-
1
-
-
0034697846
-
Identification of a novel FGF, FGF21, preferentially expressed in the liver
-
Nishimura T., Nakatake Y., Konishi M., and Itoh N. Identification of a novel FGF, FGF21, preferentially expressed in the liver. Biochim. Biophys. Acta 1492 (2000) 203-206
-
(2000)
Biochim. Biophys. Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
2
-
-
20444435873
-
FGF21 as a novel metabolic regulator
-
Kharitonenkov A., et al. FGF21 as a novel metabolic regulator. J. Clin. Invest. 115 (2005) 1627-1635
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
-
3
-
-
43549110007
-
FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity
-
Arner P., Pettersson A., Mitchell P.J., Dunbar J.D., Kharitonenkov A., and Ryden M. FGF21 attenuates lipolysis in human adipocytes - a possible link to improved insulin sensitivity. FEBS Lett. 582 (2008) 1725-1730
-
(2008)
FEBS Lett.
, vol.582
, pp. 1725-1730
-
-
Arner, P.1
Pettersson, A.2
Mitchell, P.J.3
Dunbar, J.D.4
Kharitonenkov, A.5
Ryden, M.6
-
4
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A., et al. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148 (2007) 774-781
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
-
5
-
-
54849425811
-
-
Coskun, T., Bina, H.A., Schneider, M.A., Dunbar, J.D., Hu, C.C., Chen, Y., Moller, D.E. and Kharitonenkov, A. (2008) FGF21 corrects obesity in mice. Endocrinology [Epub ahead of print].
-
Coskun, T., Bina, H.A., Schneider, M.A., Dunbar, J.D., Hu, C.C., Chen, Y., Moller, D.E. and Kharitonenkov, A. (2008) FGF21 corrects obesity in mice. Endocrinology [Epub ahead of print].
-
-
-
-
6
-
-
34249711964
-
Hepatic fibroblast growth factor-21 is regulated by PPAR alpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman M.K., Pissios P., Kennedy A.R., Koukos G., Flier J.S., and Maratos-Flier E. Hepatic fibroblast growth factor-21 is regulated by PPAR alpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5 (2007) 426-437
-
(2007)
Cell Metab.
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
7
-
-
34249686631
-
Endocrine regulation of the fasting response by PPAR alpha-mediated induction of fibroblast growth factor-21
-
Inagaki T., et al. Endocrine regulation of the fasting response by PPAR alpha-mediated induction of fibroblast growth factor-21. Cell Metab. 5 (2007) 415-425
-
(2007)
Cell Metab.
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
-
8
-
-
34447265235
-
PPAR alpha is a key regulator of hepatic FGF21
-
Lundasen T., Hunt M.C., Nilsson L.M., Sanyal S., Angelin B., Alexson S.E., and Rudling M. PPAR alpha is a key regulator of hepatic FGF21. Biochem. Biophys. Res. Commun. 360 (2007) 437-440
-
(2007)
Biochem. Biophys. Res. Commun.
, vol.360
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.6
Rudling, M.7
-
9
-
-
43549106163
-
Identification of a domain within PPAR gamma regulating expression of a group of genes containing FGF21 that are selectively repressed by SIRT1 in adipocytes
-
Wang H., Qiang L., and Farmer S.R. Identification of a domain within PPAR gamma regulating expression of a group of genes containing FGF21 that are selectively repressed by SIRT1 in adipocytes. Mol. Cell Biol. (2007)
-
(2007)
Mol. Cell Biol.
-
-
Wang, H.1
Qiang, L.2
Farmer, S.R.3
-
10
-
-
47949111205
-
Adipose fibroblast growth factor-21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise E.S., et al. Adipose fibroblast growth factor-21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol. Pharmacol. 74 (2008) 403-412
-
(2008)
Mol. Pharmacol.
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
-
11
-
-
33845407972
-
Molecular determinants of FGF21 activity-synergy and cross-talk with PPAR gamma signaling
-
Moyers J.S., Shiyanova T.L., Mehrbod F., Dunbar J.D., Noblitt T.W., Otto K.A., Reifel-Miller A., and Kharitonenkov A. Molecular determinants of FGF21 activity-synergy and cross-talk with PPAR gamma signaling. J. Cell Physiol. 210 (2007) 1-6
-
(2007)
J. Cell Physiol.
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
12
-
-
0032752063
-
Cellular survival: a play in three Akts
-
Datta S.R., Brunet A., and Greenberg M.E. Cellular survival: a play in three Akts. Gene Dev. 13 (1999) 2905-2927
-
(1999)
Gene Dev.
, vol.13
, pp. 2905-2927
-
-
Datta, S.R.1
Brunet, A.2
Greenberg, M.E.3
-
13
-
-
33845711358
-
Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway
-
Shiojima I., and Walsh K. Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Gene Dev. 20 (2006) 3347-3365
-
(2006)
Gene Dev.
, vol.20
, pp. 3347-3365
-
-
Shiojima, I.1
Walsh, K.2
-
14
-
-
0035736260
-
Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo
-
Bodine S.C., et al. Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat. Cell Biol. 3 (2001) 1014-1019
-
(2001)
Nat. Cell Biol.
, vol.3
, pp. 1014-1019
-
-
Bodine, S.C.1
-
15
-
-
6344256238
-
Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy
-
Lai K.M., et al. Conditional activation of Akt in adult skeletal muscle induces rapid hypertrophy. Mol. Cell Biol. 24 (2004) 9295-9304
-
(2004)
Mol. Cell Biol.
, vol.24
, pp. 9295-9304
-
-
Lai, K.M.1
-
16
-
-
0036269886
-
Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth
-
Takahashi A., et al. Myogenic Akt signaling regulates blood vessel recruitment during myofiber growth. Mol. Cell Biol. 22 (2002) 4803-4814
-
(2002)
Mol. Cell Biol.
, vol.22
, pp. 4803-4814
-
-
Takahashi, A.1
-
17
-
-
38649091396
-
Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice
-
Izumiya Y., et al. Fast/glycolytic muscle fiber growth reduces fat mass and improves metabolic parameters in obese mice. Cell Metab. 7 (2008) 159-172
-
(2008)
Cell Metab.
, vol.7
, pp. 159-172
-
-
Izumiya, Y.1
-
19
-
-
39749140405
-
HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1 alpha
-
Arany Z., et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1 alpha. Nature 451 (2008) 1008-1012
-
(2008)
Nature
, vol.451
, pp. 1008-1012
-
-
Arany, Z.1
-
20
-
-
23044448763
-
Muscle-derived interleukin-6 - a possible link between skeletal muscle, adipose tissue, liver, and brain
-
Pedersen B.K., and Febbraio M. Muscle-derived interleukin-6 - a possible link between skeletal muscle, adipose tissue, liver, and brain. Brain Behav. Immun. 19 (2005) 371-376
-
(2005)
Brain Behav. Immun.
, vol.19
, pp. 371-376
-
-
Pedersen, B.K.1
Febbraio, M.2
-
21
-
-
41549095950
-
Is visfatin an adipokine or myokine? Evidence for greater visfatin expression in skeletal muscle than visceral fat in chickens
-
Krzysik-Walker S.M., Ocon-Grove O.M., Maddineni S.R., Hendricks III G.L., and Ramachandran R. Is visfatin an adipokine or myokine? Evidence for greater visfatin expression in skeletal muscle than visceral fat in chickens. Endocrinology 149 (2008) 1543-1550
-
(2008)
Endocrinology
, vol.149
, pp. 1543-1550
-
-
Krzysik-Walker, S.M.1
Ocon-Grove, O.M.2
Maddineni, S.R.3
Hendricks III, G.L.4
Ramachandran, R.5
-
22
-
-
0038707443
-
Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice
-
Grill M.A., Bales M.A., Fought A.N., Rosburg K.C., Munger S.J., and Antin P.B. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice. Transgenic Res. 12 (2003) 33-43
-
(2003)
Transgenic Res.
, vol.12
, pp. 33-43
-
-
Grill, M.A.1
Bales, M.A.2
Fought, A.N.3
Rosburg, K.C.4
Munger, S.J.5
Antin, P.B.6
-
23
-
-
23644439061
-
Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure
-
Shiojima I., Sato K., Izumiya Y., Schiekofer S., Ito M., Liao R., Colucci W.S., and Walsh K. Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115 (2005) 2108-2118
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 2108-2118
-
-
Shiojima, I.1
Sato, K.2
Izumiya, Y.3
Schiekofer, S.4
Ito, M.5
Liao, R.6
Colucci, W.S.7
Walsh, K.8
-
24
-
-
18044393806
-
AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle
-
Ouchi N., Shibata R., and Walsh K. AMP-activated protein kinase signaling stimulates VEGF expression and angiogenesis in skeletal muscle. Circ. Res. 96 (2005) 838-846
-
(2005)
Circ. Res.
, vol.96
, pp. 838-846
-
-
Ouchi, N.1
Shibata, R.2
Walsh, K.3
-
25
-
-
33845707842
-
Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure
-
Schiekofer S., Shiojima I., Sato K., Galasso G., Oshima Y., and Walsh K. Microarray analysis of Akt1 activation in transgenic mouse hearts reveals transcript expression profiles associated with compensatory hypertrophy and failure. Physiol. Genomics 27 (2006) 156-170
-
(2006)
Physiol. Genomics
, vol.27
, pp. 156-170
-
-
Schiekofer, S.1
Shiojima, I.2
Sato, K.3
Galasso, G.4
Oshima, Y.5
Walsh, K.6
-
26
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPAR alpha activation in man
-
Galman C., et al. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPAR alpha activation in man. Cell Metab. 8 (2008) 169-174
-
(2008)
Cell Metab.
, vol.8
, pp. 169-174
-
-
Galman, C.1
-
27
-
-
0029742335
-
E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice
-
Shield M.A., Haugen H.S., Clegg C.H., and Hauschka S.D. E-box sites and a proximal regulatory region of the muscle creatine kinase gene differentially regulate expression in diverse skeletal muscles and cardiac muscle of transgenic mice. Mol. Cell Biol. 16 (1996) 5058-5068
-
(1996)
Mol. Cell Biol.
, vol.16
, pp. 5058-5068
-
-
Shield, M.A.1
Haugen, H.S.2
Clegg, C.H.3
Hauschka, S.D.4
-
28
-
-
38549092079
-
Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases
-
Kharitonenkov A., and Shanafelt A.B. Fibroblast growth factor-21 as a therapeutic agent for metabolic diseases. BioDrugs 22 (2008) 37-44
-
(2008)
BioDrugs
, vol.22
, pp. 37-44
-
-
Kharitonenkov, A.1
Shanafelt, A.B.2
-
29
-
-
33750587755
-
Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways
-
Wente W., et al. Fibroblast growth factor-21 improves pancreatic beta-cell function and survival by activation of extracellular signal-regulated kinase 1/2 and Akt signaling pathways. Diabetes 55 (2006) 2470-2478
-
(2006)
Diabetes
, vol.55
, pp. 2470-2478
-
-
Wente, W.1
-
30
-
-
18144386162
-
Selective activation of AMPK-PGC-1 alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation
-
Atherton P.J., Babraj J., Smith K., Singh J., Rennie M.J., and Wackerhage H. Selective activation of AMPK-PGC-1 alpha or PKB-TSC2-mTOR signaling can explain specific adaptive responses to endurance or resistance training-like electrical muscle stimulation. Faseb J. 19 (2005) 786-788
-
(2005)
Faseb J.
, vol.19
, pp. 786-788
-
-
Atherton, P.J.1
Babraj, J.2
Smith, K.3
Singh, J.4
Rennie, M.J.5
Wackerhage, H.6
-
31
-
-
0035055777
-
Intracellular signaling specificity in skeletal muscle in response to different modes of exercise
-
Nader G.A., and Esser K.A. Intracellular signaling specificity in skeletal muscle in response to different modes of exercise. J. Appl. Physiol. 90 (2001) 1936-1942
-
(2001)
J. Appl. Physiol.
, vol.90
, pp. 1936-1942
-
-
Nader, G.A.1
Esser, K.A.2
-
32
-
-
0344033820
-
Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle
-
Bolster D.R., Kubica N., Crozier S.J., Williamson D.L., Farrell P.A., Kimball S.R., and Jefferson L.S. Immediate response of mammalian target of rapamycin (mTOR)-mediated signalling following acute resistance exercise in rat skeletal muscle. J. Physiol. 553 (2003) 213-220
-
(2003)
J. Physiol.
, vol.553
, pp. 213-220
-
-
Bolster, D.R.1
Kubica, N.2
Crozier, S.J.3
Williamson, D.L.4
Farrell, P.A.5
Kimball, S.R.6
Jefferson, L.S.7
|