-
1
-
-
34548306408
-
Mechanisms of anabolic therapies for osteoporosis
-
Canalis E, Giustina A, Bilezikian JP (2007) Mechanisms of anabolic therapies for osteoporosis. N Engl J Med 357:905-916.
-
(2007)
N Engl J Med
, vol.357
, pp. 905-916
-
-
Canalis, E.1
Giustina, A.2
Bilezikian, J.P.3
-
3
-
-
34447132814
-
Skeletal remodeling in health and disease
-
Zaidi M (2007) Skeletal remodeling in health and disease. Nat Med 13:791-801.
-
(2007)
Nat Med
, vol.13
, pp. 791-801
-
-
Zaidi, M.1
-
4
-
-
2142652189
-
PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors
-
DOI 10.1172/JCI200419900
-
Akune T, et al. (2004) PPARgamma insufficiency enhances osteogenesis through osteoblast formation from bone marrow progenitors. J Clin Invest 113:846-855. (Pubitemid 38544143)
-
(2004)
Journal of Clinical Investigation
, vol.113
, Issue.6
, pp. 846-855
-
-
Akune, T.1
Ohba, S.2
Kamekura, S.3
Yamaguchi, M.4
Chung, U.-I.5
Kubota, N.6
Terauchi, Y.7
Harada, Y.8
Azuma, Y.9
Nakamura, K.10
Kadowaki, T.11
Kawaguchi, H.12
-
6
-
-
78049257829
-
PPARγ: A circadian transcription factor in adipogenesis and osteogenesis
-
Kawai M, Rosen CJ (2010) PPARγ: a circadian transcription factor in adipogenesis and osteogenesis. Nat Rev Endocrinol 6:629-636.
-
(2010)
Nat Rev Endocrinol
, vol.6
, pp. 629-636
-
-
Kawai, M.1
Rosen, C.J.2
-
7
-
-
34250847265
-
Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone
-
DOI 10.1210/en.2006-1587
-
Lazarenko OP, et al. (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669-2680. (Pubitemid 46984815)
-
(2007)
Endocrinology
, vol.148
, Issue.6
, pp. 2669-2680
-
-
Lazarenko, O.P.1
Rzonca, S.O.2
Hogue, W.R.3
Swain, F.L.4
Suva, L.J.5
Lecka-Czernik, B.6
-
8
-
-
0033515827
-
Multilineage potential of adult human mesenchymal stem cells
-
DOI 10.1126/science.284.5411.143
-
Pittenger MF, et al. (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143-147. (Pubitemid 29282067)
-
(1999)
Science
, vol.284
, Issue.5411
, pp. 143-147
-
-
Pittenger, M.F.1
Mackay, A.M.2
Beck, S.C.3
Jaiswal, R.K.4
Douglas, R.5
Mosca, J.D.6
Moorman, M.A.7
Simonetti, D.W.8
Craig, S.9
Marshak, D.R.10
-
10
-
-
34247565954
-
Molecular insights into the Klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members
-
DOI 10.1128/MCB.02249-06
-
Goetz R, et al. (2007) Molecular insights into the klotho-dependent, endocrine mode of action of fibroblast growth factor 19 subfamily members. Mol Cell Biol 27: 3417-3428. (Pubitemid 46685217)
-
(2007)
Molecular and Cellular Biology
, vol.27
, Issue.9
, pp. 3417-3428
-
-
Goetz, R.1
Beenken, A.2
Ibrahimi, O.A.3
Kalinina, J.4
Olsen, S.K.5
Eliseenkova, A.V.6
Xu, C.7
Neubert, T.A.8
Zhang, F.9
Linhardt, R.J.10
Yu, X.11
White, K.E.12
Inagaki, T.13
Kliewer, S.A.14
Yamamoto, M.15
Kurosu, H.16
Ogawa, Y.17
Kuro-o, M.18
Lanske, B.19
Razzaque, M.S.20
Mohammadi, M.21
more..
-
11
-
-
38149134409
-
Functional evolutionary history of the mouse Fgf gene family
-
Itoh N, Ornitz DM (2008) Functional evolutionary history of the mouse Fgf gene family. Dev Dyn 237:18-27.
-
(2008)
Dev Dyn
, vol.237
, pp. 18-27
-
-
Itoh, N.1
Ornitz, D.M.2
-
12
-
-
34249711964
-
Hepatic Fibroblast Growth Factor 21 Is Regulated by PPARalpha and Is a Key Mediator of Hepatic Lipid Metabolism in Ketotic States
-
DOI 10.1016/j.cmet.2007.05.002, PII S1550413107001295
-
Badman MK, et al. (2007) Hepatic fibroblast growth factor 21 is regulated by PPARalpha and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab 5:426-437. (Pubitemid 46825495)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
13
-
-
34249686631
-
Endocrine Regulation of the Fasting Response by PPARalpha-Mediated Induction of Fibroblast Growth Factor 21
-
DOI 10.1016/j.cmet.2007.05.003, PII S1550413107001301
-
Inagaki T, et al. (2007) Endocrine regulation of the fasting response by PPARalpha-mediated induction of fibroblast growth factor 21. Cell Metab 5:415-425. (Pubitemid 46825496)
-
(2007)
Cell Metabolism
, vol.5
, Issue.6
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
Ding, X.4
Gautron, L.5
Parameswara, V.6
Li, Y.7
Goetz, R.8
Mohammadi, M.9
Esser, V.10
Elmquist, J.K.11
Gerard, R.D.12
Burgess, S.C.13
Hammer, R.E.14
Mangelsdorf, D.J.15
Kliewer, S.A.16
-
14
-
-
34447265235
-
PPARalpha is a key regulator of hepatic FGF21
-
DOI 10.1016/j.bbrc.2007.06.068, PII S0006291X07013083
-
Lundåsen T, et al. (2007) PPARalpha is a key regulator of hepatic FGF21. Biochem Biophys Res Commun 360:437-440. (Pubitemid 47039157)
-
(2007)
Biochemical and Biophysical Research Communications
, vol.360
, Issue.2
, pp. 437-440
-
-
Lundasen, T.1
Hunt, M.C.2
Nilsson, L.-M.3
Sanyal, S.4
Angelin, B.5
Alexson, S.E.H.6
Rudling, M.7
-
15
-
-
84863012459
-
Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones
-
10.1016/j.cell.2011.11.062
-
Dutchak PA, et al. (2012) Fibroblast growth factor-21 regulates PPARgamma activity and the antidiabetic actions of thiazolidinediones. Cell, 10.1016/j.cell.2011.11.062.
-
(2012)
Cell
-
-
Dutchak, P.A.1
-
16
-
-
47949111205
-
Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states
-
Muise ES, et al. (2008) Adipose fibroblast growth factor 21 is up-regulated by peroxisome proliferator-activated receptor gamma and altered metabolic states. Mol Pharmacol 74:403-412.
-
(2008)
Mol Pharmacol
, vol.74
, pp. 403-412
-
-
Muise, E.S.1
-
17
-
-
37549052177
-
Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes
-
Wang H, Qiang L, Farmer SR (2008) Identification of a domain within peroxisome proliferator-activated receptor gamma regulating expression of a group of genes containing fibroblast growth factor 21 that are selectively repressed by SIRT1 in adipocytes. Mol Cell Biol 28:188-200.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 188-200
-
-
Wang, H.1
Qiang, L.2
Farmer, S.R.3
-
18
-
-
48349146527
-
Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans
-
Zhang X, et al. (2008) Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes 57: 1246-1253.
-
(2008)
Diabetes
, vol.57
, pp. 1246-1253
-
-
Zhang, X.1
-
19
-
-
69249093921
-
Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity
-
Berglund ED, et al. (2009) Fibroblast growth factor 21 controls glycemia via regulation of hepatic glucose flux and insulin sensitivity. Endocrinology 150:4084-4093.
-
(2009)
Endocrinology
, vol.150
, pp. 4084-4093
-
-
Berglund, E.D.1
-
20
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, et al. (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
-
21
-
-
20444435873
-
FGF-21 as a novel metabolic regulator
-
DOI 10.1172/JCI23606
-
Kharitonenkov A, et al. (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115: 1627-1635. (Pubitemid 40814671)
-
(2005)
Journal of Clinical Investigation
, vol.115
, Issue.6
, pp. 1627-1635
-
-
Kharitonenkov, A.1
Shiyanova, T.L.2
Koester, A.3
Ford, A.M.4
Micanovic, R.5
Galbreath, E.J.6
Sandusky, G.E.7
Hammond, L.J.8
Moyers, J.S.9
Owens, R.A.10
Gromada, J.11
Brozinick, J.T.12
Hawkins, E.D.13
Wroblewski, V.J.14
Li, D.-S.15
Mehrbod, F.16
Jaskunas, S.R.17
Shanafelt, A.B.18
-
22
-
-
33846418834
-
The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21
-
DOI 10.1210/en.2006-1168
-
Kharitonenkov A, et al. (2007) The metabolic state of diabetic monkeys is regulated by fibroblast growth factor-21. Endocrinology 148:774-781. (Pubitemid 46143178)
-
(2007)
Endocrinology
, vol.148
, Issue.2
, pp. 774-781
-
-
Kharitonenkov, A.1
Wroblewski, V.J.2
Koester, A.3
Chen, Y.-F.4
Clutinger, C.K.5
Tigno, X.T.6
Hansen, B.C.7
Shanafelt, A.B.8
Etgen, G.J.9
-
23
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, et al. (2009) Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes 58:250-259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
-
24
-
-
61549098167
-
Thiazolidinedione-induced skeletal fragility-mechanisms and implications
-
Grey A (2009) Thiazolidinedione-induced skeletal fragility-mechanisms and implications. Diabetes Obes Metab 11:275-284.
-
(2009)
Diabetes Obes Metab
, vol.11
, pp. 275-284
-
-
Grey, A.1
-
25
-
-
35848959474
-
Diabetes mellitus, bone mineral density, and fracture risk
-
DOI 10.1097/MED.0b013e3282f1cba3, PII 0126602920071200000002
-
Strotmeyer ES, Cauley JA (2007) Diabetes mellitus, bone mineral density, and fracture risk. Curr Opin Endocrinol Diabetes Obes 14:429-435. (Pubitemid 350059352)
-
(2007)
Current Opinion in Endocrinology, Diabetes and Obesity
, vol.14
, Issue.6
, pp. 429-435
-
-
Strotmeyer, E.S.1
Cauley, J.A.2
-
26
-
-
67149146438
-
Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): A multicentre, randomised, open-label trial
-
RECORD Study Team
-
Home PD, et al.; RECORD Study Team (2009) Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet 373:2125-2135.
-
(2009)
Lancet
, vol.373
, pp. 2125-2135
-
-
Home, P.D.1
-
27
-
-
33845405222
-
Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy
-
DOI 10.1056/NEJMoa066224
-
Kahn SE, et al.; ADOPT Study Group (2006) Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 355:2427-2443. (Pubitemid 44903747)
-
(2006)
New England Journal of Medicine
, vol.355
, Issue.23
, pp. 2427-2443
-
-
Kahn, S.E.1
Haffner, S.M.2
Heise, M.A.3
Herman, W.H.4
Holman, R.R.5
Jones, N.P.6
Kravitz, B.G.7
Lachin, J.M.8
O'Neill, M.C.9
Zinman, B.10
Viberti, G.11
-
28
-
-
48649095960
-
Rosiglitazone-associated fractures in type 2 diabetes: An analysis from a diabetes outcome progression trial (ADOPT)
-
Diabetes Outcome Progression Trial (ADOPT) Study Group
-
Kahn SE, et al.; Diabetes Outcome Progression Trial (ADOPT) Study Group (2008) Rosiglitazone-associated fractures in type 2 diabetes: An analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care 31:845-851.
-
(2008)
Diabetes Care
, vol.31
, pp. 845-851
-
-
Kahn, S.E.1
-
29
-
-
75149119236
-
Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes
-
ADOPT Study Group
-
Zinman B, et al.; ADOPT Study Group (2010) Effect of rosiglitazone, metformin, and glyburide on bone biomarkers in patients with type 2 diabetes. J Clin Endocrinol Metab 95:134-142.
-
(2010)
J Clin Endocrinol Metab
, vol.95
, pp. 134-142
-
-
Zinman, B.1
-
30
-
-
45649085226
-
Inhibition of growth hormone signaling by the fasting-induced hormone FGF21
-
Inagaki T, et al. (2008) Inhibition of growth hormone signaling by the fasting-induced hormone FGF21. Cell Metab 8:77-83.
-
(2008)
Cell Metab
, vol.8
, pp. 77-83
-
-
Inagaki, T.1
-
31
-
-
67649823642
-
FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response
-
Potthoff MJ, et al. (2009) FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc Natl Acad Sci USA 106:10853-10858.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 10853-10858
-
-
Potthoff, M.J.1
-
32
-
-
80053938104
-
Evidence for osteocyte regulation of bone homeostasis through RANKL expression
-
Nakashima T, et al. (2011) Evidence for osteocyte regulation of bone homeostasis through RANKL expression. Nat Med 17:1231-1234.
-
(2011)
Nat Med
, vol.17
, pp. 1231-1234
-
-
Nakashima, T.1
-
33
-
-
80053978532
-
Matrix-embedded cells control osteoclast formation
-
Xiong J, et al. (2011) Matrix-embedded cells control osteoclast formation. Nat Med 17:1235-1241.
-
(2011)
Nat Med
, vol.17
, pp. 1235-1241
-
-
Xiong, J.1
-
34
-
-
14244250617
-
Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation
-
DOI 10.1210/en.2004-0735
-
Ali AA, et al. (2005) Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 146:1226-1235. (Pubitemid 40289310)
-
(2005)
Endocrinology
, vol.146
, Issue.3
, pp. 1226-1235
-
-
Ali, A.A.1
Weinstein, R.S.2
Stewart, S.A.3
Parfitt, A.M.4
Manolagas, S.C.5
Jilka, R.L.6
-
35
-
-
33748157382
-
Surface-specific effects of a PPARgamma agonist, darglitazone, on bone in mice
-
DOI 10.1016/j.bone.2006.04.008, PII S8756328206004248
-
Li M, et al. (2006) Surface-specific effects of a PPARgamma agonist, darglitazone, on bone in mice. Bone 39:796-806. (Pubitemid 44311719)
-
(2006)
Bone
, vol.39
, Issue.4
, pp. 796-806
-
-
Li, M.1
Pan, L.C.2
Simmons, H.A.3
Li, Y.4
Healy, D.R.5
Robinson, B.S.6
Ke, H.Z.7
Brown, T.A.8
-
36
-
-
11244346967
-
Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone)
-
DOI 10.1007/s00223-004-0224-8
-
Sottile V, Seuwen K, Kneissel M (2004) Enhanced marrow adipogenesis and bone resorption in estrogen-deprived rats treated with the PPARgamma agonist BRL49653 (rosiglitazone). Calcif Tissue Int 75:329-337. (Pubitemid 40064235)
-
(2004)
Calcified Tissue International
, vol.75
, Issue.4
, pp. 329-337
-
-
Sottile, V.1
Seuwen, K.2
Kneissel, M.3
-
37
-
-
78650257620
-
PPARγ in bone homeostasis
-
Wan Y (2010) PPARγ in bone homeostasis. Trends Endocrinol Metab 21:722-728.
-
(2010)
Trends Endocrinol Metab
, vol.21
, pp. 722-728
-
-
Wan, Y.1
-
38
-
-
36849034568
-
PPAR-gamma regulates osteoclastogenesis in mice
-
Wan Y, Chong LW, Evans RM (2007) PPAR-gamma regulates osteoclastogenesis in mice. Nat Med 13:1496-1503.
-
(2007)
Nat Med
, vol.13
, pp. 1496-1503
-
-
Wan, Y.1
Chong, L.W.2
Evans, R.M.3
-
39
-
-
77956408841
-
PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss
-
Wei W, et al. (2010) PGC1beta mediates PPARgamma activation of osteoclastogenesis and rosiglitazone-induced bone loss. Cell Metab 11:503-516.
-
(2010)
Cell Metab
, vol.11
, pp. 503-516
-
-
Wei, W.1
-
40
-
-
0033763097
-
Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23
-
ADHR Consortium
-
ADHR Consortium (2000) Autosomal dominant hypophosphataemic rickets is associated with mutations in FGF23. Nat Genet 26:345-348.
-
(2000)
Nat Genet
, vol.26
, pp. 345-348
-
-
-
41
-
-
1642416884
-
Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitamin D metabolism
-
DOI 10.1172/JCI200419081
-
Shimada T, et al. (2004) Targeted ablation of Fgf23 demonstrates an essential physiological role of FGF23 in phosphate and vitaminD metabolism. J Clin Invest 113:561-568. (Pubitemid 38542505)
-
(2004)
Journal of Clinical Investigation
, vol.113
, Issue.4
, pp. 561-568
-
-
Shimada, T.1
Kakitani, M.2
Yamazaki, Y.3
Hasegawa, H.4
Takeuchi, Y.5
Fujita, T.6
Fukumoto, S.7
Tomizuka, K.8
Yamashita, T.9
-
42
-
-
34547618810
-
Maternal PPARgamma protects nursing neonates by suppressing the production of inflammatory milk
-
DOI 10.1101/gad.1567207
-
Wan Y, et al. (2007) Maternal PPAR gamma protects nursing neonates by suppressing the production of inflammatory milk. Genes Dev 21:1895-1908. (Pubitemid 47204929)
-
(2007)
Genes and Development
, vol.21
, Issue.15
, pp. 1895-1908
-
-
Wan, Y.1
Saghatelian, A.2
Chong, L.-W.3
Zhang, C.-L.4
Cravatt, B.F.5
Evans, R.M.6
-
43
-
-
83255192191
-
Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin
-
Wei W, et al. (2011) Biphasic and dosage-dependent regulation of osteoclastogenesis by β-catenin. Mol Cell Biol 31:4706-4719.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4706-4719
-
-
Wei, W.1
-
44
-
-
83255186737
-
Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population
-
Wei W, et al. (2011) Osteoclast progenitors reside in the peroxisome proliferator-activated receptor γ-expressing bone marrow cell population. Mol Cell Biol 31: 4692-4705.
-
(2011)
Mol Cell Biol
, vol.31
, pp. 4692-4705
-
-
Wei, W.1
-
45
-
-
38949160556
-
Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival
-
DOI 10.1038/sj.emboj.7601984, PII 7601984
-
Krum SA, et al. (2008) Estrogen protects bone by inducing Fas ligand in osteoblasts to regulate osteoclast survival. EMBO J 27:535-545. (Pubitemid 351225684)
-
(2008)
EMBO Journal
, vol.27
, Issue.3
, pp. 535-545
-
-
Krum, S.A.1
Miranda-Carboni, G.A.2
Hauschka, P.V.3
Carroll, J.S.4
Lane, T.F.5
Freedman, L.P.6
Brown, M.7
|