-
2
-
-
84861657962
-
Fundamentals of FGF19 & FGF21 action in vitro and in vivo
-
Adams A.C., Coskun T., Irizarry Rovira A.R., Schneider M.A., Raches D.W., Micanovic R., Bina H.A., Dunbar J.D., Kharitonenkov A. Fundamentals of FGF19 & FGF21 action in vitro and in vivo. PLoS One 2012, 7:e38438.
-
(2012)
PLoS One
, vol.7
-
-
Adams, A.C.1
Coskun, T.2
Irizarry Rovira, A.R.3
Schneider, M.A.4
Raches, D.W.5
Micanovic, R.6
Bina, H.A.7
Dunbar, J.D.8
Kharitonenkov, A.9
-
3
-
-
84862622024
-
FGF21: the center of a transcriptional nexus in metabolic regulation
-
Adams A.C., Kharitonenkov A. FGF21: the center of a transcriptional nexus in metabolic regulation. Current Diabetes Reviews 2012, 8:285-293.
-
(2012)
Current Diabetes Reviews
, vol.8
, pp. 285-293
-
-
Adams, A.C.1
Kharitonenkov, A.2
-
4
-
-
84905679771
-
The breadth of FGF21s metabolic actions are governed by FGFR1 in adipose tissue
-
Adams A.C., Yang C., Coskun T., Cheng C.C., Gimeno R.E., Luo Y., Kharitonenkov A. The breadth of FGF21s metabolic actions are governed by FGFR1 in adipose tissue. Molecular Metabolism 2013, 2:31-37.
-
(2013)
Molecular Metabolism
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
Cheng, C.C.4
Gimeno, R.E.5
Luo, Y.6
Kharitonenkov, A.7
-
5
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman M.K., Koester A., Flier J.S., Kharitonenkov A., Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology 2009, 150:4931-4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
6
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman M.K., Pissios P., Kennedy A.R., Koukos G., Flier J.S., Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metabolism 2007, 5:426-437.
-
(2007)
Cell Metabolism
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
7
-
-
79960743932
-
Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21
-
Chartoumpekis D.V., Habeos I.G., Ziros P.G., Psyrogiannis A.I., Kyriazopoulou V.E., Papavassiliou A.G. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Molecular Medicine 2011, 17:736-740.
-
(2011)
Molecular Medicine
, vol.17
, pp. 736-740
-
-
Chartoumpekis, D.V.1
Habeos, I.G.2
Ziros, P.G.3
Psyrogiannis, A.I.4
Kyriazopoulou, V.E.5
Papavassiliou, A.G.6
-
8
-
-
69949107891
-
Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man
-
Christodoulides C., Dyson P., Sprecher D., Tsintzas K., Karpe F. Circulating fibroblast growth factor 21 is induced by peroxisome proliferator-activated receptor agonists but not ketosis in man. Journal of Clinical Endocrinology and Metabolism 2009, 94:3594-3601.
-
(2009)
Journal of Clinical Endocrinology and Metabolism
, vol.94
, pp. 3594-3601
-
-
Christodoulides, C.1
Dyson, P.2
Sprecher, D.3
Tsintzas, K.4
Karpe, F.5
-
9
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T., Bina H.A, Schneider M.A., Dunbar J.D., Hu C.C. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 2008, 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
Dunbar, J.D.4
Hu, C.C.5
-
10
-
-
84865741904
-
BetaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X., Boney-Montoya J., Owen B.M., Bookout A.L., Coate K.C., Mangelsdorf D.J., Kliewer S.A. betaKlotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metabolism 2012, 16:387-393.
-
(2012)
Cell Metabolism
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
Bookout, A.L.4
Coate, K.C.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
11
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
Dushay J., Chui P.C., Gopalakrishnan G.S., Varela-Rey M., Crawley M., Fisher F.M., Badman M.K., Martinez-Chantar M.L., Maratos-Flier E. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology 2010, 139:456-463.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
Varela-Rey, M.4
Crawley, M.5
Fisher, F.M.6
Badman, M.K.7
Martinez-Chantar, M.L.8
Maratos-Flier, E.9
-
12
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
Dutchak P.A., Katafuchi T., Bookout A.L., Choi J.H., Yu R.T., Mangelsdorf D.J., Kliewer S.A. Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell 2012, 148:556-567.
-
(2012)
Cell
, vol.148
, pp. 556-567
-
-
Dutchak, P.A.1
Katafuchi, T.2
Bookout, A.L.3
Choi, J.H.4
Yu, R.T.5
Mangelsdorf, D.J.6
Kliewer, S.A.7
-
13
-
-
78049297991
-
Obesity is a fibroblast growth factor 21 (FGF21)-resistant state
-
Fisher F.M., Chui P.C., Antonellis P.J., Bina H.A., Kharitonenkov A., Flier J.S., Maratos-Flier E. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes 2010, 59:2781-2789.
-
(2010)
Diabetes
, vol.59
, pp. 2781-2789
-
-
Fisher, F.M.1
Chui, P.C.2
Antonellis, P.J.3
Bina, H.A.4
Kharitonenkov, A.5
Flier, J.S.6
Maratos-Flier, E.7
-
14
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher F.M., Estall J.L., Adams A.C., Antonellis P.J., Bina H.A., Flier J.S., Kharitonenkov A., Spiegelman B.M., Maratos-Flier E. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology 2011, 152:2996-3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
Antonellis, P.J.4
Bina, H.A.5
Flier, J.S.6
Kharitonenkov, A.7
Spiegelman, B.M.8
Maratos-Flier, E.9
-
15
-
-
84863012022
-
FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis
-
Fisher F.M., Kleiner S., Douris N., Fox E.C., Mepani R.J., Verdeguer F., Wu J., Kharitonenkov A., Flier J.S., Maratos-Flier E., et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes & Development 2012, 26:271-281.
-
(2012)
Genes & Development
, vol.26
, pp. 271-281
-
-
Fisher, F.M.1
Kleiner, S.2
Douris, N.3
Fox, E.C.4
Mepani, R.J.5
Verdeguer, F.6
Wu, J.7
Kharitonenkov, A.8
Flier, J.S.9
Maratos-Flier, E.10
-
16
-
-
48349127924
-
The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man
-
Galman C., Lundasen T., Kharitonenkov A., Bina H.A., Eriksson M., Hafstrom I., Dahlin M., Amark P., Angelin B., Rudling M. The circulating metabolic regulator FGF21 is induced by prolonged fasting and PPARalpha activation in man. Cell Metabolism 2008, 8:169-174.
-
(2008)
Cell Metabolism
, vol.8
, pp. 169-174
-
-
Galman, C.1
Lundasen, T.2
Kharitonenkov, A.3
Bina, H.A.4
Eriksson, M.5
Hafstrom, I.6
Dahlin, M.7
Amark, P.8
Angelin, B.9
Rudling, M.10
-
17
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C., Chen M.M., Stanislaus S., Chinookoswong N., Hager T., Wang M., Veniant M.M., Xu J. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology 2012, 153:69-80.
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
Chinookoswong, N.4
Hager, T.5
Wang, M.6
Veniant, M.M.7
Xu, J.8
-
18
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland W.L., Adams A.C., Brozinick J.T., Bui H.H., Miyauchi Y., Kusminski C.M., Bauer S.M., Wade M., Singhal E., Cheng C.C., et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metabolism 2013, 17:790-797.
-
(2013)
Cell Metabolism
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
Bui, H.H.4
Miyauchi, Y.5
Kusminski, C.M.6
Bauer, S.M.7
Wade, M.8
Singhal, E.9
Cheng, C.C.10
-
19
-
-
77249099832
-
Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat
-
Hondares E., Rosell M., Gonzalez F.J., Giralt M., Iglesias R., Villarroya F. Hepatic FGF21 expression is induced at birth via PPARalpha in response to milk intake and contributes to thermogenic activation of neonatal brown fat. Cell Metabolism 2010, 11:206-212.
-
(2010)
Cell Metabolism
, vol.11
, pp. 206-212
-
-
Hondares, E.1
Rosell, M.2
Gonzalez, F.J.3
Giralt, M.4
Iglesias, R.5
Villarroya, F.6
-
20
-
-
70349324370
-
Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver
-
Hotta Y., Nakamura H., Konishi M., Murata Y., Takagi H., Matsumura S., Inoue K., Fushiki T., Itoh N. Fibroblast growth factor 21 regulates lipolysis in white adipose tissue but is not required for ketogenesis and triglyceride clearance in liver. Endocrinology 2009, 150:4625-4633.
-
(2009)
Endocrinology
, vol.150
, pp. 4625-4633
-
-
Hotta, Y.1
Nakamura, H.2
Konishi, M.3
Murata, Y.4
Takagi, H.5
Matsumura, S.6
Inoue, K.7
Fushiki, T.8
Itoh, N.9
-
21
-
-
34249686631
-
Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21
-
Inagaki T., Dutchak P., Zhao G., Ding X., Gautron L., Parameswara V., Li Y., Goetz R., Mohammadi M., Esser V., et al. Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metabolism 2007, 5:415-425.
-
(2007)
Cell Metabolism
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
-
22
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho
-
Kharitonenkov A., Dunbar J.D., Bina H.A., Bright S., Moyers J.S., Zhang C., Ding L., Micanovic R., Mehrbod S.F., Knierman M.D., et al. FGF-21/FGF-21 receptor interaction and activation is determined by betaKlotho. Journal of Cellular Physiology 2008, 215:1-7.
-
(2008)
Journal of Cellular Physiology
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
Bright, S.4
Moyers, J.S.5
Zhang, C.6
Ding, L.7
Micanovic, R.8
Mehrbod, S.F.9
Knierman, M.D.10
-
24
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
Kharitonenkov A., Shiyanova T.L., Koester A., Ford A.M., Micanovic R., Galbreath E.J., Sandusky G.E., Hammond L.J., Moyers J.S., Owens R.A., et al. FGF-21 as a novel metabolic regulator. Journal of Clinical Investigation 2005, 115:1627-1635.
-
(2005)
Journal of Clinical Investigation
, vol.115
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
-
25
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
Kharitonenkov A., Wroblewski V.J., Koester A., Chen Y.F., Clutinger C.K., Tigno X.T., Hansen B.C., Shanafelt A.B., Etgen G.J. The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 2007, 148:774-781.
-
(2007)
Endocrinology
, vol.148
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
26
-
-
34848869695
-
Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H., Choi M., Ogawa Y., Dickson A.S., Goetz R., Eliseenkova A.V., Mohammadi M., Rosenblatt K.P., Kliewer S.A., Kuro-o M. Tissue-specific expression of betaKlotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. Journal of Biological Chemistry 2007, 282:26687-26695.
-
(2007)
Journal of Biological Chemistry
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
Dickson, A.S.4
Goetz, R.5
Eliseenkova, A.V.6
Mohammadi, M.7
Rosenblatt, K.P.8
Kliewer, S.A.9
Kuro-o, M.10
-
27
-
-
70450134177
-
The road from discovery to clinic: adiponectin as a biomarker of metabolic status
-
Kusminski C.M., Scherer P.E. The road from discovery to clinic: adiponectin as a biomarker of metabolic status. Clinical Pharmacology and Therapeutics 2009, 86:592-595.
-
(2009)
Clinical Pharmacology and Therapeutics
, vol.86
, pp. 592-595
-
-
Kusminski, C.M.1
Scherer, P.E.2
-
28
-
-
70349234490
-
Effects of rosiglitazone on fasting plasma fibroblast growth factor-21 levels in patients with type 2 diabetes mellitus
-
Li K., Li L., Yang M., Zong H., Liu H., Yang G. Effects of rosiglitazone on fasting plasma fibroblast growth factor-21 levels in patients with type 2 diabetes mellitus. European Journal of Endocrinology/European Federation of Endocrine Societies 2009, 161:391-395.
-
(2009)
European Journal of Endocrinology/European Federation of Endocrine Societies
, vol.161
, pp. 391-395
-
-
Li, K.1
Li, L.2
Yang, M.3
Zong, H.4
Liu, H.5
Yang, G.6
-
29
-
-
84877260638
-
Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice
-
Lin Z., Tian H., Lam K.S., Lin S., Hoo R.C., Konishi M., Itoh N., Wang Y., Bornstein S.R., Xu A., et al. Adiponectin mediates the metabolic effects of FGF21 on glucose homeostasis and insulin sensitivity in mice. Cell Metabolism 2013, 17:779-789.
-
(2013)
Cell Metabolism
, vol.17
, pp. 779-789
-
-
Lin, Z.1
Tian, H.2
Lam, K.S.3
Lin, S.4
Hoo, R.C.5
Konishi, M.6
Itoh, N.7
Wang, Y.8
Bornstein, S.R.9
Xu, A.10
-
30
-
-
74949107162
-
An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity
-
Liu H.H., Lu P., Guo Y., Farrell E., Zhang X., Zheng M., Bosano B., Zhang Z., Allard J., Liao G., et al. An integrative genomic analysis identifies Bhmt2 as a diet-dependent genetic factor protecting against acetaminophen-induced liver toxicity. Genome Research 2010, 20:28-35.
-
(2010)
Genome Research
, vol.20
, pp. 28-35
-
-
Liu, H.H.1
Lu, P.2
Guo, Y.3
Farrell, E.4
Zhang, X.5
Zheng, M.6
Bosano, B.7
Zhang, Z.8
Allard, J.9
Liao, G.10
-
31
-
-
34447265235
-
PPARalpha is a key regulator of hepatic FGF21
-
Lundasen T., Hunt M.C., Nilsson L.M., Sanyal S., Angelin B., Alexson S.E., Rudling M. PPARalpha is a key regulator of hepatic FGF21. Biochemical and Biophysical Research Communications 2007, 360:437-440.
-
(2007)
Biochemical and Biophysical Research Communications
, vol.360
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.6
Rudling, M.7
-
32
-
-
33845407972
-
Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling
-
Moyers J.S., Shiyanova T.L., Mehrbod F., Dunbar J.D., Noblitt T.W., Otto K.A., Reifel-Miller A., Kharitonenkov A. Molecular determinants of FGF-21 activity-synergy and cross-talk with PPARgamma signaling. Journal of Cellular Physiology 2007, 210:1-6.
-
(2007)
Journal of Cellular Physiology
, vol.210
, pp. 1-6
-
-
Moyers, J.S.1
Shiyanova, T.L.2
Mehrbod, F.3
Dunbar, J.D.4
Noblitt, T.W.5
Otto, K.A.6
Reifel-Miller, A.7
Kharitonenkov, A.8
-
33
-
-
84863011453
-
FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents
-
Mu J., Pinkstaff J., Li Z., Skidmore L., Li N., Myler H., Dallas-Yang Q., Putnam A.M., Yao J., Bussell S., et al. FGF21 analogs of sustained action enabled by orthogonal biosynthesis demonstrate enhanced antidiabetic pharmacology in rodents. Diabetes 2012, 61:505-512.
-
(2012)
Diabetes
, vol.61
, pp. 505-512
-
-
Mu, J.1
Pinkstaff, J.2
Li, Z.3
Skidmore, L.4
Li, N.5
Myler, H.6
Dallas-Yang, Q.7
Putnam, A.M.8
Yao, J.9
Bussell, S.10
-
34
-
-
47949111205
-
Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise E.S., Azzolina B., Kuo D.W., El-Sherbeini M., Tan Y., Yuan X., Mu J., Thompson J.R., Berger J.P., Wong K.K. Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Molecular Pharmacology 2008, 74:403-412.
-
(2008)
Molecular Pharmacology
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
Azzolina, B.2
Kuo, D.W.3
El-Sherbeini, M.4
Tan, Y.5
Yuan, X.6
Mu, J.7
Thompson, J.R.8
Berger, J.P.9
Wong, K.K.10
-
35
-
-
0034697846
-
Identification of a novel FGF, FGF-21, preferentially expressed in the liver
-
Nishimura T., Nakatake Y., Konishi M., Itoh N. Identification of a novel FGF, FGF-21, preferentially expressed in the liver. Biochimica et Biophysica Acta 2000, 1492:203-206.
-
(2000)
Biochimica et Biophysica Acta
, vol.1492
, pp. 203-206
-
-
Nishimura, T.1
Nakatake, Y.2
Konishi, M.3
Itoh, N.4
-
36
-
-
34249697012
-
BetaKlotho is required for metabolic activity of fibroblast growth factor 21
-
Ogawa Y., Kurosu H., Yamamoto M., Nandi A., Rosenblatt K.P., Goetz R., Eliseenkova A.V., Mohammadi M., Kuro-o M. BetaKlotho is required for metabolic activity of fibroblast growth factor 21. Proceedings of the National Academy of Sciences of the United States of America 2007, 104:7432-7437.
-
(2007)
Proceedings of the National Academy of Sciences of the United States of America
, vol.104
, pp. 7432-7437
-
-
Ogawa, Y.1
Kurosu, H.2
Yamamoto, M.3
Nandi, A.4
Rosenblatt, K.P.5
Goetz, R.6
Eliseenkova, A.V.7
Mohammadi, M.8
Kuro-o, M.9
-
37
-
-
3142716146
-
Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification
-
Ohshima T., Koga H., Shimotohno K. Transcriptional activity of peroxisome proliferator-activated receptor gamma is modulated by SUMO-1 modification. Journal of Biological Chemistry 2004, 279:29551-29557.
-
(2004)
Journal of Biological Chemistry
, vol.279
, pp. 29551-29557
-
-
Ohshima, T.1
Koga, H.2
Shimotohno, K.3
-
38
-
-
79960334459
-
Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver
-
Oishi K., Tomita T. Thiazolidinediones are potent inducers of fibroblast growth factor 21 expression in the liver. Biological & Pharmaceutical Bulletin 2011, 34:1120-1121.
-
(2011)
Biological & Pharmaceutical Bulletin
, vol.34
, pp. 1120-1121
-
-
Oishi, K.1
Tomita, T.2
-
39
-
-
53949110053
-
Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver
-
Oishi K., Uchida D., Ishida N. Circadian expression of FGF21 is induced by PPARalpha activation in the mouse liver. FEBS Letters 2008, 582:3639-3642.
-
(2008)
FEBS Letters
, vol.582
, pp. 3639-3642
-
-
Oishi, K.1
Uchida, D.2
Ishida, N.3
-
40
-
-
26444471700
-
A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma
-
Pascual G., Fong A.L., Ogawa S., Gamliel A., Li A.C., Perissi V., Rose D.W., Willson T.M., Rosenfeld M.G., Glass C.K. A SUMOylation-dependent pathway mediates transrepression of inflammatory response genes by PPAR-gamma. Nature 2005, 437:759-763.
-
(2005)
Nature
, vol.437
, pp. 759-763
-
-
Pascual, G.1
Fong, A.L.2
Ogawa, S.3
Gamliel, A.4
Li, A.C.5
Perissi, V.6
Rose, D.W.7
Willson, T.M.8
Rosenfeld, M.G.9
Glass, C.K.10
-
41
-
-
41649109108
-
BetaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
Suzuki M., Uehara Y., Motomura-Matsuzaka K., Oki J., Koyama Y., Kimura M., Asada M., Komi-Kuramochi A., Oka S., Imamura T. betaKlotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Molecular Endocrinology 2008, 22:1006-1014.
-
(2008)
Molecular Endocrinology
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
Oki, J.4
Koyama, Y.5
Kimura, M.6
Asada, M.7
Komi-Kuramochi, A.8
Oka, S.9
Imamura, T.10
-
42
-
-
84863637593
-
FGF21 promotes metabolic homeostasis via white adipose and leptin in mice
-
Veniant M.M., Hale C., Helmering J., Chen M.M., Stanislaus S., Busby J., Vonderfecht S., Xu J., Lloyd D.J. FGF21 promotes metabolic homeostasis via white adipose and leptin in mice. PLoS One 2012, 7:e40164.
-
(2012)
PLoS One
, vol.7
-
-
Veniant, M.M.1
Hale, C.2
Helmering, J.3
Chen, M.M.4
Stanislaus, S.5
Busby, J.6
Vonderfecht, S.7
Xu, J.8
Lloyd, D.J.9
-
43
-
-
37549052177
-
Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes
-
Wang H., Qiang L., Farmer S.R. Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Molecular and Cellular Biology 2008, 28:188-200.
-
(2008)
Molecular and Cellular Biology
, vol.28
, pp. 188-200
-
-
Wang, H.1
Qiang, L.2
Farmer, S.R.3
-
44
-
-
37649006829
-
Effect of GCP-02, a PPARalpha/gamma dual activator, on glucose and lipid metabolism in insulin-resistant mice
-
Wang Z.J., Liu Q., Li P.P., Zou C.H., Shen Z.F. Effect of GCP-02, a PPARalpha/gamma dual activator, on glucose and lipid metabolism in insulin-resistant mice. European Journal of Pharmacology 2008, 580:277-283.
-
(2008)
European Journal of Pharmacology
, vol.580
, pp. 277-283
-
-
Wang, Z.J.1
Liu, Q.2
Li, P.P.3
Zou, C.H.4
Shen, Z.F.5
-
45
-
-
84863338708
-
Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB
-
Yang C., Jin C., Li X., Wang F., McKeehan W.L., Luo Y. Differential specificity of endocrine FGF19 and FGF21 to FGFR1 and FGFR4 in complex with KLB. PLoS One 2012, 7:e33870.
-
(2012)
PLoS One
, vol.7
-
-
Yang, C.1
Jin, C.2
Li, X.3
Wang, F.4
McKeehan, W.L.5
Luo, Y.6
-
46
-
-
84881508008
-
The starvation hormone, fibroblast growth factor-21, extends lifespan in mice
-
Zhang Y., Xie Y., Berglund E.D., Coate K.C., He T.T., Katafuchi T., Xiao G., Potthoff M.J., Wei W., Wan Y., et al. The starvation hormone, fibroblast growth factor-21, extends lifespan in mice. eLife 2012, 1:e00065.
-
(2012)
eLife
, vol.1
-
-
Zhang, Y.1
Xie, Y.2
Berglund, E.D.3
Coate, K.C.4
He, T.T.5
Katafuchi, T.6
Xiao, G.7
Potthoff, M.J.8
Wei, W.9
Wan, Y.10
|