bina HA, Lynes SE, Michael MD, Shanafelt AB, Kharitonenkov A, Wasserman DH. Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 2009;150:4084–4093.
-
(2009)
Endocrinology
, vol.150
, pp. 4084-4093
-
-
Berglund, E.D.1
Li, C.Y.2
Bina, H.A.3
Lynes, S.E.4
Michael, M.D.5
Shanafelt, A.B.6
Kharitonenkov, A.7
Wasserman, D.H.8
-
77
-
-
80053428117
-
Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes
-
Ge X, Chen C, Hui X, Wang Y, Lam KS, Xu A. Fibroblast growth factor 21 induces glucose transporter-1 expression through activation of the serum response factor/Ets-like protein-1 in adipocytes. J Biol Chem 2011;286:34533–34541.
-
(2011)
J Biol Chem
, vol.286
, pp. 34533-34541
-
-
Ge, X.1
Chen, C.2
Hui, X.3
Wang, Y.4
Lam, K.S.5
Xu, A.6
-
78
-
-
84865422329
-
TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway
-
Diaz-Delfin J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-alpha represses beta-Klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway. Endocrinology 2012;153:4238–4245.
-
(2012)
Endocrinology
, vol.153
, pp. 4238-4245
-
-
Diaz-Delfin, J.1
Hondares, E.2
Iglesias, R.3
Giralt, M.4
Caelles, C.5
Villarroya, F.6
-
79
-
-
70350455732
-
Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects
-
Xu J, Stanislaus S, Chinookoswong N, Lau YY, Hager T, Patel J, Ge H, Weiszmann J, Lu SC, Graham M, Busby J, Hecht R, Li YS, Li Y, Lindberg R, Veniant MM. Acute glucose-lowering and insulin-sensitizing action of FGF21 in insulin-resistant mouse models-association with liver and adipose tissue effects. Am J Physiol Endocrinol Metab 2009;297:E1105–1114.
-
(2009)
Am J Physiol Endocrinol Metab
, vol.297
, pp. 1105-1114
-
-
Xu, J.1
Stanislaus, S.2
Chinookoswong, N.3
Lau, Y.Y.4
Hager, T.5
Patel, J.6
Ge, H.7
Weiszmann, J.8
Lu, S.C.9
Graham, M.10
Busby, J.11
Hecht, R.12
Li, Y.S.13
Li, Y.14
Lindberg, R.15
Veniant, M.M.16
-
80
-
-
84919615360
-
Metformin: From mechanisms of action to therapies
-
Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B. Metformin: From mechanisms of action to therapies. Cell Metab 2014;20:953–966.
-
(2014)
Cell Metab
, vol.20
, pp. 953-966
-
-
Foretz, M.1
Guigas, B.2
Bertrand, L.3
Pollak, M.4
Viollet, B.5
-
81
-
-
84869002483
-
Metformin stimulates FGF21 expression in primary hepatocytes
-
Nygaard EB, Vienberg SG, Orskov C, Hansen HS, Andersen B. Metformin stimulates FGF21 expression in primary hepatocytes. Exp Diabetes Res 2012;2012:465282.
-
(2012)
Exp Diabetes Res
, vol.2012
, pp. 465282
-
-
Nygaard, E.B.1
Vienberg, S.G.2
Orskov, C.3
Hansen, H.S.4
Andersen, B.5
-
82
-
-
84885383560
-
Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation
-
Kim KH, Jeong YT, Kim SH, Jung HS, Park KS, Lee HY, Lee MS. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation. Biochem Biophys Res Commun 2013;440:76–81.
-
(2013)
Biochem Biophys Res Commun
, vol.440
, pp. 76-81
-
-
Kim, K.H.1
Jeong, Y.T.2
Kim, S.H.3
Jung, H.S.4
Park, K.S.5
Lee, H.Y.6
Lee, M.S.7
-
83
-
-
84880469413
-
Changes of plasma fibroblast growth factor-21 (FGF-21) in oral glucose tolerance test and effects of metformin on FGF-21 levels in type 2 diabetes mellitus
-
Zhang M, Liu Y, Xiong ZY, Deng ZY, Song HL, An ZM. Changes of plasma fibroblast growth factor-21 (FGF-21) in oral glucose tolerance test and effects of metformin on FGF-21 levels in type 2 diabetes mellitus. Endokrynol Pol 2013;64:220–224.
-
(2013)
Endokrynol Pol
, vol.64
, pp. 220-224
-
-
Zhang, M.1
Liu, Y.2
Xiong, Z.Y.3
Deng, Z.Y.4
Song, H.L.5
An, Z.M.6
-
84
-
-
84927106867
-
Effects of lifestyle modification and metformin on irisin and FGF21 among HIV-infected subjects with the metabolic syndrome
-
Srinivasa S, Wong K, Fitch KV, Wei J, Petrow E, Cypess AM, Torriani M, Grinspoon SK. Effects of lifestyle modification and metformin on irisin and FGF21 among HIV-infected subjects with the metabolic syndrome. Clin Endocrinol (Oxf) 2015;82:678–685.
-
(2015)
Clin Endocrinol (Oxf)
, vol.82
, pp. 678-685
-
-
Srinivasa, S.1
Wong, K.2
Fitch, K.V.3
Wei, J.4
Petrow, E.5
Cypess, A.M.6
Torriani, M.7
Grinspoon, S.K.8
-
85
-
-
84870054636
-
GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus
-
Meier JJ. GLP-1 receptor agonists for individualized treatment of type 2 diabetes mellitus. Nat Rev Endocrinol 2012;8:728–742.
-
(2012)
Nat Rev Endocrinol
, vol.8
, pp. 728-742
-
-
Meier, J.J.1
-
86
-
-
84904399681
-
Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis
-
Lee J, Hong SW, Park SE, Rhee EJ, Park CY, Oh KW, Park SW, Lee WY. Exendin-4 regulates lipid metabolism and fibroblast growth factor 21 in hepatic steatosis. Metabolism 2014;63:1041–1048.
-
(2014)
Metabolism
, vol.63
, pp. 1041-1048
-
-
Lee, J.1
Hong, S.W.2
Park, S.E.3
Rhee, E.J.4
Park, C.Y.5
Oh, K.W.6
Park, S.W.7
Lee, W.Y.8
-
87
-
-
82455212124
-
Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial
-
Samson SL, Sathyanarayana P, Jogi M, Gonzalez EV, Gutierrez A, Krishnamurthy R, Muthupillai R, Chan L, Bajaj M. Exenatide decreases hepatic fibroblast growth factor 21 resistance in non-alcoholic fatty liver disease in a mouse model of obesity and in a randomised controlled trial. Diabetologia 2011;54:3093–3100.
-
(2011)
Diabetologia
, vol.54
, pp. 3093-3100
-
-
Samson, S.L.1
Sathyanarayana, P.2
Jogi, M.3
Gonzalez, E.V.4
Gutierrez, A.5
Krishnamurthy, R.6
Muthupillai, R.7
Chan, L.8
Bajaj, M.9
-
88
-
-
84869051421
-
Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance
-
Yang M, Zhang L, Wang C, Liu H, Boden G, Yang G, Li L. Liraglutide increases FGF-21 activity and insulin sensitivity in high fat diet and adiponectin knockdown induced insulin resistance. PLoS One 2012;7:e48392.
-
(2012)
PLoS One
, vol.7
-
-
Yang, M.1
Zhang, L.2
Wang, C.3
Liu, H.4
Boden, G.5
Yang, G.6
Li, L.7
-
89
-
-
84900030527
-
Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy mice
-
Nonogaki K, Hazama M, Satoh N. Liraglutide suppresses obesity and hyperglycemia associated with increases in hepatic fibroblast growth factor 21 production in KKAy mice. Biomed Res Int 2014;2014:751930.
-
(2014)
Biomed Res Int
, vol.2014
, pp. 751-930
-
-
Nonogaki, K.1
Hazama, M.2
Satoh, N.3
-
90
-
-
84895127938
-
SIRT1 metabolic actions: Integrating recent advances from mouse models
-
Boutant M, Canto C. SIRT1 metabolic actions: Integrating recent advances from mouse models. Mol Metab 2014;3:5–18.
-
(2014)
Mol Metab
, vol.3
, pp. 5-18
-
-
Boutant, M.1
Canto, C.2
-
91
-
-
36749087548
-
Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
-
Milne JC, Lambert PD, Schenk S, Carney DP, Smith JJ, Gagne DJ, Jin L, Boss O, Perni RB, Vu CB, Bemis JE, Xie R, Disch JS, Ng PY, Nunes JJ, Lynch AV, Yang H, Galonek H, Israelian K, Choy W, Iffland A, Lavu S, Medvedik O, Sinclair DA, Olefsky JM, Jirousek MR, Elliott PJ, Westphal CH. Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes. Nature 2007;450:712–716.
-
(2007)
Nature
, vol.450
, pp. 712-716
-
-
Milne, J.C.1
Lambert, P.D.2
Schenk, S.3
Carney, D.P.4
Smith, J.J.5
Gagne, D.J.6
Jin, L.7
Boss, O.8
Perni, R.B.9
Vu, C.B.10
Bemis, J.E.11
Xie, R.12
Disch, J.S.13
Ng, P.Y.14
Nunes, J.J.15
Lynch, A.V.16
Yang, H.17
Galonek, H.18
Israelian, K.19
Choy, W.20
Iffland, A.21
Lavu, S.22
Medvedik, O.23
Sinclair, D.A.24
Olefsky, J.M.25
Jirousek, M.R.26
Elliott, P.J.27
Westphal, C.H.28
more..
-
92
-
-
54849425547
-
Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
-
Feige JN, Lagouge M, Canto C, Strehle A, Houten SM, Milne JC, Lambert PD, Mataki C, Elliott PJ, Auwerx J. Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation. Cell Metab 2008;8:347–358.
-
(2008)
Cell Metab
, vol.8
, pp. 347-358
-
-
Feige, J.N.1
Lagouge, M.2
Canto, C.3
Strehle, A.4
Houten, S.M.5
Milne, J.C.6
Lambert, P.D.7
Mataki, C.8
Elliott, P.J.9
Auwerx, J.10
-
93
-
-
84937532659
-
Resveratrol and diabetes: From animal to human studies
-
Szkudelski T, Szkudelska K. Resveratrol and diabetes: From animal to human studies. Biochim Biophys Acta 2015;1852:1145–1154.
-
(2015)
Biochim Biophys Acta
, vol.1852
, pp. 1145-1154
-
-
Szkudelski, T.1
Szkudelska, K.2
-
94
-
-
63449112017
-
Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation
-
Purushotham A, Schug TT, Xu Q, Surapureddi S, Guo X, Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab 2009;9:327–338.
-
(2009)
Cell Metab
, vol.9
, pp. 327-338
-
-
Purushotham, A.1
Schug, T.T.2
Xu, Q.3
Surapureddi, S.4
Guo, X.5
Li, X.6
-
95
-
-
84892721345
-
Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21
-
Li Y, Wong K, Giles A, Jiang J, Lee JW, Adams AC, Kharitonenkov A, Yang Q, Gao B, Guarente L, Zang M. Hepatic SIRT1 attenuates hepatic steatosis and controls energy balance in mice by inducing fibroblast growth factor 21. Gastroenterology 2014;146:539–549 e537.
-
(2014)
Gastroenterology
, vol.146
, pp. 539-549
-
-
Li, Y.1
Wong, K.2
Giles, A.3
Jiang, J.4
Lee, J.W.5
Adams, A.C.6
Kharitonenkov, A.7
Yang, Q.8
Gao, B.9
Guarente, L.10
Zang, M.11
-
96
-
-
0032506273
-
Mechanism of action of fibrates on lipid and lipoprotein metabolism
-
Staels B, Dallongeville J, Auwerx J, Schoonjans K, Leitersdorf E, Fruchart JC. Mechanism of action of fibrates on lipid and lipoprotein metabolism. Circulation 1998;98:2088–2093.
-
(1998)
Circulation
, vol.98
, pp. 2088-2093
-
-
Staels, B.1
Dallongeville, J.2
Auwerx, J.3
Schoonjans, K.4
Leitersdorf, E.5
Fruchart, J.C.6
-
97
-
-
33748291464
-
Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets
-
Lalloyer F, Vandewalle B, Percevault F, Torpier G, Kerr-Conte J, Oosterveer M, Paumelle R, Fruchart JC, Kuipers F, Pattou F, Fievet C, Staels B. Peroxisome proliferator-activated receptor alpha improves pancreatic adaptation to insulin resistance in obese mice and reduces lipotoxicity in human islets. Diabetes 2006;55:1605–1613.
-
(2006)
Diabetes
, vol.55
, pp. 1605-1613
-
-
Lalloyer, F.1
Vandewalle, B.2
Percevault, F.3
Torpier, G.4
Kerr-Conte, J.5
Oosterveer, M.6
Paumelle, R.7
Fruchart, J.C.8
Kuipers, F.9
Pattou, F.10
Fievet, C.11
Staels, B.12
-
98
-
-
0023926655
-
Improvement of glucose tolerance in NIDDM by clofibrate: Randomized double-blind study
-
Kobayashi M, Shigeta Y, Hirata Y, Omori Y, Sakamoto N, Nambu S, Baba S. Improvement of glucose tolerance in NIDDM by clofibrate: Randomized double-blind study.Diabetes Care 1988;11:495–499.
-
(1988)
Diabetes Care
, vol.11
, pp. 495-499
-
-
Kobayashi, M.1
Shigeta, Y.2
Hirata, Y.3
Omori, Y.4
Sakamoto, N.5
Nambu, S.6
Baba, S.7
-
99
-
-
0017338020
-
Effects of short-term clofibrate administration on glucose tolerance and insulin secretion in patients with chemical diabetes or hypertriglyceridemia
-
Ferrari C, Frezzati S, Romussi M, Bertazzoni A, Testori GP, Antonini S, Paracchi A. Effects of short-term clofibrate administration on glucose tolerance and insulin secretion in patients with chemical diabetes or hypertriglyceridemia. Metabolism 1977;26:129–139.
-
(1977)
Metabolism
, vol.26
, pp. 129-139
-
-
Ferrari, C.1
Frezzati, S.2
Romussi, M.3
Bertazzoni, A.4
Testori, G.P.5
Antonini, S.6
Paracchi, A.7
-
100
-
-
84870750824
-
Long-term fenofibrate therapy increases fibroblast growth factor 21 and retinol-binding protein 4 in subjects with type 2 diabetes
-
Ong KL, Rye KA, O'Connell R, Jenkins AJ, Brown C, Xu A, Sullivan DR, Barter PJ, Keech AC. Long-term fenofibrate therapy increases fibroblast growth factor 21 and retinol-binding protein 4 in subjects with type 2 diabetes. J Clin Endocrinol Metab 2012;97:4701–4708.
-
(2012)
J Clin Endocrinol Metab
, vol.97
, pp. 4701-4708
-
-
Ong, K.L.1
Rye, K.A.2
O'Connell, R.3
Jenkins, A.J.4
Brown, C.5
Xu, A.6
Sullivan, D.R.7
Barter, P.J.8
Keech, A.C.9
-
101
-
-
47949111205
-
Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise ES, Azzolina B, Kuo DW, El-Sherbeini M, Tan Y, Yuan X, Mu J, Thompson JR, Berger JP, Wong KK. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 2008;74:403–412.
-
(2008)
Mol Pharmacol
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
Azzolina, B.2
Kuo, D.W.3
El-Sherbeini, M.4
Tan, Y.5
Yuan, X.6
Mu, J.7
Thompson, J.R.8
Berger, J.P.9
Wong, K.K.10
-
102
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak PA, Katafuchi T, Bookout AL, Choi JH, Yu RT, Mangelsdorf DJ, Kliewer SA. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012;148:556–567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
103
-
-
84883260199
-
Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones
-
Adams AC, Coskun T, Cheng CC, Ls OF, Dubois SL, Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab 2013;2:205–214.
-
(2013)
Mol Metab
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
Ls, O.F.4
Dubois, S.L.5
Kharitonenkov, A.6
-
104
-
-
38549092079
-
Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases
-
Kharitonenkov A, Shanafelt AB. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 2008;22:37–44.
-
(2008)
BioDrugs
, vol.22
, pp. 37-44
-
-
Kharitonenkov, A.1
Shanafelt, A.B.2
-
105
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A, Wroblewski VJ, Koester A, Chen YF, Clutinger CK, Tigno XT, Hansen BC, Shanafelt AB, Etgen GJ. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007;148:774–781.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
106
-
-
0033594980
-
A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: The PPARalpha-null mouse as a model of fatty acid oxidation disorders
-
Leone TC, Weinheimer CJ, Kelly DP. A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: The PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 1999;96:7473–7478.
-
(1999)
Proc Natl Acad Sci USA
, vol.96
, pp. 7473-7478
-
-
Leone, T.C.1
Weinheimer, C.J.2
Kelly, D.P.3
-
107
-
-
0032699670
-
Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting
-
Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 1999;103:1489–1498.
-
(1999)
J Clin Invest
, vol.103
, pp. 1489-1498
-
-
Kersten, S.1
Seydoux, J.2
Peters, J.M.3
Gonzalez, F.J.4
Desvergne, B.5
Wahli, W.6
-
108
-
-
84859529243
-
Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3
-
Li H, Gao Z, Zhang J, Ye X, Xu A, Ye J, Jia W. Sodium butyrate stimulates expression of fibroblast growth factor 21 in liver by inhibition of histone deacetylase 3. Diabetes 2012;61:797–806.
-
(2012)
Diabetes
, vol.61
, pp. 797-806
-
-
Li, H.1
Gao, Z.2
Zhang, J.3
Ye, X.4
Xu, A.5
Ye, J.6
Jia, W.7
-
109
-
-
84901944641
-
The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes
-
Perry RJ, Samuel VT, Petersen KF, Shulman GI. The role of hepatic lipids in hepatic insulin resistance and type 2 diabetes. Nature 2014;510:84–91.
-
(2014)
Nature
, vol.510
, pp. 84-91
-
-
Perry, R.J.1
Samuel, V.T.2
Petersen, K.F.3
Shulman, G.I.4
-
110
-
-
84883167011
-
Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice
-
Camporez JP, Jornayvaz FR, Petersen MC, Pesta D, Guigni BA, Serr J, Zhang D, Kahn M, Samuel VT, Jurczak MJ, Shulman GI. Cellular mechanisms by which FGF21 improves insulin sensitivity in male mice. Endocrinology 2013;154:3099–3109.
-
(2013)
Endocrinology
, vol.154
, pp. 3099-3109
-
-
Camporez, J.P.1
Jornayvaz, F.R.2
Petersen, M.C.3
Pesta, D.4
Guigni, B.A.5
Serr, J.6
Zhang, D.7
Kahn, M.8
Samuel, V.T.9
Jurczak, M.J.10
Shulman, G.I.11
-
111
-
-
0032610827
-
Effects of growth hormone on lipoprotein lipase and hepatic lipase
-
Oscarsson J, Ottosson M, Eden S. Effects of growth hormone on lipoprotein lipase and hepatic lipase. J Endocrinol Invest 1999;22:2–9.
-
(1999)
J Endocrinol Invest
, vol.22
, pp. 2-9
-
-
Oscarsson, J.1
Ottosson, M.2
Eden, S.3
-
112
-
-
0029881479
-
Two weeks of daily injections and continuous infusion of recombinant human growth hormone (GH) in GH-deficient adults. II. Effects on serum lipoproteins and lipoprotein and hepatic lipase activity
-
Oscarsson J, Ottosson M, Johansson JO, Wiklund O, Marin P, Bjorntorp P, Bengtsson BA. Two weeks of daily injections and continuous infusion of recombinant human growth hormone (GH) in GH-deficient adults. II. Effects on serum lipoproteins and lipoprotein and hepatic lipase activity. Metabolism 1996;45:370–377.
-
(1996)
Metabolism
, vol.45
, pp. 370-377
-
-
Oscarsson, J.1
Ottosson, M.2
Johansson, J.O.3
Wiklund, O.4
Marin, P.5
Bjorntorp, P.6
Bengtsson, B.A.7
-
113
-
-
0019970112
-
Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization
-
Rizza RA, Mandarino LJ, Gerich JE. Effects of growth hormone on insulin action in man. Mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 1982;31:663–669.
-
(1982)
Diabetes
, vol.31
, pp. 663-669
-
-
Rizza, R.A.1
Mandarino, L.J.2
Gerich, J.E.3
-
114
-
-
0022477133
-
Insulin resistance in acromegaly: Defects in both hepatic and extrahepatic insulin action
-
Hansen I, Tsalikian E, Beaufrere B, Gerich J, Haymond M, Rizza R. Insulin resistance in acromegaly: Defects in both hepatic and extrahepatic insulin action. Am J Physiol 1986;250:E269–273.
-
(1986)
Am J Physiol
, vol.250
, pp. 269-273
-
-
Hansen, I.1
Tsalikian, E.2
Beaufrere, B.3
Gerich, J.4
Haymond, M.5
Rizza, R.6
-
115
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki T, Lin VY, Goetz R, Mohammadi M, Mangelsdorf DJ, Kliewer SA. Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 2008;8:77–83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
Lin, V.Y.2
Goetz, R.3
Mohammadi, M.4
Mangelsdorf, D.J.5
Kliewer, S.A.6
-
117
-
-
84874933239
-
FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ciota/lambda
-
Kong LJ, Feng W, Wright M, Chen Y, Dallas-yang Q, Zhou YP, Berger JP. FGF21 suppresses hepatic glucose production through the activation of atypical protein kinase Ciota/lambda. Eur J Pharmacol 2013;702:302–308.
-
(2013)
Eur J Pharmacol
, vol.702
, pp. 302-308
-
-
Kong, L.J.1
Feng, W.2
Wright, M.3
Chen, Y.4
Dallas-yang, Q.5
Zhou, Y.P.6
Berger, J.P.7
-
118
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 2009;106:10853–10858.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
Inagaki, T.2
Satapati, S.3
Ding, X.4
He, T.5
Goetz, R.6
Mohammadi, M.7
Finck, B.N.8
Mangelsdorf, D.J.9
Kliewer, S.A.10
Burgess, S.C.11
-
119
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001;413:131–138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
120
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, Kharitonenkov A, Spiegelman BM, Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011;152:2996–3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
Antonellis, P.J.4
Bina, H.A.5
Flier, J.S.6
Kharitonenkov, A.7
Spiegelman, B.M.8
Maratos-Flier, E.9
-
121
-
-
84911917770
-
FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting
-
Liang Q, Zhong L, Zhang J, Wang Y, Bornstein SR, Triggle CR, Ding H, Lam KS, Xu A. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes 2014;63:4064–4075.
-
(2014)
Diabetes
, vol.63
, pp. 4064-4075
-
-
Liang, Q.1
Zhong, L.2
Zhang, J.3
Wang, Y.4
Bornstein, S.R.5
Triggle, C.R.6
Ding, H.7
Lam, K.S.8
Xu, A.9
-
122
-
-
0033595121
-
Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus
-
Shepherd PR, Kahn BB. Glucose transporters and insulin action–implications for insulin resistance and diabetes mellitus. N Engl J Med 1999;341:248–257.
-
(1999)
N Engl J Med
, vol.341
, pp. 248-257
-
-
Shepherd, P.R.1
Kahn, B.B.2
-
123
-
-
84909646839
-
Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes
-
Lee DV, Li D, Yan Q, Zhu Y, Goodwin B, Calle R, Brenner MB, Talukdar S. Fibroblast growth factor 21 improves insulin sensitivity and synergizes with insulin in human adipose stem cell-derived (hASC) adipocytes. PLoS One 2014;9:e111767.
-
(2014)
PLoS One
, vol.9
-
-
Lee, D.V.1
Li, D.2
Yan, Q.3
Zhu, Y.4
Goodwin, B.5
Calle, R.6
Brenner, M.B.7
Talukdar, S.8
-
124
-
-
43549110007
-
FGF21 attenuates lipolysis in human adipocytes – A possible link to improved insulin sensitivity
-
Arner P, Pettersson A, Mitchell PJ, Dunbar JD, Kharitonenkov A, Ryden M. FGF21 attenuates lipolysis in human adipocytes – A possible link to improved insulin sensitivity. FEBS Lett 2008;582:1725–1730.
-
(2008)
FEBS Lett
, vol.582
, pp. 1725-1730
-
-
Arner, P.1
Pettersson, A.2
Mitchell, P.J.3
Dunbar, J.D.4
Kharitonenkov, A.5
Ryden, M.6
-
125
-
-
70349472910
-
Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice
-
Li X, Ge H, Weiszmann J, Hecht R, Li YS, Veniant MM, Xu J, Wu X, Lindberg R, Li Y. Inhibition of lipolysis may contribute to the acute regulation of plasma FFA and glucose by FGF21 in ob/ob mice. FEBS Lett 2009;583:3230–3234.
-
(2009)
FEBS Lett
, vol.583
, pp. 3230-3234
-
-
Li, X.1
Ge, H.2
Weiszmann, J.3
Hecht, R.4
Li, Y.S.5
Veniant, M.M.6
Xu, J.7
Wu, X.8
Lindberg, R.9
Li, Y.10
-
126
-
-
0025052062
-
Effects of a growth hormone pulse on total and forearm substrate fluxes in humans
-
Moller N, Jorgensen JO, Schmitz O, Moller J, Christiansen J, Alberti KG, Orskov H. Effects of a growth hormone pulse on total and forearm substrate fluxes in humans. Am J Physiol 1990;258:E86–91.
-
(1990)
Am J Physiol
, vol.258
, pp. 86-91
-
-
Moller, N.1
Jorgensen, J.O.2
Schmitz, O.3
Moller, J.4
Christiansen, J.5
Alberti, K.G.6
Orskov, H.7
-
127
-
-
74649087362
-
Biological effects of growth hormone on carbohydrate and lipid metabolism
-
Vijayakumar A, Novosyadlyy R, Wu Y, Yakar S, LeRoith D. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Horm IGF Res 2010;20:1–7.
-
(2010)
Growth Horm IGF Res
, vol.20
, pp. 1-7
-
-
Vijayakumar, A.1
Novosyadlyy, R.2
Wu, Y.3
Yakar, S.4
LeRoith, D.5
-
128
-
-
0033213631
-
PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro
-
Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell 1999;4:611–617.
-
(1999)
Mol Cell
, vol.4
, pp. 611-617
-
-
Rosen, E.D.1
Sarraf, P.2
Troy, A.E.3
Bradwin, G.4
Moore, K.5
Milstone, D.S.6
Spiegelman, B.M.7
Mortensen, R.M.8
-
129
-
-
20944439189
-
Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance
-
Jones JR, Barrick C, Kim KA, Lindner J, Blondeau B, Fujimoto Y, Shiota M, Kesterson RA, Kahn BB, Magnuson MA. Deletion of PPARgamma in adipose tissues of mice protects against high fat diet-induced obesity and insulin resistance. Proc Natl Acad Sci USA 2005;102:6207–6212.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 6207-6212
-
-
Jones, J.R.1
Barrick, C.2
Kim, K.A.3
Lindner, J.4
Blondeau, B.5
Fujimoto, Y.6
Shiota, M.7
Kesterson, R.A.8
Kahn, B.B.9
Magnuson, M.A.10
-
130
-
-
0031898610
-
PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor
-
Spiegelman BM. PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 1998;47:507–514.
-
(1998)
Diabetes
, vol.47
, pp. 507-514
-
-
Spiegelman, B.M.1
-
131
-
-
0037732481
-
The adipocyte in insulin resistance: Key molecules and the impact of the thiazolidinediones
-
Arner P. The adipocyte in insulin resistance: Key molecules and the impact of the thiazolidinediones. Trends Endocrinol Metab 2003;14:137–145.
-
(2003)
Trends Endocrinol Metab
, vol.14
, pp. 137-145
-
-
Arner, P.1
-
132
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
-
Moyers JS, Shiyanova TL, Mehrbod F, Dunbar JD, Noblitt TW, Otto KA, Reifel-Miller A, Kharitonenkov A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. J Cell Physiol 2007;210:1–6.
-
(2007)
J Cell Physiol
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
133
-
-
84863116228
-
Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma
-
Wei W, Dutchak PA, Wang X, Ding X, Bookout AL, Goetz R, Mohammadi M, Gerard RD, Dechow PC, Mangelsdorf DJ, Kliewer SA, Wan Y. Fibroblast growth factor 21 promotes bone loss by potentiating the effects of peroxisome proliferator-activated receptor gamma. Proc Natl Acad Sci USA 2012;109:3143–3148.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. 3143-3148
-
-
Wei, W.1
Dutchak, P.A.2
Wang, X.3
Ding, X.4
Bookout, A.L.5
Goetz, R.6
Mohammadi, M.7
Gerard, R.D.8
Dechow, P.C.9
Mangelsdorf, D.J.10
Kliewer, S.A.11
Wan, Y.12
-
134
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z, Tian H, Lam KS, Lin S, Hoo RC, Konishi M, Itoh N, Wang Y, Bornstein SR, Xu A, Li X. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab 2013;17:779–789.
-
(2013)
Cell Metab
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
Lin, S.4
Hoo, R.C.5
Konishi, M.6
Itoh, N.7
Wang, Y.8
Bornstein, S.R.9
Xu, A.10
Li, X.11
-
135
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, Bui HH, Miyauchi Y, Kusminski CM, Bauer SM, Wade M, Singhal E, Cheng CC, Volk K, Kuo MS, Gordillo R, Kharitonenkov A, Scherer PE. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab 2013;17:790–797.
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
Bauer, S.M.7
Wade, M.8
Singhal, E.9
Cheng, C.C.10
Volk, K.11
Kuo, M.S.12
Gordillo, R.13
Kharitonenkov, A.14
Scherer, P.E.15
-
136
-
-
17944365228
-
The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity
-
Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N, Hara K, Mori Y, Ide T, Murakami K, Tsuboyama-Kasaoka N, Ezaki O, Akanuma Y, Gavrilova O, Vinson C, Reitman ML, Kagechika H, Shudo K, Yoda M, Nakano Y, Tobe K, Nagai R, Kimura S, Tomita M, Froguel P, Kadowaki T. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med 2001;7:941–946.
-
(2001)
Nat Med
, vol.7
, pp. 941-946
-
-
Yamauchi, T.1
Kamon, J.2
Waki, H.3
Terauchi, Y.4
Kubota, N.5
Hara, K.6
Mori, Y.7
Ide, T.8
Murakami, K.9
Tsuboyama-Kasaoka, N.10
Ezaki, O.11
Akanuma, Y.12
Gavrilova, O.13
Vinson, C.14
Reitman, M.L.15
Kagechika, H.16
Shudo, K.17
Yoda, M.18
Nakano, Y.19
Tobe, K.20
Nagai, R.21
Kimura, S.22
Tomita, M.23
Froguel, P.24
Kadowaki, T.25
more..
-
137
-
-
33646852805
-
Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways
-
Kubota N, Terauchi Y, Kubota T, Kumagai H, Itoh S, Satoh H, Yano W, Ogata H, Tokuyama K, Takamoto I, Mineyama T, Ishikawa M, Moroi M, Sugi K, Yamauchi T, Ueki K, Tobe K, Noda T, Nagai R, Kadowaki T. Pioglitazone ameliorates insulin resistance and diabetes by both adiponectin-dependent and -independent pathways. J Biol Chem 2006;281:8748–8755.
-
(2006)
J Biol Chem
, vol.281
, pp. 8748-8755
-
-
Kubota, N.1
Terauchi, Y.2
Kubota, T.3
Kumagai, H.4
Itoh, S.5
Satoh, H.6
Yano, W.7
Ogata, H.8
Tokuyama, K.9
Takamoto, I.10
Mineyama, T.11
Ishikawa, M.12
Moroi, M.13
Sugi, K.14
Yamauchi, T.15
Ueki, K.16
Tobe, K.17
Noda, T.18
Nagai, R.19
Kadowaki, T.20
more..
-
138
-
-
0042023742
-
Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity
-
Ryan AS, Berman DM, Nicklas BJ, Sinha M, Gingerich RL, Meneilly GS, Egan JM, Elahi D. Plasma adiponectin and leptin levels, body composition, and glucose utilization in adult women with wide ranges of age and obesity. Diabetes Care 2003;26:2383–2388.
-
(2003)
Diabetes Care
, vol.26
, pp. 2383-2388
-
-
Ryan, A.S.1
Berman, D.M.2
Nicklas, B.J.3
Sinha, M.4
Gingerich, R.L.5
Meneilly, G.S.6
Egan, J.M.7
Elahi, D.8
-
139
-
-
84906849978
-
Circulating adiponectin levels and risk of type 2 diabetes in the Japanese
-
Yamamoto S, Matsushita Y, Nakagawa T, Hayashi T, Noda M, Mizoue T. Circulating adiponectin levels and risk of type 2 diabetes in the Japanese. Nutr Diabetes 2014;4:e130.
-
(2014)
Nutr Diabetes
, vol.4
, pp. 130
-
-
Yamamoto, S.1
Matsushita, Y.2
Nakagawa, T.3
Hayashi, T.4
Noda, M.5
Mizoue, T.6
-
140
-
-
67650169799
-
Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis
-
Li S, Shin HJ, Ding EL, van Dam RM. Adiponectin levels and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA 2009;302:179–188.
-
(2009)
JAMA
, vol.302
, pp. 179-188
-
-
Li, S.1
Shin, H.J.2
Ding, E.L.3
van Dam, R.M.4
-
141
-
-
24744457984
-
Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation
-
Fu Y, Luo N, Klein RL, Garvey WT. Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J Lipid Res 2005;46:1369–1379.
-
(2005)
J Lipid Res
, vol.46
, pp. 1369-1379
-
-
Fu, Y.1
Luo, N.2
Klein, R.L.3
Garvey, W.T.4
-
142
-
-
64349105205
-
Identification and importance of brown adipose tissue in adult humans
-
Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, Kolodny GM, Kahn CR. Identification and importance of brown adipose tissue in adult humans. N Engl J Med 2009;360:1509–1517.
-
(2009)
N Engl J Med
, vol.360
, pp. 1509-1517
-
-
Cypess, A.M.1
Lehman, S.2
Williams, G.3
Tal, I.4
Rodman, D.5
Goldfine, A.B.6
Kuo, F.C.7
Palmer, E.L.8
Tseng, Y.H.9
Doria, A.10
Kolodny, G.M.11
Kahn, C.R.12
-
143
-
-
64349123664
-
Functional brown adipose tissue in healthy adults
-
Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, Nuutila P. Functional brown adipose tissue in healthy adults. N Engl J Med 2009;360:1518–1525.
-
(2009)
N Engl J Med
, vol.360
, pp. 1518-1525
-
-
Virtanen, K.A.1
Lidell, M.E.2
Orava, J.3
Heglind, M.4
Westergren, R.5
Niemi, T.6
Taittonen, M.7
Laine, J.8
Savisto, N.J.9
Enerback, S.10
Nuutila, P.11
-
144
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway
-
Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPK-SIRT1-PGC-1alpha pathway. Proc Natl Acad Sci USA 2010;107:12553–12558.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
145
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente W, Efanov AM, Brenner M, Kharitonenkov A, Koster A, Sandusky GE, Sewing S, Treinies I, Zitzer H, Gromada J. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 2006;55:2470–2478.
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
Efanov, A.M.2
Brenner, M.3
Kharitonenkov, A.4
Koster, A.5
Sandusky, G.E.6
Sewing, S.7
Treinies, I.8
Zitzer, H.9
Gromada, J.10
-
146
-
-
84965084321
-
Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice
-
So WY, Cheng Q, Xu A, Lam KSL, Leung PS. Loss of fibroblast growth factor 21 action induces insulin resistance, pancreatic islet hyperplasia and dysfunction in mice. Cell Death Dis 2015;6:e1707.
-
(2015)
Cell Death Dis
, vol.6
, pp. 1707
-
-
So, W.Y.1
Cheng, Q.2
Xu, A.3
Lam, K.S.L.4
Leung, P.S.5
-
147
-
-
0033811933
-
Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells
-
Dubois M, Pattou F, Kerr-Conte J, Gmyr V, Vandewalle B, Desreumaux P, Auwerx J, Schoonjans K, Lefebvre J. Expression of peroxisome proliferator-activated receptor gamma (PPARgamma) in normal human pancreatic islet cells. Diabetologia 2000;43:1165–1169.
-
(2000)
Diabetologia
, vol.43
, pp. 1165-1169
-
-
Dubois, M.1
Pattou, F.2
Kerr-Conte, J.3
Gmyr, V.4
Vandewalle, B.5
Desreumaux, P.6
Auwerx, J.7
Schoonjans, K.8
Lefebvre, J.9
-
148
-
-
57749098781
-
In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor gamma response element in the mouse pdx-1 promoter
-
Gupta D, Jetton TL, Mortensen RM, Duan SZ, Peshavaria M, Leahy JL. In vivo and in vitro studies of a functional peroxisome proliferator-activated receptor gamma response element in the mouse pdx-1 promoter. J Biol Chem 2008;283:32462–32470.
-
(2008)
J Biol Chem
, vol.283
, pp. 32462-32470
-
-
Gupta, D.1
Jetton, T.L.2
Mortensen, R.M.3
Duan, S.Z.4
Peshavaria, M.5
Leahy, J.L.6
-
149
-
-
18744385555
-
Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter
-
Im SS, Kim JW, Kim TH, Song XL, Kim SY, Kim HI, Ahn YH. Identification and characterization of peroxisome proliferator response element in the mouse GLUT2 promoter. Exp Mol Med 2005;37:101–110.
-
(2005)
Exp Mol Med
, vol.37
, pp. 101-110
-
-
Im, S.S.1
Kim, J.W.2
Kim, T.H.3
Song, X.L.4
Kim, S.Y.5
Kim, H.I.6
Ahn, Y.H.7
-
150
-
-
0842263985
-
Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells
-
Kim HI, Ahn YH. Role of peroxisome proliferator-activated receptor-gamma in the glucose-sensing apparatus of liver and beta-cells. Diabetes 2004;53(Suppl 1):S60–65.
-
(2004)
Diabetes
, vol.53
, pp. 60-65
-
-
Kim, H.I.1
Ahn, Y.H.2
-
151
-
-
77958569950
-
The role of peroxisome proliferator-activated receptor gamma in pancreatic beta cell function and survival: Therapeutic implications for the treatment of type 2 diabetes mellitus
-
Gupta D, Kono T, Evans-Molina C. The role of peroxisome proliferator-activated receptor gamma in pancreatic beta cell function and survival: Therapeutic implications for the treatment of type 2 diabetes mellitus. Diabetes Obes Metab 12:1036–1047.
-
Diabetes Obes Metab
, vol.12
, pp. 1036-1047
-
-
Gupta, D.1
Kono, T.2
Evans-Molina, C.3
-
152
-
-
33947149143
-
Beta-cell preservation with thiazolidinediones
-
Campbell IW, Mariz S. Beta-cell preservation with thiazolidinediones. Diabetes Res Clin Pract 2007;76:163–176.
-
(2007)
Diabetes Res Clin Pract
, vol.76
, pp. 163-176
-
-
Campbell, I.W.1
Mariz, S.2
-
153
-
-
84893045655
-
Insulin-resistance-associated compensatory mechanisms of pancreatic beta cells: A current opinion
-
Araujo TG, Oliveira AG, Saad MJ. Insulin-resistance-associated compensatory mechanisms of pancreatic beta cells: A current opinion. Front Endocrinol (Lausanne) 2013;4:146.
-
(2013)
Front Endocrinol (Lausanne)
, vol.4
, pp. 146
-
-
Araujo, T.G.1
Oliveira, A.G.2
Saad, M.J.3
-
154
-
-
0020640284
-
Multiple effects of growth hormone on insulin release from isolated pancreatic islets
-
Kawabe T, Morgan CR. Multiple effects of growth hormone on insulin release from isolated pancreatic islets. Metabolism 1983;32:728–731.
-
(1983)
Metabolism
, vol.32
, pp. 728-731
-
-
Kawabe, T.1
Morgan, C.R.2
-
155
-
-
0033011667
-
Beta cell proliferation and growth factors
-
Nielsen JH, Svensson C, Galsgaard ED, Moldrup A, Billestrup N. Beta cell proliferation and growth factors. J Mol Med (Berl) 1999;77:62–66.
-
(1999)
J Mol Med (Berl)
, vol.77
, pp. 62-66
-
-
Nielsen, J.H.1
Svensson, C.2
Galsgaard, E.D.3
Moldrup, A.4
Billestrup, N.5
-
156
-
-
0025954951
-
The stimulatory effect of growth hormone, prolactin, and placental lactogen on beta-cell proliferation is not mediated by insulin-like growth factor-I
-
Billestrup N, Nielsen JH. The stimulatory effect of growth hormone, prolactin, and placental lactogen on beta-cell proliferation is not mediated by insulin-like growth factor-I. Endocrinology 1991;129:883–888.
-
(1991)
Endocrinology
, vol.129
, pp. 883-888
-
-
Billestrup, N.1
Nielsen, J.H.2
-
157
-
-
0023898069
-
Growth hormone stimulates insulin gene expression in cultured human fetal pancreatic islets
-
Formby B, Ullrich A, Coussens L, Walker L, Peterson CM. Growth hormone stimulates insulin gene expression in cultured human fetal pancreatic islets. J Clin Endocrinol Metab 1988;66:1075–1079.
-
(1988)
J Clin Endocrinol Metab
, vol.66
, pp. 1075-1079
-
-
Formby, B.1
Ullrich, A.2
Coussens, L.3
Walker, L.4
Peterson, C.M.5
-
158
-
-
0018692485
-
Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review
-
Maack T, Johnson V, Kau ST, Figueiredo J, Sigulem D. Renal filtration, transport, and metabolism of low-molecular-weight proteins: a review. Kidney Int 1979;16:251–270.
-
(1979)
Kidney Int
, vol.16
, pp. 251-270
-
-
Maack, T.1
Johnson, V.2
Kau, S.T.3
Figueiredo, J.4
Sigulem, D.5
-
159
-
-
64549152937
-
Serum levels of the adipokine FGF21 depend on renal function
-
Stein S, Bachmann A, Lossner U, Kratzsch J, Bluher M, Stumvoll M, Fasshauer M. Serum levels of the adipokine FGF21 depend on renal function. Diabetes Care 2009;32:126–128.
-
(2009)
Diabetes Care
, vol.32
, pp. 126-128
-
-
Stein, S.1
Bachmann, A.2
Lossner, U.3
Kratzsch, J.4
Bluher, M.5
Stumvoll, M.6
Fasshauer, M.7
-
160
-
-
79958126904
-
A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol
-
Huang Z, Wang H, Lu M, Sun C, Wu X, Tan Y, Ye C, Zhu G, Wang X, Cai L, Li X. A better anti-diabetic recombinant human fibroblast growth factor 21 (rhFGF21) modified with polyethylene glycol. PLoS One 2011;6:e20669.
-
(2011)
PLoS One
, vol.6
-
-
Huang, Z.1
Wang, H.2
Lu, M.3
Sun, C.4
Wu, X.5
Tan, Y.6
Ye, C.7
Zhu, G.8
Wang, X.9
Cai, L.10
Li, X.11
-
161
-
-
84863011453
-
FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents
-
Mu J, Pinkstaff J, Li Z, Skidmore L, Li N, Myler H, Dallas-Yang Q, Putnam AM, Yao J, Bussell S, Wu M, Norman TC, Rodriguez CG, Kimmel B, Metzger JM, Manibusan A, Lee D, Zaller DM, Zhang BB, DiMarchi RD, Berger JP, Axelrod DW. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 2012;61:505–512.
-
(2012)
Diabetes
, vol.61
, pp. 505-512
-
-
Mu, J.1
Pinkstaff, J.2
Li, Z.3
Skidmore, L.4
Li, N.5
Myler, H.6
Dallas-Yang, Q.7
Putnam, A.M.8
Yao, J.9
Bussell, S.10
Wu, M.11
Norman, T.C.12
Rodriguez, C.G.13
Kimmel, B.14
Metzger, J.M.15
Manibusan, A.16
Lee, D.17
Zaller, D.M.18
Zhang, B.B.19
DiMarchi, R.D.20
Berger, J.P.21
Axelrod, D.W.22
more..
-
162
-
-
84920528486
-
Long-acting hypoglycemic effects of PEGylated FGF21 and insulin glargine in mice with type 1 diabetes
-
Xu P, Ye X, Zhang Y, Yuan Q, Liu M, Wu Q, Ren G, Li D. Long-acting hypoglycemic effects of PEGylated FGF21 and insulin glargine in mice with type 1 diabetes. J Diabetes Complications 2015;29:5–12.
-
(2015)
J Diabetes Complications
, vol.29
, pp. 5-12
-
-
Xu, P.1
Ye, X.2
Zhang, Y.3
Yuan, Q.4
Liu, M.5
Wu, Q.6
Ren, G.7
Li, D.8
-
163
-
-
0031946518
-
Short communication: Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins
-
Bendele A, Seely J, Richey C, Sennello G, Shopp G. Short communication: Renal tubular vacuolation in animals treated with polyethylene-glycol-conjugated proteins. Toxicol Sci. 1998;42:152–157.
-
(1998)
Toxicol Sci
, vol.42
, pp. 152-157
-
-
Bendele, A.1
Seely, J.2
Richey, C.3
Sennello, G.4
Shopp, G.5
-
164
-
-
33845938292
-
PEGylated proteins: Evaluation of their safety in the absence of definitive metabolism studies
-
Webster R, Didier E, Harris P, Siegel N, Stadler J, Tilbury L, Smith D. PEGylated proteins: Evaluation of their safety in the absence of definitive metabolism studies. Drug Metab Dispos 2007;35:9–16.
-
(2007)
Drug Metab Dispos
, vol.35
, pp. 9-16
-
-
Webster, R.1
Didier, E.2
Harris, P.3
Siegel, N.4
Stadler, J.5
Tilbury, L.6
Smith, D.7
-
165
-
-
84879389894
-
Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation
-
Xu J, Bussiere J, Yie J, Sickmier A, An P, Belouski E, Stanislaus S, Walker KW. Polyethylene glycol modified FGF21 engineered to maximize potency and minimize vacuole formation. Bioconjug Chem 2013;24:915–925.
-
(2013)
Bioconjug Chem
, vol.24
, pp. 915-925
-
-
Xu, J.1
Bussiere, J.2
Yie, J.3
Sickmier, A.4
An, P.5
Belouski, E.6
Stanislaus, S.7
Walker, K.W.8
-
166
-
-
84870278211
-
Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes
-
Hecht R, Li YS, Sun J, Belouski E, Hall M, Hager T, Yie J, Wang W, Winters D, Smith S, Spahr C, Tam LT, Shen Z, Stanislaus S, Chinookoswong N, Lau Y, Sickmier A, Michaels ML, Boone T, Veniant MM, Xu J. Rationale-based engineering of a potent long-acting FGF21 analog for the treatment of type 2 diabetes. PLoS One 2012;7:e49345.
-
(2012)
PLoS One
, vol.7
-
-
Hecht, R.1
Li, Y.S.2
Sun, J.3
Belouski, E.4
Hall, M.5
Hager, T.6
Yie, J.7
Wang, W.8
Winters, D.9
Smith, S.10
Spahr, C.11
Tam, L.T.12
Shen, Z.13
Stanislaus, S.14
Chinookoswong, N.15
Lau, Y.16
Sickmier, A.17
Michaels, M.L.18
Boone, T.19
Veniant, M.M.20
Xu, J.21
more..
-
167
-
-
84880426480
-
Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody
-
Huang J, Ishino T, Chen G, Rolzin P, Osothprarop TF, Retting K, Li L, Jin P, Matin MJ, Huyghe B, Talukdar S, Bradshaw CW, Palanki M, Violand BN, Woodnutt G, Lappe RW, Ogilvie K, Levin N. Development of a novel long-acting antidiabetic FGF21 mimetic by targeted conjugation to a scaffold antibody. J Pharmacol Exp Ther 2013;346:270–280.
-
(2013)
J Pharmacol Exp Ther
, vol.346
, pp. 270-280
-
-
Huang, J.1
Ishino, T.2
Chen, G.3
Rolzin, P.4
Osothprarop, T.F.5
Retting, K.6
Li, L.7
Jin, P.8
Matin, M.J.9
Huyghe, B.10
Talukdar, S.11
Bradshaw, C.W.12
Palanki, M.13
Violand, B.N.14
Woodnutt, G.15
Lappe, R.W.16
Ogilvie, K.17
Levin, N.18
-
168
-
-
83655165300
-
Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1
-
Wu AL, Kolumam G, Stawicki S, Chen Y, Li J, Zavala-Solorio J, Phamluong K, Feng B, Li L, Marsters S, Kates L, van Bruggen N, Leabman M, Wong A, West D, Stern H, Luis E, Kim HS, Yansura D, Peterson AS, Filvaroff E, Wu Y, Sonoda J. Amelioration of type 2 diabetes by antibody-mediated activation of fibroblast growth factor receptor 1. Sci Transl Med 2011;3:113ra126.
-
(2011)
Sci Transl Med
, vol.3
, pp. 113-126
-
-
Wu, A.L.1
Kolumam, G.2
Stawicki, S.3
Chen, Y.4
Li, J.5
Zavala-Solorio, J.6
Phamluong, K.7
Feng, B.8
Li, L.9
Marsters, S.10
Kates, L.11
van Bruggen, N.12
Leabman, M.13
Wong, A.14
West, D.15
Stern, H.16
Luis, E.17
Kim, H.S.18
Yansura, D.19
Peterson, A.S.20
Filvaroff, E.21
Wu, Y.22
Sonoda, J.23
more..
-
169
-
-
84870359606
-
Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex
-
Foltz IN, Hu S, King C, Wu X, Yang C, Wang W, Weiszmann J, Stevens J, Chen JS, Nuanmanee N, Gupte J, Komorowski R, Sekirov L, Hager T, Arora T, Ge H, Baribault H, Wang F, Sheng J, Karow M, Wang M, Luo Y, McKeehan W, Wang Z, Veniant MM, Li Y. Treating diabetes and obesity with an FGF21-mimetic antibody activating the betaKlotho/FGFR1c receptor complex. Sci Transl Med 2012;4:162ra153.
-
(2012)
Sci Transl Med
, vol.4
, pp. 153-162
-
-
Foltz, I.N.1
Hu, S.2
King, C.3
Wu, X.4
Yang, C.5
Wang, W.6
Weiszmann, J.7
Stevens, J.8
Chen, J.S.9
Nuanmanee, N.10
Gupte, J.11
Komorowski, R.12
Sekirov, L.13
Hager, T.14
Arora, T.15
Ge, H.16
Baribault, H.17
Wang, F.18
Sheng, J.19
Karow, M.20
Wang, M.21
Luo, Y.22
McKeehan, W.23
Wang, Z.24
Veniant, M.M.25
Li, Y.26
more..
-
170
-
-
84876452595
-
FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/beta-Klotho bispecific protein
-
Smith R, Duguay A, Bakker A, Li P, Weiszmann J, Thomas MR, Alba BM, Wu X, Gupte J, Yang L, Stevens J, Hamburger A, Smith S, Chen J, Komorowski R, Moore KW, Veniant MM, Li Y. FGF21 can be mimicked in vitro and in vivo by a novel anti-FGFR1c/beta-Klotho bispecific protein. PLoS One 2013;8:e61432.
-
(2013)
PLoS One
, vol.8
-
-
Smith, R.1
Duguay, A.2
Bakker, A.3
Li, P.4
Weiszmann, J.5
Thomas, M.R.6
Alba, B.M.7
Wu, X.8
Gupte, J.9
Yang, L.10
Stevens, J.11
Hamburger, A.12
Smith, S.13
Chen, J.14
Komorowski, R.15
Moore, K.W.16
Veniant, M.M.17
Li, Y.18
-
171
-
-
84877047337
-
A novel approach to improve the function of FGF21
-
Smith R, Duguay A, Weiszmann J, Stanislaus S, Belouski E, Cai L, Yie J, Xu J, Gupte J, Wu X, Li Y. A novel approach to improve the function of FGF21. BioDrugs 2013;27:159–166.
-
(2013)
BioDrugs
, vol.27
, pp. 159-166
-
-
Smith, R.1
Duguay, A.2
Weiszmann, J.3
Stanislaus, S.4
Belouski, E.5
Cai, L.6
Yie, J.7
Xu, J.8
Gupte, J.9
Wu, X.10
Li, Y.11
-
172
-
-
84874903440
-
Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319
-
Kharitonenkov A, Beals JM, Micanovic R, Strifler BA, Rathnachalam R, Wroblewski VJ, Li S, Koester A, Ford AM, Coskun T, Dunbar JD, Cheng CC, Frye CC, Bumol TF, Moller DE. Rational design of a fibroblast growth factor 21-based clinical candidate, LY2405319. PLoS One 2013;8:e58575.
-
(2013)
PLoS One
, vol.8
-
-
Kharitonenkov, A.1
Beals, J.M.2
Micanovic, R.3
Strifler, B.A.4
Rathnachalam, R.5
Wroblewski, V.J.6
Li, S.7
Koester, A.8
Ford, A.M.9
Coskun, T.10
Dunbar, J.D.11
Cheng, C.C.12
Frye, C.C.13
Bumol, T.F.14
Moller, D.E.15
-
173
-
-
84879187565
-
LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys
-
Adams AC, Halstead CA, Hansen BC, Irizarry AR, Martin JA, Myers SR, Reynolds VL, Smith HW, Wroblewski VJ, Kharitonenkov A. LY2405319, an engineered FGF21 variant, improves the metabolic status of diabetic monkeys. PLoS One 2013;8:e65763.
-
(2013)
PLoS One
, vol.8
-
-
Adams, A.C.1
Halstead, C.A.2
Hansen, B.C.3
Irizarry, A.R.4
Martin, J.A.5
Myers, S.R.6
Reynolds, V.L.7
Smith, H.W.8
Wroblewski, V.J.9
Kharitonenkov, A.10
-
174
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
Fu L, John LM, Adams SH, Yu XX, Tomlinson E, Renz M, Williams PM, Soriano R, Corpuz R, Moffat B, Vandlen R, Simmons L, Foster J, Stephan JP, Tsai SP, Stewart TA. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 2004;145:2594–2603.
-
(2004)
Endocrinology
, vol.145
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
Williams, P.M.7
Soriano, R.8
Corpuz, R.9
Moffat, B.10
Vandlen, R.11
Simmons, L.12
Foster, J.13
Stephan, J.P.14
Tsai, S.P.15
Stewart, T.A.16
-
175
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, Stephan JP, Tsai SP, Powell-Braxton L, French D, Stewart TA. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 2002;143:1741–1747.
-
(2002)
Endocrinology
, vol.143
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
Huang, X.5
Renz, M.6
Stephan, J.P.7
Tsai, S.P.8
Powell-Braxton, L.9
French, D.10
Stewart, T.A.11
-
176
-
-
79953129095
-
FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
-
Kir S, Beddow SA, Samuel VT, Miller P, Previs SF, Suino-Powell K, Xu HE, Shulman GI, Kliewer SA, Mangelsdorf DJ. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 2011;331:1621–1624.
-
(2011)
Science
, vol.331
, pp. 1621-1624
-
-
Kir, S.1
Beddow, S.A.2
Samuel, V.T.3
Miller, P.4
Previs, S.F.5
Suino-Powell, K.6
Xu, H.E.7
Shulman, G.I.8
Kliewer, S.A.9
Mangelsdorf, D.J.10
-
177
-
-
84861355961
-
Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands
-
Goetz R, Ohnishi M, Ding X, Kurosu H, Wang L, Akiyoshi J, Ma J, Gai W, Sidis Y, Pitteloud N, Kuro OM, Razzaque MS, Mohammadi M. Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands. Mol Cell Biol 2012;32:1944–1954.
-
(2012)
Mol Cell Biol
, vol.32
, pp. 1944-1954
-
-
Goetz, R.1
Ohnishi, M.2
Ding, X.3
Kurosu, H.4
Wang, L.5
Akiyoshi, J.6
Ma, J.7
Gai, W.8
Sidis, Y.9
Pitteloud, N.10
Kuro, O.M.11
Razzaque, M.S.12
Mohammadi, M.13
-
178
-
-
84862777904
-
A unique FGF23 with the ability to activate FGFR signaling through both alphaKlotho and betaKlotho
-
Wu X, Weiszmann J, Ge H, Baribault H, Stevens J, Hawkins N, Vonderfecht S, Gardner J, Gupte J, Sheng J, Wang M, Li Y. A unique FGF23 with the ability to activate FGFR signaling through both alphaKlotho and betaKlotho. J Mol Biol 2012;418:82–89.
-
(2012)
J Mol Biol
, vol.418
, pp. 82-89
-
-
Wu, X.1
Weiszmann, J.2
Ge, H.3
Baribault, H.4
Stevens, J.5
Hawkins, N.6
Vonderfecht, S.7
Gardner, J.8
Gupte, J.9
Sheng, J.10
Wang, M.11
Li, Y.12
-
179
-
-
0026011735
-
Three-dimensional structures of acidic and basic fibroblast growth factors
-
Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, Hsu BT, Rees DC. Three-dimensional structures of acidic and basic fibroblast growth factors. Science 1991;251:90–93.
-
(1991)
Science
, vol.251
, pp. 90-93
-
-
Zhu, X.1
Komiya, H.2
Chirino, A.3
Faham, S.4
Fox, G.M.5
Arakawa, T.6
Hsu, B.T.7
Rees, D.C.8
-
180
-
-
84865258676
-
Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor
-
Goetz R, Ohnishi M, Kir S, Kurosu H, Wang L, Pastor J, Ma J, Gai W, Kuro-o M, Razzaque MS, Mohammadi M. Conversion of a paracrine fibroblast growth factor into an endocrine fibroblast growth factor. J Biol Chem 2012;287:29134–29146.
-
(2012)
J Biol Chem
, vol.287
, pp. 29134-29146
-
-
Goetz, R.1
Ohnishi, M.2
Kir, S.3
Kurosu, H.4
Wang, L.5
Pastor, J.6
Ma, J.7
Gai, W.8
Kuro-o, M.9
Razzaque, M.S.10
Mohammadi, M.11
-
181
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, Chien JY, Fu H, Glass LC, Deeg MA, Holland WL, Kharitonenkov A, Bumol T, Schilske HK, Moller DE. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab 2013;18:333–340.
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
Glass, L.C.4
Deeg, M.A.5
Holland, W.L.6
Kharitonenkov, A.7
Bumol, T.8
Schilske, H.K.9
Moller, D.E.10
-
182
-
-
84946496130
-
Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study
-
Dong JQ, Rossulek M, Somayaji VR, Baltrukonis D, Liang Y, Hudson K, Hernandez-Illas M, Calle RA. Pharmacokinetics and pharmacodynamics of PF-05231023, a novel long-acting FGF21 mimetic, in a first-in-human study. Br J Clin Pharmacol. 2015;80:1051–1063.
-
(2015)
Br J Clin Pharmacol
, vol.80
, pp. 1051-1063
-
-
Dong, J.Q.1
Rossulek, M.2
Somayaji, V.R.3
Baltrukonis, D.4
Liang, Y.5
Hudson, K.6
Hernandez-Illas, M.7
Calle, R.A.8
-
183
-
-
84864388774
-
Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate
-
Wu S, Levenson A, Kharitonenkov A, De Luca F. Fibroblast growth factor 21 (FGF21) inhibits chondrocyte function and growth hormone action directly at the growth plate. J Biol Chem 2012;287:26060–26067.
-
(2012)
J Biol Chem
, vol.287
, pp. 26060-26067
-
-
Wu, S.1
Levenson, A.2
Kharitonenkov, A.3
De Luca, F.4
-
184
-
-
84860341324
-
Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice
-
Kubicky RA, Wu S, Kharitonenkov A, De Luca F. Role of fibroblast growth factor 21 (FGF21) in undernutrition-related attenuation of growth in mice. Endocrinology 2012;153:2287–2295.
-
(2012)
Endocrinology
, vol.153
, pp. 2287-2295
-
-
Kubicky, R.A.1
Wu, S.2
Kharitonenkov, A.3
De Luca, F.4
-
185
-
-
84890431558
-
Fibroblast growth factor 21 (FGF21) and bone: is there a relationship in humans?
-
Lee P, Linderman J, Smith S, Brychta RJ, Perron R, Idelson C, Werner CD, Chen KY, Celi FS. Fibroblast growth factor 21 (FGF21) and bone: is there a relationship in humans? Osteoporos Int 2013;24:3053–3057.
-
(2013)
Osteoporos Int
, vol.24
, pp. 3053-3057
-
-
Lee, P.1
Linderman, J.2
Smith, S.3
Brychta, R.J.4
Perron, R.5
Idelson, C.6
Werner, C.D.7
Chen, K.Y.8
Celi, F.S.9
-
186
-
-
84883763046
-
FGF21 contributes to neuroendocrine control of female reproduction
-
Owen BM, Bookout AL, Ding X, Lin VY, Atkin SD, Gautron L, Kliewer SA, Mangelsdorf DJ. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med 2013;19:1153–1156.
-
(2013)
Nat Med
, vol.19
, pp. 1153-1156
-
-
Owen, B.M.1
Bookout, A.L.2
Ding, X.3
Lin, V.Y.4
Atkin, S.D.5
Gautron, L.6
Kliewer, S.A.7
Mangelsdorf, D.J.8
|