메뉴 건너뛰기




Volumn 106, Issue 26, 2009, Pages 10853-10858

FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response

Author keywords

Gluconeogenesis; Glycogenolysis; Ketogenesis; Lipid metabolism; Liver

Indexed keywords

FIBROBLAST GROWTH FACTOR 21; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA;

EID: 67649823642     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.0904187106     Document Type: Article
Times cited : (595)

References (46)
  • 2
    • 0033594980 scopus 로고    scopus 로고
    • A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders
    • DOI 10.1073/pnas.96.13.7473
    • Leone TC, Weinheimer CJ, Kelly DP (1999) A critical role for the peroxisome proliferator-activated receptor α (PPARα) in the cellular fasting response: The PPARα-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96:7473-7478. (Pubitemid 29299686)
    • (1999) Proceedings of the National Academy of Sciences of the United States of America , vol.96 , Issue.13 , pp. 7473-7478
    • Leone, T.C.1    Weinheimer, C.J.2    Kelly, D.P.3
  • 3
    • 33947580628 scopus 로고    scopus 로고
    • Cytosolic Phosphoenolpyruvate Carboxykinase Does Not Solely Control the Rate of Hepatic Gluconeogenesis in the Intact Mouse Liver
    • DOI 10.1016/j.cmet.2007.03.004, PII S1550413107000654
    • Burgess SC, et al. (2007) Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab 5:313-320. (Pubitemid 46477858)
    • (2007) Cell Metabolism , vol.5 , Issue.4 , pp. 313-320
    • Burgess, S.C.1    He, T.2    Yan, Z.3    Lindner, J.4    Sherry, A.D.5    Malloy, C.R.6    Browning, J.7    Magnuson, M.A.8
  • 4
    • 33745865153 scopus 로고    scopus 로고
    • Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice
    • DOI 10.1074/jbc.M600050200
    • Burgess SC, et al. (2006) Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α)-deficient mice. J Biol Chem 281:19000-19008. (Pubitemid 44035403)
    • (2006) Journal of Biological Chemistry , vol.281 , Issue.28 , pp. 19000-19008
    • Burgess, S.C.1    Leone, T.C.2    Wende, A.R.3    Croce, M.A.4    Chen, Z.5    Sherry, A.D.6    Malloy, C.R.7    Finck, B.N.8
  • 5
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARα and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
    • DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
    • Badman MK, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426-437. (Pubitemid 46825495)
    • (2007) Cell Metabolism , vol.5 , Issue.6 , pp. 426-437
    • Badman, M.K.1    Pissios, P.2    Kennedy, A.R.3    Koukos, G.4    Flier, J.S.5    Maratos-Flier, E.6
  • 13
    • 41649109108 scopus 로고    scopus 로고
    • βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
    • Suzuki M, et al. (2008) βKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol 22:1006-1014.
    • (2008) Mol Endocrinol , vol.22 , pp. 1006-1014
    • Suzuki, M.1
  • 15
    • 20444435873 scopus 로고    scopus 로고
    • FGF-21 as a novel metabolic regulator
    • Kharitonenkov A, et al. (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627-1635.
    • (2005) J Clin Invest , vol.115 , pp. 1627-1635
    • Kharitonenkov, A.1
  • 16
    • 45649085226 scopus 로고    scopus 로고
    • Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
    • Inagaki T, et al. (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77-83.
    • (2008) Cell Metab , vol.8 , pp. 77-83
    • Inagaki, T.1
  • 18
    • 33845596500 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism
    • DOI 10.1210/er.2006-0037
    • Handschin C, Spiegelman BM (2006) Peroxisome proliferator-activated receptor γ coactivator 1 coactivators, energy homeostasis, and metabolism. Endocr Rev 27:728-735. (Pubitemid 44936056)
    • (2006) Endocrine Reviews , vol.27 , Issue.7 , pp. 728-735
    • Handschin, C.1    Spiegelman, B.M.2
  • 19
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
    • DOI 10.1210/er.2002-0012
    • Puigserver P, Spiegelman BM (2003) Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator. Endocr Rev 24:78-90. (Pubitemid 36223280)
    • (2003) Endocrine Reviews , vol.24 , Issue.1 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 20
    • 24144463983 scopus 로고    scopus 로고
    • Metabolic control through the PGC-1 family of transcription coactivators
    • DOI 10.1016/j.cmet.2005.05.004, PII S1550413105001427
    • Lin J, Handschin C, Spiegelman BM (2005) Metabolic control through the PGC-1 family of transcription coactivators. Cell Metab 1:361-370. (Pubitemid 43960626)
    • (2005) Cell Metabolism , vol.1 , Issue.6 , pp. 361-370
    • Lin, J.1    Handschin, C.2    Spiegelman, B.M.3
  • 21
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease
    • DOI 10.1172/JCI27794
    • Finck BN, Kelly DP (2006) PGC-1 coactivators: Inducible regulators of energy metabolism in health and disease. J Clin Invest 116:615-622. (Pubitemid 43326866)
    • (2006) Journal of Clinical Investigation , vol.116 , Issue.3 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 29
    • 0031851426 scopus 로고    scopus 로고
    • The direct and indirect effects of insulin on hepatic glucose production in vivo
    • DOI 10.1007/s001250051021
    • Cherrington AD, Edgerton D, Sindelar DK (1998) The direct and indirect effects of insulin on hepatic glucose production in vivo. Diabetologia 41:987-996. (Pubitemid 28394402)
    • (1998) Diabetologia , vol.41 , Issue.9 , pp. 987-996
    • Cherrington, A.D.1    Edgerton, D.2    Sindelar, D.K.3
  • 30
    • 0015239151 scopus 로고
    • The regulation of ketogenesis from octanoic acid. the role of the tricarboxylic acid cycle and fatty acid synthesis
    • McGarry JD, Foster DW (1971) The regulation of ketogenesis from octanoic acid. The role of the tricarboxylic acid cycle and fatty acid synthesis. J Biol Chem 246:1149-1159.
    • (1971) J Biol Chem , vol.246 , pp. 1149-1159
    • McGarry, J.D.1    Foster, D.W.2
  • 32
    • 0014899070 scopus 로고
    • Glucagon levels and metabolic effects in fasting man
    • Marliss EB, et al. (1970) Glucagon levels and metabolic effects in fasting man. J Clin Invest 49:2256-2270.
    • (1970) J Clin Invest , vol.49 , pp. 2256-2270
    • Marliss, E.B.1
  • 33
    • 48349127924 scopus 로고    scopus 로고
    • The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man
    • Galman C, et al. (2008) The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARα activation in man. Cell Metab 8:169-174.
    • (2008) Cell Metab , vol.8 , pp. 169-174
    • Galman, C.1
  • 34
    • 27844546989 scopus 로고    scopus 로고
    • Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
    • Inagaki T, et al. (2005) Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab 2:217-225.
    • (2005) Cell Metab , vol.2 , pp. 217-225
    • Inagaki, T.1
  • 35
    • 54849431792 scopus 로고    scopus 로고
    • The glucagon receptor is required for the adaptive metabolic response to fasting
    • Longuet C, et al. (2008) The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab 8:359-371.
    • (2008) Cell Metab , vol.8 , pp. 359-371
    • Longuet, C.1
  • 38
    • 34248581989 scopus 로고    scopus 로고
    • Disordered lipid metabolism and the pathogenesis of insulin resistance
    • DOI 10.1152/physrev.00024.2006
    • Savage DB, Petersen KF, Shulman GI (2007) Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiol Rev 87:507-520. (Pubitemid 47084679)
    • (2007) Physiological Reviews , vol.87 , Issue.2 , pp. 507-520
    • Savage, D.B.1    Petersen, K.F.2    Shulman, G.I.3
  • 40
    • 0035141142 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats. Comparison with PPAR-γ activation
    • Ye JM, et al. (2001) Peroxisome proliferator-activated receptor (PPAR)-α activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: Comparison with PPAR-γ activation. Diabetes 50:411-417. (Pubitemid 32127300)
    • (2001) Diabetes , vol.50 , Issue.2 , pp. 411-417
    • Ye, J.-M.1    Doyle, P.J.2    Iglesias, M.A.3    Watson, D.G.4    Cooney, G.J.5    Kraegen, E.W.6
  • 41
    • 50949128127 scopus 로고    scopus 로고
    • Partial resistance to peroxisome proliferator-activated receptor-α agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism
    • Satapati S, et al. (2008) Partial resistance to peroxisome proliferator-activated receptor-α agonists in ZDF rats is associated with defective hepatic mitochondrial metabolism. Diabetes 57:2012-2021.
    • (2008) Diabetes , vol.57 , pp. 2012-2021
    • Satapati, S.1
  • 42
    • 0034114458 scopus 로고    scopus 로고
    • Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function
    • DOI 10.1002/(SICI)1526-968X(200002)26:2<113::AID-GENE3>3.0.CO;2-2
    • Tallquist MD, Soriano P (2000) Epiblast-restricted Cre expression in MORE mice: A tool to distinguish embryonic vs. extra-embryonic gene function. Genesis 26:113-115. (Pubitemid 30158091)
    • (2000) Genesis , vol.26 , Issue.2 , pp. 113-115
    • Tallquist, M.D.1    Soriano, P.2
  • 43
    • 1842816370 scopus 로고    scopus 로고
    • Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction
    • DOI 10.1016/j.ydbio.2004.02.003, PII S0012160604000983
    • Wright TJ, et al. (2004) Mouse FGF15 is the ortholog of human and chick FGF19, but is not uniquely required for otic induction. Dev Biol 269:264-275. (Pubitemid 38471838)
    • (2004) Developmental Biology , vol.269 , Issue.1 , pp. 264-275
    • Wright, T.J.1    Ladher, R.2    McWhirter, J.3    Murre, C.4    Schoenwolf, G.C.5    Mansour, S.L.6
  • 45
    • 0038242823 scopus 로고    scopus 로고
    • 2H in plasma glucose: Comparison of nuclear magnetic resonance and mass spectrometry
    • 2H in plasma glucose: Comparison of nuclear magnetic resonance and mass spectrometry. Anal Biochem 318:321-324.
    • (2003) Anal Biochem , vol.318 , pp. 321-324
    • Burgess, S.C.1
  • 46
    • 11144337833 scopus 로고    scopus 로고
    • A quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways
    • Bookout AL, Mangelsdorf DJ (2003) A quantitative real-time PCR protocol for analysis of nuclear receptor signaling pathways. Nucl Recept Signal 1:e012.
    • (2003) Nucl Recept Signal , vol.1
    • Bookout, A.L.1    Mangelsdorf, D.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.