메뉴 건너뛰기




Volumn 32, Issue 10, 2012, Pages 1944-1954

Klotho coreceptors inhibit signaling by paracrine fibroblast growth factor 8 subfamily ligands

Author keywords

[No Author keywords available]

Indexed keywords

ALPHAKLOTHO PROTEIN; BETAKLOTHO PROTEIN; FIBROBLAST GROWTH FACTOR 19; FIBROBLAST GROWTH FACTOR 21; FIBROBLAST GROWTH FACTOR 8; FIBROBLAST GROWTH FACTOR RECEPTOR; IMMUNOGLOBULIN; KLOTHO CORECEPTOR; KLOTHO PROTEIN; LIGAND; UNCLASSIFIED DRUG;

EID: 84861355961     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.06603-11     Document Type: Article
Times cited : (64)

References (77)
  • 1
    • 0033763097 scopus 로고    scopus 로고
    • ADHR., Consortium. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23
    • ADHR Consortium. 2000. Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat. Genet. 26:345-348.
    • (2000) Nat. Genet. , vol.26 , pp. 345-348
  • 2
    • 33745003913 scopus 로고    scopus 로고
    • Antoine M, et al. 2006. Fibroblast growth factor 16 and 18 are expressed in human cardiovascular tissues and induce on endothelial cells migration but not proliferation. Biochem. Biophys. Res. Commun. 246:224-233.
    • (2006) Biochem. Biophys. Res. Commun. , vol.246 , pp. 224-233
    • Antoine, M.1
  • 3
    • 56949092897 scopus 로고    scopus 로고
    • Glycosaminoglycan affinity of the complete fibroblast growth factor family
    • Asada M, et al. 2009. Glycosaminoglycan affinity of the complete fibroblast growth factor family. Biochim. Biophys. Acta 1790:40-48.
    • (2009) Biochim. Biophys. Acta , vol.1790 , pp. 40-48
    • Asada, M.1
  • 4
    • 34249711964 scopus 로고    scopus 로고
    • Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
    • Badman MK, et al. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5:426-437.
    • (2007) Cell Metab , vol.5 , pp. 426-437
    • Badman, M.K.1
  • 5
    • 61649100307 scopus 로고    scopus 로고
    • The FGF family: biology, pathophysiology and therapy
    • Beenken A, Mohammadi M. 2009. The FGF family: biology, pathophysiology and therapy. Nat. Rev. Drug Discov. 8:235-253.
    • (2009) Nat. Rev. Drug Discov. , vol.8 , pp. 235-253
    • Beenken, A.1    Mohammadi, M.2
  • 6
    • 84861349953 scopus 로고    scopus 로고
    • The structural biology of the FGF19 subfamily
    • In Kuro-oM(ed), 1st ed. Landes Bioscience, Austin TX
    • Beenken A, Mohammadi M. 2011. The structural biology of the FGF19 subfamily, p 1-24. In Kuro-oM(ed), Endocrine FGFs and Klothos, 1st ed. Landes Bioscience, Austin, TX.
    • (2011) Endocrine FGFs and Klothos , pp. 1-24
    • Beenken, A.1    Mohammadi, M.2
  • 7
    • 13444263240 scopus 로고    scopus 로고
    • Fibroblast growth factor signaling during early vertebrate development
    • Bottcher RT, Niehrs C. 2005. Fibroblast growth factor signaling during early vertebrate development. Endocr. Rev. 26:63-77.
    • (2005) Endocr. Rev. , vol.26 , pp. 63-77
    • Bottcher, R.T.1    Niehrs, C.2
  • 8
    • 58149200943 scopus 로고    scopus 로고
    • The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics
    • Cantarel BL, et al. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.
    • (2009) Nucleic Acids Res , vol.37
    • Cantarel, B.L.1
  • 9
    • 0028239789 scopus 로고
    • Fibroblast growth factor receptor (FGFR) 3 Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/ FGF-1
    • Chellaiah AT, McEwen DG, Werner S, Xu J, Ornitz DM. 1994. Fibroblast growth factor receptor (FGFR) 3. Alternative splicing in immunoglobulin-like domain III creates a receptor highly specific for acidic FGF/ FGF-1. J. Biol. Chem. 269:11620-11627.
    • (1994) J. Biol. Chem. , vol.269 , pp. 11620-11627
    • Chellaiah, A.T.1    McEwen, D.G.2    Werner, S.3    Xu, J.4    Ornitz, D.M.5
  • 10
    • 51649125515 scopus 로고    scopus 로고
    • Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum
    • Cole LW, et al. 2008. Mutations in prokineticin 2 and prokineticin receptor 2 genes in human gonadotrophin-releasing hormone deficiency: molecular genetics and clinical spectrum. J. Clin. Endocrinol. Metab. 93: 3551-3559.
    • (2008) J. Clin. Endocrinol. Metab. , vol.93 , pp. 3551-3559
    • Cole, L.W.1
  • 11
    • 79960726293 scopus 로고    scopus 로고
    • Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
    • Fisher FM, et al. 2011. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 152:2996-3004.
    • (2011) Endocrinology , vol.152 , pp. 2996-3004
    • Fisher, F.M.1
  • 12
    • 2542505481 scopus 로고    scopus 로고
    • Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes
    • Fu L, et al. 2004. Fibroblast growth factor 19 increases metabolic rate and reverses dietary and leptin-deficient diabetes. Endocrinology 145:2594-2603.
    • (2004) Endocrinology , vol.145 , pp. 2594-2603
    • Fu, L.1
  • 13
    • 0036635942 scopus 로고    scopus 로고
    • Depot-specific expression of fibroblast growth factors in human adipose tissue
    • Gabrielsson BG, et al. 2002. Depot-specific expression of fibroblast growth factors in human adipose tissue. Obes. Res. 10:608-610.
    • (2002) Obes. Res. , vol.10 , pp. 608-610
    • Gabrielsson, B.G.1
  • 14
    • 48349127924 scopus 로고    scopus 로고
    • The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
    • Galman C, et al. 2008. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metab. 8:169-174.
    • (2008) Cell Metab , vol.8 , pp. 169-174
    • Galman, C.1
  • 15
    • 34247565954 scopus 로고    scopus 로고
    • Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
    • Goetz R, et al. 2007. Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol. Cell. Biol. 27:3417-3428.
    • (2007) Mol. Cell. Biol. , vol.27 , pp. 3417-3428
    • Goetz, R.1
  • 16
    • 76249084836 scopus 로고    scopus 로고
    • Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation
    • Goetz R, et al. 2010. Isolated C-terminal tail of FGF23 alleviates hypophosphatemia by inhibiting FGF23-FGFR-Klotho complex formation. Proc. Natl. Acad. Sci. U.S.A. 107:407-412.
    • (2010) Proc. Natl. Acad. Sci. U.S.A. , vol.107 , pp. 407-412
    • Goetz, R.1
  • 17
    • 0034649608 scopus 로고    scopus 로고
    • Attenuation of FGF signalling in mouse β-cells leads to diabetes
    • Hart AW, Baeza N, Apelqvist A, Edlund H. 2000. Attenuation of FGF signalling in mouse β-cells leads to diabetes. Nature 408:864-868.
    • (2000) Nature , vol.408 , pp. 864-868
    • Hart, A.W.1    Baeza, N.2    Apelqvist, A.3    Edlund, H.4
  • 18
    • 0037663483 scopus 로고    scopus 로고
    • Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis
    • Holt JA, et al. 2003. Definition of a novel growth factor-dependent signal cascade for the suppression of bile acid biosynthesis. Genes Dev. 17:1581-1591.
    • (2003) Genes Dev , vol.17 , pp. 1581-1591
    • Holt, J.A.1
  • 19
    • 5444250989 scopus 로고    scopus 로고
    • Biochemical analysis of pathogenic liganddependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities
    • Ibrahimi OA, et al. 2004. Biochemical analysis of pathogenic liganddependent FGFR2 mutations suggests distinct pathophysiological mechanisms for craniofacial and limb abnormalities. Hum. Mol. Genet. 13: 2313-2324.
    • (2004) Hum. Mol. Genet. , vol.13 , pp. 2313-2324
    • Ibrahimi, O.A.1
  • 20
    • 27844546989 scopus 로고    scopus 로고
    • Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis
    • Inagaki T, et al. 2005. Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2:217-225.
    • (2005) Cell Metab , vol.2 , pp. 217-225
    • Inagaki, T.1
  • 21
    • 34249686631 scopus 로고    scopus 로고
    • Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
    • Inagaki T, et al. 2007. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab. 5:415-425.
    • (2007) Cell Metab , vol.5 , pp. 415-425
    • Inagaki, T.1
  • 22
    • 0034333526 scopus 로고    scopus 로고
    • Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein
    • Ito S, et al. 2000. Molecular cloning and expression analyses of mouse betaklotho, which encodes a novel Klotho family protein. Mech. Dev. 98:115-119.
    • (2000) Mech. Dev. , vol.98 , pp. 115-119
    • Ito, S.1
  • 23
    • 4744372082 scopus 로고    scopus 로고
    • Evolution of the Fgf and Fgfr gene families
    • Itoh N, Ornitz DM. 2004. Evolution of the Fgf and Fgfr gene families. Trends Genet. 20:563-569.
    • (2004) Trends Genet , vol.20 , pp. 563-569
    • Itoh, N.1    Ornitz, D.M.2
  • 24
    • 79251501315 scopus 로고    scopus 로고
    • Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease
    • Itoh N, Ornitz DM. 2011. Fibroblast growth factors: from molecular evolution to roles in development, metabolism and disease. J. Biochem. 149:121-130.
    • (2011) J. Biochem. , vol.149 , pp. 121-130
    • Itoh, N.1    Ornitz, D.M.2
  • 25
    • 27944436648 scopus 로고    scopus 로고
    • Structural basis of interdomain communication in the Hsc70 chaperone
    • Jiang J, Prasad K, Lafer EM, Sousa R. 2005. Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell 20:513-524.
    • (2005) Mol. Cell , vol.20 , pp. 513-524
    • Jiang, J.1    Prasad, K.2    Lafer, E.M.3    Sousa, R.4
  • 26
    • 0025912340 scopus 로고
    • The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain
    • Johnson DE, Lu J, Chen H, Werner S, Williams LT. 1991. The human fibroblast growth factor receptor genes: a common structural arrangement underlies the mechanisms for generating receptor forms that differ in their third immunoglobulin domain. Mol. Cell. Biol. 11:4627-4634.
    • (1991) Mol. Cell. Biol. , vol.11 , pp. 4627-4634
    • Johnson, D.E.1    Lu, J.2    Chen, H.3    Werner, S.4    Williams, L.T.5
  • 27
    • 68849110534 scopus 로고    scopus 로고
    • Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix
    • Kalinina J, et al. 2009. Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Mol. Cell. Biol. 29:4663-4678.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 4663-4678
    • Kalinina, J.1
  • 28
    • 39149091423 scopus 로고    scopus 로고
    • FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
    • Kharitonenkov A, et al. 2008. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. J. Cell. Physiol. 215:1-7.
    • (2008) J. Cell. Physiol. , vol.215 , pp. 1-7
    • Kharitonenkov, A.1
  • 29
    • 20444435873 scopus 로고    scopus 로고
    • FGF-21 as a novel metabolic regulator
    • Kharitonenkov A, et al. 2005. FGF-21 as a novel metabolic regulator. J. Clin. Invest. 115:1627-1635.
    • (2005) J. Clin. Invest. , vol.115 , pp. 1627-1635
    • Kharitonenkov, A.1
  • 30
    • 79953129095 scopus 로고    scopus 로고
    • FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis
    • Kir S, et al. 2011. FGF19 as a postprandial, insulin-independent activator of hepatic protein and glycogen synthesis. Science 331:1621-1624.
    • (2011) Science , vol.331 , pp. 1621-1624
    • Kir, S.1
  • 31
    • 0030724491 scopus 로고    scopus 로고
    • Mutation of the mouse klotho gene leads to a syndrome resembling ageing
    • Kuro-o, M, et al. 1997. Mutation of the mouse klotho gene leads to a syndrome resembling ageing. Nature 390:45-51.
    • (1997) Nature , vol.390 , pp. 45-51
    • Kuro-o, M.1
  • 32
    • 34848869695 scopus 로고    scopus 로고
    • Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
    • Kurosu H, et al. 2007. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J. Biol. Chem. 282:26687-26695.
    • (2007) J. Biol. Chem. , vol.282 , pp. 26687-26695
    • Kurosu, H.1
  • 33
    • 33646578195 scopus 로고    scopus 로고
    • Regulation of fibroblast growth factor-23 signaling by klotho
    • Kurosu H, et al. 2006. Regulation of fibroblast growth factor-23 signaling by klotho. J. Biol. Chem. 281:6120-6123.
    • (2006) J. Biol. Chem. , vol.281 , pp. 6120-6123
    • Kurosu, H.1
  • 34
    • 24944481544 scopus 로고    scopus 로고
    • Suppression of aging in mice by the hormone Klotho
    • Kurosu H, et al. 2005. Suppression of aging in mice by the hormone Klotho. Science 309:1829-1833.
    • (2005) Science , vol.309 , pp. 1829-1833
    • Kurosu, H.1
  • 35
    • 13844318061 scopus 로고    scopus 로고
    • Immunohistochemical localization of klotho protein in brain, kidney and reproductive organs of mice
    • Li SA, et al. 2004. Immunohistochemical localization of klotho protein in brain, kidney, and reproductive organs of mice. Cell Struct. Funct 29:91-99.
    • (2004) Cell Struct. Funct , vol.29 , pp. 91-99
    • Li, S.A.1
  • 36
    • 33751115468 scopus 로고    scopus 로고
    • Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man
    • Lundasen T, Galman C, Angelin B, Rudling M. 2006. Circulating intestinal fibroblast growth factor 19 has a pronounced diurnal variation and modulates hepatic bile acid synthesis in man. J. Intern. Med. 260:530-536.
    • (2006) J. Intern. Med. , vol.260 , pp. 530-536
    • Lundasen, T.1    Galman, C.2    Angelin, B.3    Rudling, M.4
  • 37
    • 77956944805 scopus 로고    scopus 로고
    • Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation
    • Luo Y, et al. 2010. Metabolic regulator betaKlotho interacts with fibroblast growth factor receptor 4 (FGFR4) to induce apoptosis and inhibit tumor cell proliferation. J. Biol. Chem. 285:30069-30078.
    • (2010) J. Biol. Chem. , vol.285 , pp. 30069-30078
    • Luo, Y.1
  • 38
    • 70349320387 scopus 로고    scopus 로고
    • Regulation and action of fibroblast growth factor 17 in bovine follicles
    • Machado MF, et al. 2009. Regulation and action of fibroblast growth factor 17 in bovine follicles. J. Endocrinol. 202:347-353.
    • (2009) J. Endocrinol. , vol.202 , pp. 347-353
    • Machado, M.F.1
  • 39
    • 73949157671 scopus 로고    scopus 로고
    • Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis
    • Makarenkova HP, et al. 2009. Differential interactions of FGFs with heparan sulfate control gradient formation and branching morphogenesis. Sci. Signal. 2:ra55.
    • (2009) Sci. Signal. , vol.2
    • Makarenkova, H.P.1
  • 40
    • 0031685620 scopus 로고    scopus 로고
    • TGF-beta signal transduction
    • Massague J. 1998. TGF-beta signal transduction. Annu. Rev. Biochem. 67:753-791.
    • (1998) Annu. Rev. Biochem. , vol.67 , pp. 753-791
    • Massague, J.1
  • 41
    • 62149139387 scopus 로고    scopus 로고
    • Different roles of N-and C-termini in the functional activity of FGF21
    • Micanovic R, et al. 2009. Different roles of N-and C-termini in the functional activity of FGF21. J. Cell. Physiol. 219:227-234.
    • (2009) J. Cell. Physiol. , vol.219 , pp. 227-234
    • Micanovic, R.1
  • 42
    • 0026570847 scopus 로고
    • Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene
    • Miki T, et al. 1992. Determination of ligand-binding specificity by alternative splicing: two distinct growth factor receptors encoded by a single gene. Proc. Natl. Acad. Sci. U.S.A. 89:246-250.
    • (1992) Proc. Natl. Acad. Sci. U.S.A. , vol.89 , pp. 246-250
    • Miki, T.1
  • 43
    • 18144423534 scopus 로고    scopus 로고
    • Structural basis for fibroblast growth factor receptor activation
    • Mohammadi M, Olsen SK, Ibrahimi OA. 2005. Structural basis for fibroblast growth factor receptor activation. Cytokine Growth Factor Rev. 16:107-137.
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 107-137
    • Mohammadi, M.1    Olsen, S.K.2    Ibrahimi, O.A.3
  • 44
    • 0034736066 scopus 로고    scopus 로고
    • Disruption of klotho gene causes an abnormal energy homeostasis in mice
    • Mori K, et al. 2000. Disruption of klotho gene causes an abnormal energy homeostasis in mice. Biochem. Biophys. Res. Commun. 278:665-670.
    • (2000) Biochem. Biophys. Res. Commun. , vol.278 , pp. 665-670
    • Mori, K.1
  • 45
    • 0003633755 scopus 로고    scopus 로고
    • National Research Council. National Academy Press, Washington, DC
    • National Research Council. 1996. Guide for the care and use of laboratory animals. National Academy Press, Washington, DC.
    • (1996) Guide for the care and use of laboratory animals
  • 46
    • 34249697012 scopus 로고    scopus 로고
    • BetaKlotho is required for metabolic activity of fibroblast growth factor 21
    • Ogawa Y, et al. 2007. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proc. Natl. Acad. Sci. U.S.A. 104:7432-7437.
    • (2007) Proc. Natl. Acad. Sci. U.S.A. , vol.104 , pp. 7432-7437
    • Ogawa, Y.1
  • 47
    • 79957882571 scopus 로고    scopus 로고
    • Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions
    • Ohnishi M, Kato S, Akiyoshi J, Atfi A, Razzaque MS. 2011. Dietary and genetic evidence for enhancing glucose metabolism and reducing obesity by inhibiting klotho functions. FASEB J. 25:2031-2039.
    • (2011) FASEB J , vol.25 , pp. 2031-2039
    • Ohnishi, M.1    Kato, S.2    Akiyoshi, J.3    Atfi, A.4    Razzaque, M.S.5
  • 48
    • 0141780824 scopus 로고    scopus 로고
    • Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs
    • Olsen SK, et al. 2003. Fibroblast growth factor (FGF) homologous factors share structural but not functional homology with FGFs. J. Biol. Chem. 278:34226-34236.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34226-34236
    • Olsen, S.K.1
  • 49
    • 10744229159 scopus 로고    scopus 로고
    • Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity
    • Olsen SK, et al. 2004. Insights into the molecular basis for fibroblast growth factor receptor autoinhibition and ligand-binding promiscuity. Proc. Natl. Acad. Sci. U.S.A. 101:935-940.
    • (2004) Proc. Natl. Acad. Sci. U.S.A. , vol.101 , pp. 935-940
    • Olsen, S.K.1
  • 50
    • 30944448671 scopus 로고    scopus 로고
    • Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain
    • Olsen SK, et al. 2006. Structural basis by which alternative splicing modulates the organizer activity of FGF8 in the brain. Genes Dev. 20:185-198.
    • (2006) Genes Dev , vol.20 , pp. 185-198
    • Olsen, S.K.1
  • 51
    • 15844368097 scopus 로고    scopus 로고
    • Receptor specificity of the fibroblast growth factor family
    • Ornitz DM, et al. 1996. Receptor specificity of the fibroblast growth factor family. J. Biol. Chem. 271:15292-15297.
    • (1996) J. Biol. Chem. , vol.271 , pp. 15292-15297
    • Ornitz, D.M.1
  • 52
    • 0027199056 scopus 로고
    • Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2)
    • Orr-Urtreger A, et al. 1993. Developmental localization of the splicing alternatives of fibroblast growth factor receptor-2 (FGFR2). Dev. Biol. 158:475-486.
    • (1993) Dev. Biol. , vol.158 , pp. 475-486
    • Orr-Urtreger, A.1
  • 53
    • 33846841151 scopus 로고    scopus 로고
    • Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism
    • Pitteloud N, et al. 2007. Digenic mutations account for variable phenotypes in idiopathic hypogonadotropic hypogonadism. J. Clin. Invest. 117: 457-463.
    • (2007) J. Clin. Invest. , vol.117 , pp. 457-463
    • Pitteloud, N.1
  • 54
    • 0034640103 scopus 로고    scopus 로고
    • Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity
    • Plotnikov AN, Hubbard SR, Schlessinger J, Mohammadi M. 2000. Crystal structures of two FGF-FGFR complexes reveal the determinants of ligand-receptor specificity. Cell 101:413-424.
    • (2000) Cell , vol.101 , pp. 413-424
    • Plotnikov, A.N.1    Hubbard, S.R.2    Schlessinger, J.3    Mohammadi, M.4
  • 55
    • 0033520472 scopus 로고    scopus 로고
    • Structural basis for FGF receptor dimerization and activation
    • Plotnikov AN, Schlessinger J, Hubbard SR, Mohammadi M. 1999. Structural basis for FGF receptor dimerization and activation. Cell 98: 641-650.
    • (1999) Cell , vol.98 , pp. 641-650
    • Plotnikov, A.N.1    Schlessinger, J.2    Hubbard, S.R.3    Mohammadi, M.4
  • 56
    • 77956119017 scopus 로고    scopus 로고
    • Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle
    • Portela VM, et al. 2010. Expression and function of fibroblast growth factor 18 in the ovarian follicle in cattle. Biol. Reprod. 83:339-346.
    • (2010) Biol. Reprod. , vol.83 , pp. 339-346
    • Portela, V.M.1
  • 57
    • 79958066536 scopus 로고    scopus 로고
    • FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway
    • Potthoff MJ, et al. 2011. FGF15/19 regulates hepatic glucose metabolism by inhibiting the CREB-PGC-1alpha pathway. Cell Metab. 13:729-738.
    • (2011) Cell Metab , vol.13 , pp. 729-738
    • Potthoff, M.J.1
  • 58
    • 67649823642 scopus 로고    scopus 로고
    • FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
    • Potthoff MJ, et al. 2009. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U.S.A. 106:10853-10858.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 10853-10858
    • Potthoff, M.J.1
  • 59
    • 70350348267 scopus 로고    scopus 로고
    • The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis
    • Razzaque MS. 2009. The FGF23-Klotho axis: endocrine regulation of phosphate homeostasis. Nat. Rev. Endocrinol. 5:611-619.
    • (2009) Nat. Rev. Endocrinol. , vol.5 , pp. 611-619
    • Razzaque, M.S.1
  • 60
    • 84872365911 scopus 로고    scopus 로고
    • R&D Systems Immunohistochemistry Laboratory. FGF17 in human kidney. R&D Systems, Minneapolis, MN
    • R&D Systems Immunohistochemistry Laboratory. 2011. FGF17 in human kidney. R&D Systems, Minneapolis, MN. www.rndsystems.com/pdf/mab319/pdf.
    • (2011)
  • 61
    • 0033635299 scopus 로고    scopus 로고
    • Crystal structure of a ternary FGF-FGFRheparin complex reveals a dual role for heparin in FGFR binding and dimerization
    • Schlessinger J, et al. 2000. Crystal structure of a ternary FGF-FGFRheparin complex reveals a dual role for heparin in FGFR binding and dimerization. Mol. Cell 6:743-750.
    • (2000) Mol. Cell , vol.6 , pp. 743-750
    • Schlessinger, J.1
  • 62
    • 1642416884 scopus 로고    scopus 로고
    • Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
    • Shimada T, et al. 2004. Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism. J. Clin. Invest. 113:561-568.
    • (2004) J. Clin. Invest. , vol.113 , pp. 561-568
    • Shimada, T.1
  • 64
    • 15444349656 scopus 로고    scopus 로고
    • High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF8
    • Tanaka A, et al. 1998. High frequency of fibroblast growth factor (FGF) 8 expression in clinical prostate cancers and breast tissues, immunohistochemically demonstrated by a newly established neutralizing monoclonal antibody against FGF8. Cancer Res. 58:2053-2056.
    • (1998) Cancer Res , vol.58 , pp. 2053-2056
    • Tanaka, A.1
  • 65
    • 27744534898 scopus 로고    scopus 로고
    • Functions and regulations of fibroblast growth factor signaling during embryonic development
    • Thisse B, Thisse C. 2005. Functions and regulations of fibroblast growth factor signaling during embryonic development. Dev. Biol. 287:390-402.
    • (2005) Dev. Biol. , vol.287 , pp. 390-402
    • Thisse, B.1    Thisse, C.2
  • 66
    • 18344394556 scopus 로고    scopus 로고
    • Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity
    • Tomlinson E, et al. 2002. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology 143:1741-1747.
    • (2002) Endocrinology , vol.143 , pp. 1741-1747
    • Tomlinson, E.1
  • 67
    • 78449244924 scopus 로고    scopus 로고
    • Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding
    • Tong X, et al. 2010. Transcriptional repressor E4-binding protein 4 (E4BP4) regulates metabolic hormone fibroblast growth factor 21 (FGF21) during circadian cycles and feeding. J. Biol. Chem. 285:36401-36409.
    • (2010) J. Biol. Chem. , vol.285 , pp. 36401-36409
    • Tong, X.1
  • 68
    • 33845631059 scopus 로고    scopus 로고
    • Klotho converts canonical FGF receptor into a specific receptor for FGF23
    • Urakawa I, et al. 2006. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature 444:770-774.
    • (2006) Nature , vol.444 , pp. 770-774
    • Urakawa, I.1
  • 69
    • 0033812019 scopus 로고    scopus 로고
    • Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging
    • Utsugi T, et al. 2000. Decreased insulin production and increased insulin sensitivity in the klotho mutant mouse, a novel animal model for human aging. Metabolism 49:1118-1123.
    • (2000) Metabolism , vol.49 , pp. 1118-1123
    • Utsugi, T.1
  • 70
    • 0035186837 scopus 로고    scopus 로고
    • Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23
    • White KE, et al. 2001. Autosomal-dominant hypophosphatemic rickets (ADHR) mutations stabilize FGF-23. Kidney Int. 60:2079-2086.
    • (2001) Kidney Int , vol.60 , pp. 2079-2086
    • White, K.E.1
  • 71
    • 17844402791 scopus 로고    scopus 로고
    • Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations
    • Wilkie AO. 2005. Bad bones, absent smell, selfish testes: the pleiotropic consequences of human FGF receptor mutations. Cytokine Growth Factor Rev. 16:187-203.
    • (2005) Cytokine Growth Factor Rev , vol.16 , pp. 187-203
    • Wilkie, A.O.1
  • 72
    • 58149229326 scopus 로고    scopus 로고
    • Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer
    • Wolf I, et al. 2008. Klotho: a tumor suppressor and a modulator of the IGF-1 and FGF pathways in human breast cancer. Oncogene 27:7094-7105.
    • (2008) Oncogene , vol.27 , pp. 7094-7105
    • Wolf, I.1
  • 73
    • 57749105436 scopus 로고    scopus 로고
    • C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors
    • Wu X, et al. 2008. C-terminal tail of FGF19 determines its specificity toward Klotho co-receptors. J. Biol. Chem. 283:33304-33309.
    • (2008) J. Biol. Chem. , vol.283 , pp. 33304-33309
    • Wu, X.1
  • 74
    • 0345269798 scopus 로고    scopus 로고
    • Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors
    • Yeh BK, et al. 2003. Structural basis by which alternative splicing confers specificity in fibroblast growth factor receptors. Proc. Natl. Acad. Sci. U.S.A. 100:2266-2271.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 2266-2271
    • Yeh, B.K.1
  • 75
    • 57849155278 scopus 로고    scopus 로고
    • FGF21 N-and C-termini play different roles in receptor interaction and activation
    • Yie J, et al. 2009. FGF21 N-and C-termini play different roles in receptor interaction and activation. FEBS Lett. 583:19-24.
    • (2009) FEBS Lett , vol.583 , pp. 19-24
    • Yie, J.1
  • 76
    • 85047698654 scopus 로고    scopus 로고
    • Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer
    • Zammit C, et al. 2002. Fibroblast growth factor 8 is expressed at higher levels in lactating human breast and in breast cancer. Br. J. Cancer. 86: 1097-1103.
    • (2002) Br. J. Cancer. , vol.86 , pp. 1097-1103
    • Zammit, C.1
  • 77
    • 33744937606 scopus 로고    scopus 로고
    • Receptor specificity of the fibroblast growth factor family The complete mammalian FGF family
    • Zhang X, et al. 2006. Receptor specificity of the fibroblast growth factor family. The complete mammalian FGF family. J. Biol. Chem. 281:15694-15700.
    • (2006) J. Biol. Chem. , vol.281 , pp. 15694-15700
    • Zhang, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.