-
1
-
-
30344468406
-
Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism
-
DOI 10.1186/1743-7075-2-33
-
Hakimi P, et al. (2005) Phosphoenolpyruvate carboxykinase and the critical role of cataplerosis in the control of hepatic metabolism. Nutr Metab (Lond) 2:33. (Pubitemid 43060609)
-
(2005)
Nutrition and Metabolism
, vol.2
, pp. 33
-
-
Hakimi, P.1
Johnson, M.T.2
Yang, J.3
Lepage, D.F.4
Conlon, R.A.5
Kalhan, S.C.6
Reshef, L.7
Tilghman, S.M.8
Hanson, R.W.9
-
2
-
-
0033594980
-
A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders
-
DOI 10.1073/pnas.96.13.7473
-
Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96:7473-7478. (Pubitemid 29299686)
-
(1999)
Proceedings of the National Academy of Sciences of the United States of America
, vol.96
, Issue.13
, pp. 7473-7478
-
-
Leone, T.C.1
Weinheimer, C.J.2
Kelly, D.P.3
-
3
-
-
33947580628
-
Cytosolic Phosphoenolpyruvate Carboxykinase Does Not Solely Control the Rate of Hepatic Gluconeogenesis in the Intact Mouse Liver
-
DOI 10.1016/j.cmet.2007.03.004, PII S1550413107000654
-
Burgess SC, et al. (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313-320. (Pubitemid 46477858)
-
(2007)
Cell Metabolism
, vol.5
, Issue.4
, pp. 313-320
-
-
Burgess, S.C.1
He, T.2
Yan, Z.3
Lindner, J.4
Sherry, A.D.5
Malloy, C.R.6
Browning, J.7
Magnuson, M.A.8
-
4
-
-
33745865153
-
Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice
-
DOI 10.1074/jbc.M600050200
-
Burgess SC, et al. (2006) Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice. J Biol Chem 281:19000-19008. (Pubitemid 44035403)
-
(2006)
Journal of Biological Chemistry
, vol.281
, Issue.28
, pp. 19000-19008
-
-
Burgess, S.C.1
Leone, T.C.2
Wende, A.R.3
Croce, M.A.4
Chen, Z.5
Sherry, A.D.6
Malloy, C.R.7
Finck, B.N.8
-
5
-
-
34249711964
-
Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
-
DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
-
Badman MK, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426-437. (Pubitemid 46825495)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
6
-
-
34249686631
-
Endocrine Regulation of the Fasting Response by PPARα-Mediated Induction of Fibroblast Growth Factor 21
-
DOI 10.1016/j.cmet.2007.05.003, PII S1550413107001301
-
Inagaki T, et al. (2007) Endocrine regulation of the fasting response by PPARα-mediated induction of fibroblast growth factor 21. Cell Metab 5:415-425. (Pubitemid 46825496)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
7
-
-
34447265235
-
PPARα is a key regulator of hepatic FGF21
-
DOI 10.1016/j.bbrc.2007.06.068, PII S0006291X07013083
-
Lundasen T, et al. (2007) PPARα is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360:437-440. (Pubitemid 47039157)
-
(2007)
Biochemical and Biophysical Research Communications
, vol.360
, Issue.2
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.-M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.H.6
Rudling, M.7
-
8
-
-
34247565954
-
Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
DOI 10.1128/MCB.02249-06
-
Goetz R, et al. (2007) Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27:3417-3428. (Pubitemid 46685217)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.9
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
Kalinina, J.4
Olsen, S.K.5
Eliseenkova, A.V.6
Xu, C.7
Neubert, T.A.8
Zhang, F.9
Linhardt, R.J.10
Yu, X.11
White, K.E.12
Inagaki, T.13
Kliewer, S.A.14
Yamamoto, M.15
Kurosu, H.16
Ogawa, Y.17
Kuro-o, M.18
Lanske, B.19
Razzaque, M.S.20
Mohammadi, M.21
more..
-
9
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho
-
DOI 10.1002/jcp.21357
-
Kharitonenkov A, et al. (2008) FGF-21/FGF-21 receptor interaction and activation is determined by βKlotho. J Cell Physiol 215:1-7. (Pubitemid 351363185)
-
(2008)
Journal of Cellular Physiology
, vol.215
, Issue.1
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
Hale, J.E.11
Coskun, T.12
Shanafelt, A.B.13
-
10
-
-
34848869695
-
Tissue-specific expression of βklotho and Fibroblast Growth Factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
DOI 10.1074/jbc.M704165200
-
Kurosu H, et al. (2007) Tissue-specific expression of βKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem 282:26687-26695. (Pubitemid 47501965)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.37
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-O, M.10
-
11
-
-
34848866633
-
Liver-specific activities of FGF19 require klotho beta
-
DOI 10.1074/jbc.M704244200
-
Lin BC, Wang M, Blackmore C, Desnoyers LR (2007) Liver-specific activities of FGF19 require Klotho beta. J Biol Chem 282:27277-27284. (Pubitemid 47501977)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.37
, pp. 27277-27284
-
-
Lin, B.C.1
Wang, M.2
Blackmore, C.3
Desnoyers, L.R.4
-
12
-
-
34249697012
-
βKlotho is required for metabolic activity of fibroblast growth factor 21
-
DOI 10.1073/pnas.0701600104
-
Ogawa Y, et al. (2007) βKlotho is required for metabolic activity of fibroblast growth factor 21. Proc Natl Acad Sci USA 104:7432-7437. (Pubitemid 47185923)
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, Issue.18
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-O, M.9
-
13
-
-
41649109108
-
βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M, et al. (2008) βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22:1006-1014.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
-
14
-
-
35748973876
-
Co-receptor requirements for fibroblast growth factor-19 signaling
-
DOI 10.1074/jbc.C700130200
-
Wu X, et al. (2007) Co-receptor requirements for fibroblast growth factor-19 signaling. J Biol Chem 282:29069-29072. (Pubitemid 350043330)
-
(2007)
Journal of Biological Chemistry
, vol.282
, Issue.40
, pp. 29069-29072
-
-
Wu, X.1
Ge, H.2
Gupte, J.3
Weiszmann, J.4
Shimamoto, G.5
Stevens, J.6
Hawkins, N.7
Lemon, B.8
Shen, W.9
Xu, J.10
Veniant, M.M.11
Li, Y.-S.12
Lindberg, R.13
Chen, J.-L.14
Tian, H.15
Li, Y.16
-
15
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A, et al. (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627-1635.
-
(2005)
J Clin Invest
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
-
16
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki T, et al. (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77-83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
-
17
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
DOI 10.1210/en.2006-1168
-
Kharitonenkov A, et al. (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774-781. (Pubitemid 46143178)
-
(2007)
Endocrinology
, vol.148
, Issue.2
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.-F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
18
-
-
33845596500
-
Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism
-
DOI 10.1210/er.2006-0037
-
Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728-735. (Pubitemid 44936056)
-
(2006)
Endocrine Reviews
, vol.27
, Issue.7
, pp. 728-735
-
-
Handschin, C.1
Spiegelman, B.M.2
-
19
-
-
0037326196
-
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
-
DOI 10.1210/er.2002-0012
-
Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endocr Rev 24:78-90. (Pubitemid 36223280)
-
(2003)
Endocrine Reviews
, vol.24
, Issue.1
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
20
-
-
24144463983
-
Metabolic control through the PGC-1 family of transcription coactivators
-
DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
-
Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361-370. (Pubitemid 43960626)
-
(2005)
Cell Metabolism
, vol.1
, Issue.6
, pp. 361-370
-
-
Lin, J.1
Handschin, C.2
Spiegelman, B.M.3
-
21
-
-
33644660537
-
PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
-
DOI 10.1172/JCI27794
-
Finck BN, Kelly DP (2006) PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615-622. (Pubitemid 43326866)
-
(2006)
Journal of Clinical Investigation
, vol.116
, Issue.3
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
22
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
-
DOI 10.1038/nature01667
-
Puigserver P, et al. (2003) Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature 423:550-555. (Pubitemid 36648580)
-
(2003)
Nature
, vol.423
, Issue.6939
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
Oriente, F.6
Kitamura, Y.7
Altomonte, J.8
Dong, H.9
Accili, D.10
Spiegelman, B.M.11
-
23
-
-
0242349197
-
Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis
-
DOI 10.1073/pnas.0730870100
-
Rhee J, et al. (2003) Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4α in gluconeogenesis. Proc Natl Acad Sci USA 100:4012-4017. (Pubitemid 36418148)
-
(2003)
Proceedings of the National Academy of Sciences of the United States of America
, vol.100
, Issue.7
, pp. 4012-4017
-
-
Rhee, J.1
Inoue, Y.2
Yoon, J.C.3
Puigserver, P.4
Fan, M.5
Gonzalez, F.J.6
Spiegelman, B.M.7
-
24
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coaotivator PGC-1
-
DOI 10.1038/35093050
-
Yoon JC, et al. (2001) Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-138. (Pubitemid 32867868)
-
(2001)
Nature
, vol.413
, Issue.6852
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
25
-
-
23944476164
-
Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α
-
DOI 10.1016/j.cell.2005.06.040, PII S0092867405006604
-
Handschin C, et al. (2005) Nutritional regulation of hepatic heme biosynthesis and porphyria through PGC-1α. Cell 122:505-515. (Pubitemid 41191150)
-
(2005)
Cell
, vol.122
, Issue.4
, pp. 505-515
-
-
Handschin, C.1
Lin, J.2
Rhee, J.3
Peyer, A.-K.4
Chin, S.5
Wu, P.-H.6
Meyer, U.A.7
Spiegelman, B.M.8
-
26
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice
-
DOI 10.1016/j.cell.2004.09.013, PII S0092867404008864
-
Lin J, et al. (2004) Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1α null mice. Cell 119:121-135. (Pubitemid 39349325)
-
(2004)
Cell
, vol.119
, Issue.1
, pp. 121-135
-
-
Lin, J.1
Wu, P.-H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
Zhang, C.-Y.6
Mootha, V.K.7
Jager, S.8
Vianna, C.R.9
Reznick, R.M.10
Cui, L.11
Manieri, M.12
Donovan, M.X.13
Wu, Z.14
Cooper, M.P.15
Fan, M.C.16
Rohas, L.M.17
Zavacki, A.M.18
Cinti, S.19
Shulman, G.I.20
Lowell, B.B.21
Krainc, D.22
Spiegelman, B.M.23
more..
-
27
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
-
DOI 10.1038/nm1044
-
Koo SH, et al. (2004) PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat Med 10:530-534. (Pubitemid 38667913)
-
(2004)
Nature Medicine
, vol.10
, Issue.5
, pp. 530-534
-
-
Koo, S.-H.1
Satoh, H.2
Herzig, S.3
Lee, C.-H.4
Hedrick, S.5
Kulkarni, R.6
Evans, R.M.7
Olefsky, J.8
Montminy, M.9
-
28
-
-
21144446106
-
PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis
-
DOI 10.1371/journal.pbio.0030101, e101
-
Leone TC, et al. (2005) PGC-1α deficiency causes multi-system energy metabolic derangements: Muscle dysfunction, abnormal weight control and hepatic steatosis. PLoS Biol 3:e101. (Pubitemid 40721160)
-
(2005)
PLoS Biology
, vol.3
, Issue.4
, pp. 672-687
-
-
Leone, T.C.1
Lehman, J.J.2
Finck, B.N.3
Schaeffer, P.J.4
Wende, A.R.5
Boudina, S.6
Courtois, M.7
Wozniak, D.F.8
Sambandam, N.9
Bernal-Mizrachi, C.10
Chen, Z.11
Holloszy, J.O.12
Medeiros, D.M.13
Schmidt, R.E.14
Saffitz, J.E.15
Abel, E.D.16
Semenkovich, C.F.17
Kelly, D.P.18
-
29
-
-
0031851426
-
The direct and indirect effects of insulin on hepatic glucose production in vivo
-
DOI 10.1007/s001250051021
-
Cherrington AD, Edgerton D, Sindelar DK (1998) The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia 41:987-996. (Pubitemid 28394402)
-
(1998)
Diabetologia
, vol.41
, Issue.9
, pp. 987-996
-
-
Cherrington, A.D.1
Edgerton, D.2
Sindelar, D.K.3
-
30
-
-
0015239151
-
The regulation of ketogenesis from octanoic acid. the role of the tricarboxylic acid cycle and fatty acid synthesis
-
McGarry JD, Foster DW (1971) The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem 246:1149-1159.
-
(1971)
J Biol Chem
, vol.246
, pp. 1149-1159
-
-
McGarry, J.D.1
Foster, D.W.2
-
32
-
-
0014899070
-
Glucagon levels and metabolic effects in fasting man
-
Marliss EB, et al. (1970) Glucagon levels and metabolic effects in fasting man. J Clin Invest 49:2256-2270.
-
(1970)
J Clin Invest
, vol.49
, pp. 2256-2270
-
-
Marliss, E.B.1
-
33
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man
-
Galman C, et al. (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell Metab 8:169-174.
-
(2008)
Cell Metab
, vol.8
, pp. 169-174
-
-
Galman, C.1
-
34
-
-
27844546989
-
Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
-
Inagaki T, et al. (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217-225.
-
(2005)
Cell Metab
, vol.2
, pp. 217-225
-
-
Inagaki, T.1
-
35
-
-
54849431792
-
The glucagon receptor is required for the adaptive metabolic response to fasting
-
Longuet C, et al. (2008) The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8:359-371.
-
(2008)
Cell Metab
, vol.8
, pp. 359-371
-
-
Longuet, C.1
-
36
-
-
2542505481
-
Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
-
DOI 10.1210/en.2003-1671
-
Fu L, et al. (2004) Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594-2603. (Pubitemid 38686202)
-
(2004)
Endocrinology
, vol.145
, Issue.6
, pp. 2594-2603
-
-
Fu, L.1
John, L.M.2
Adams, S.H.3
Yu, X.X.4
Tomlinson, E.5
Renz, M.6
Williams, P.M.7
Soriano, R.8
Corpuz, R.9
Moffat, B.10
Vandlen, R.11
Simmons, L.12
Foster, J.13
Stephan, J.-P.14
Tsai, S.P.15
Stewart, T.A.16
-
37
-
-
18344394556
-
Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
-
DOI 10.1210/en.143.5.1741
-
Tomlinson E, et al. (2002) Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741-1747. (Pubitemid 34415889)
-
(2002)
Endocrinology
, vol.143
, Issue.5
, pp. 1741-1747
-
-
Tomlinson, E.1
Fu, L.2
John, L.3
Hultgren, B.4
Huang, X.5
Renz, M.6
Stephan, J.P.7
Tsai, S.P.8
Powell-Braxton, L.9
French, D.10
Stewart, T.A.11
-
38
-
-
34248581989
-
Disordered lipid metabolism and the pathogenesis of insulin resistance
-
DOI 10.1152/physrev.00024.2006
-
Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507-520. (Pubitemid 47084679)
-
(2007)
Physiological Reviews
, vol.87
, Issue.2
, pp. 507-520
-
-
Savage, D.B.1
Petersen, K.F.2
Shulman, G.I.3
-
40
-
-
0035141142
-
Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats. Comparison with PPAR-γ activation
-
Ye JM, et al. (2001) Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: Comparison with PPAR-γ activation. Diabetes 50:411-417. (Pubitemid 32127300)
-
(2001)
Diabetes
, vol.50
, Issue.2
, pp. 411-417
-
-
Ye, J.-M.1
Doyle, P.J.2
Iglesias, M.A.3
Watson, D.G.4
Cooney, G.J.5
Kraegen, E.W.6
-
41
-
-
50949128127
-
Partial resistance to peroxisome proliferator-activated receptor-α agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism
-
Satapati S, et al. (2008) Partial resistance to peroxisome proliferator-activated receptor-α agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes 57:2012-2021.
-
(2008)
Diabetes
, vol.57
, pp. 2012-2021
-
-
Satapati, S.1
-
42
-
-
0034114458
-
Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function
-
DOI 10.1002/(SICI)1526-968X(200002)26:2<113::AID-GENE3>3.0.CO;2-2
-
Tallquist MD, Soriano P (2000) Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113-115. (Pubitemid 30158091)
-
(2000)
Genesis
, vol.26
, Issue.2
, pp. 113-115
-
-
Tallquist, M.D.1
Soriano, P.2
-
43
-
-
1842816370
-
Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction
-
DOI 10.1016/j.ydbio.2004.02.003, PII S0012160604000983
-
Wright TJ, et al. (2004) Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 269:264-275. (Pubitemid 38471838)
-
(2004)
Developmental Biology
, vol.269
, Issue.1
, pp. 264-275
-
-
Wright, T.J.1
Ladher, R.2
McWhirter, J.3
Murre, C.4
Schoenwolf, G.C.5
Mansour, S.L.6
-
44
-
-
21044438041
-
Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting
-
DOI 10.1152/ajpendo.00601.2004
-
Burgess SC, et al. (2005) Effect of murine strain on metabolic pathways of glucose production after brief or prolonged fasting. Am J Physiol Endocrinol Metab 289:E53-E61. (Pubitemid 40874934)
-
(2005)
American Journal of Physiology - Endocrinology and Metabolism
, vol.289
, Issue.1
-
-
Burgess, S.C.1
Jeffrey, F.M.H.2
Storey, C.3
Milde, A.4
Hausler, N.5
Merritt, M.E.6
Mulder, H.7
Holm, C.8
Sherry, A.D.9
Malloy, C.R.10
-
45
-
-
0038242823
-
2H in plasma glucose: Comparison of nuclear magnetic resonance and mass spectrometry
-
2H in plasma glucose: Comparison of nuclear magnetic resonance and mass spectrometry. Anal Biochem 318:321-324.
-
(2003)
Anal Biochem
, vol.318
, pp. 321-324
-
-
Burgess, S.C.1
-
46
-
-
11144337833
-
A quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways
-
Bookout AL, Mangelsdorf DJ (2003) A quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1:e012.
-
(2003)
Nucl Recept Signal
, vol.1
-
-
Bookout, A.L.1
Mangelsdorf, D.J.2
|