-
2
-
-
0015882341
-
The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
-
[2] Boveris, A., Chance, B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134 (1973), 707–716.
-
(1973)
Biochem. J.
, vol.134
, pp. 707-716
-
-
Boveris, A.1
Chance, B.2
-
3
-
-
0016148483
-
Superoxide radicals as precursors of mitochondrial hydrogen peroxide
-
[3] Loschen, G., Azzi, A., Richter, C., Flohe, L., Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42 (1974), 68–72.
-
(1974)
FEBS Lett.
, vol.42
, pp. 68-72
-
-
Loschen, G.1
Azzi, A.2
Richter, C.3
Flohe, L.4
-
4
-
-
0016681098
-
Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
-
[4] Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54 (1975), 311–314.
-
(1975)
FEBS Lett.
, vol.54
, pp. 311-314
-
-
Boveris, A.1
Cadenas, E.2
-
5
-
-
0017406503
-
Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
-
[5] Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O., Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180 (1977), 248–257.
-
(1977)
Arch. Biochem. Biophys.
, vol.180
, pp. 248-257
-
-
Cadenas, E.1
Boveris, A.2
Ragan, C.I.3
Stoppani, A.O.4
-
6
-
-
0029071509
-
Oxidants in mitochondria: from physiology to diseases
-
[6] Richter, C., Gogvadze, V., Laffranchi, R., Schlapbach, R., Schweizer, M., Suter, M., Walter, P., Yaffee, M., Oxidants in mitochondria: from physiology to diseases. Biochim. Biophys. Acta 1271 (1995), 67–74.
-
(1995)
Biochim. Biophys. Acta
, vol.1271
, pp. 67-74
-
-
Richter, C.1
Gogvadze, V.2
Laffranchi, R.3
Schlapbach, R.4
Schweizer, M.5
Suter, M.6
Walter, P.7
Yaffee, M.8
-
7
-
-
0030969868
-
Superoxide production by the mitochondrial respiratory chain
-
[7] Turrens, J.F., Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17 (1997), 3–8.
-
(1997)
Biosci. Rep.
, vol.17
, pp. 3-8
-
-
Turrens, J.F.1
-
8
-
-
0033796250
-
Mitochondrial free radical generation, oxidative stress, and aging
-
[8] Cadenas, E., Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29 (2000), 222–230.
-
(2000)
Free Radic. Biol. Med.
, vol.29
, pp. 222-230
-
-
Cadenas, E.1
Davies, K.J.2
-
9
-
-
0034306267
-
Mitochondria, oxygen free radicals, disease and ageing
-
[9] Raha, S., Robinson, B.H., Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25 (2000), 502–508.
-
(2000)
Trends Biochem. Sci.
, vol.25
, pp. 502-508
-
-
Raha, S.1
Robinson, B.H.2
-
10
-
-
0036139856
-
The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology
-
[10] Lenaz, G., The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52 (2001), 159–164.
-
(2001)
IUBMB Life
, vol.52
, pp. 159-164
-
-
Lenaz, G.1
-
11
-
-
0142150051
-
Mitochondrial formation of reactive oxygen species
-
[11] Turrens, J.F., Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2003), 335–344.
-
(2003)
J. Physiol.
, vol.552
, pp. 335-344
-
-
Turrens, J.F.1
-
12
-
-
4544235673
-
Calcium, ATP, and ROS: a mitochondrial love-hate triangle
-
[12] Brookes, P.S., Yoon, Y., Robotham, J.L., Anders, M.W., Sheu, S.S., Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am. J. Phys. Cell Physiol. 287 (2004), C817–C833.
-
(2004)
Am. J. Phys. Cell Physiol.
, vol.287
, pp. C817-C833
-
-
Brookes, P.S.1
Yoon, Y.2
Robotham, J.L.3
Anders, M.W.4
Sheu, S.S.5
-
13
-
-
1642422773
-
Mitochondrial free radical production and cell signaling
-
[13] Cadenas, E., Mitochondrial free radical production and cell signaling. Mol. Asp. Med. 25 (2004), 17–26.
-
(2004)
Mol. Asp. Med.
, vol.25
, pp. 17-26
-
-
Cadenas, E.1
-
14
-
-
4043147798
-
Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins
-
[14] Brand, M.D., Affourtit, C., Esteves, T.C., Green, K., Lambert, A.J., Miwa, S., Pakay, J.L., Parker, N., Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins. Free Radic. Biol. Med. 37 (2004), 755–767.
-
(2004)
Free Radic. Biol. Med.
, vol.37
, pp. 755-767
-
-
Brand, M.D.1
Affourtit, C.2
Esteves, T.C.3
Green, K.4
Lambert, A.J.5
Miwa, S.6
Pakay, J.L.7
Parker, N.8
-
15
-
-
13944278132
-
Mitochondria, oxidants, and aging
-
[15] Balaban, R.S., Nemoto, S., Finkel, T., Mitochondria, oxidants, and aging. Cell 120 (2005), 483–495.
-
(2005)
Cell
, vol.120
, pp. 483-495
-
-
Balaban, R.S.1
Nemoto, S.2
Finkel, T.3
-
16
-
-
25844520458
-
Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism
-
[16] Jezek, P., Hlavata, L., Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol. 37 (2005), 2478–2503.
-
(2005)
Int. J. Biochem. Cell Biol.
, vol.37
, pp. 2478-2503
-
-
Jezek, P.1
Hlavata, L.2
-
17
-
-
25444469412
-
Mitochondrial metabolism of reactive oxygen species
-
[17] Andreyev, A.Y., Kushnareva, Y.E., Starkov, A.A., Mitochondrial metabolism of reactive oxygen species. Biochem. Biokhimiia 70 (2005), 200–214.
-
(2005)
Biochem. Biokhimiia
, vol.70
, pp. 200-214
-
-
Andreyev, A.Y.1
Kushnareva, Y.E.2
Starkov, A.A.3
-
18
-
-
10344264960
-
+ leak and ROS generation: an odd couple
-
+ leak and ROS generation: an odd couple. Free Radic. Biol. Med. 38 (2005), 12–23.
-
(2005)
Free Radic. Biol. Med.
, vol.38
, pp. 12-23
-
-
Brookes, P.S.1
-
19
-
-
24144464489
-
Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources
-
[19] Adam-Vizi, V., Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid. Redox Signal. 7 (2005), 1140–1149.
-
(2005)
Antioxid. Redox Signal.
, vol.7
, pp. 1140-1149
-
-
Adam-Vizi, V.1
-
20
-
-
33745684904
-
Mitochondrial ROS-induced ROS release: an update and review
-
[20] Zorov, D.B., Juhaszova, M., Sollott, S.J., Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta 1757 (2006), 509–517.
-
(2006)
Biochim. Biophys. Acta
, vol.1757
, pp. 509-517
-
-
Zorov, D.B.1
Juhaszova, M.2
Sollott, S.J.3
-
21
-
-
57649233079
-
The role of mitochondria in reactive oxygen species metabolism and signaling
-
[21] Starkov, A.A., The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N.Y. Acad. Sci. 1147 (2008), 37–52.
-
(2008)
Ann. N.Y. Acad. Sci.
, vol.1147
, pp. 37-52
-
-
Starkov, A.A.1
-
22
-
-
67649866121
-
Mitochondria and reactive oxygen species
-
[22] Kowaltowski, A.J., de Souza-Pinto, N.C., Castilho, R.F., Vercesi, A.E., Mitochondria and reactive oxygen species. Free Radic. Biol. Med. 47 (2009), 333–343.
-
(2009)
Free Radic. Biol. Med.
, vol.47
, pp. 333-343
-
-
Kowaltowski, A.J.1
de Souza-Pinto, N.C.2
Castilho, R.F.3
Vercesi, A.E.4
-
23
-
-
70349769764
-
Reactive oxygen species production by mitochondria
-
[23] Lambert, A.J., Brand, M.D., Reactive oxygen species production by mitochondria. Methods Mol. Biol. 554 (2009), 165–181.
-
(2009)
Methods Mol. Biol.
, vol.554
, pp. 165-181
-
-
Lambert, A.J.1
Brand, M.D.2
-
24
-
-
58249093939
-
How mitochondria produce reactive oxygen species
-
[24] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
-
(2009)
Biochem. J.
, vol.417
, pp. 1-13
-
-
Murphy, M.P.1
-
25
-
-
77952541558
-
The sites and topology of mitochondrial superoxide production
-
[25] Brand, M.D., The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 (2010), 466–472.
-
(2010)
Exp. Gerontol.
, vol.45
, pp. 466-472
-
-
Brand, M.D.1
-
26
-
-
79551610255
-
Mitochondrial proton and electron leaks
-
[26] Jastroch, M., Divakaruni, A.S., Mookerjee, S., Treberg, J.R., Brand, M.D., Mitochondrial proton and electron leaks. Essays Biochem. 47 (2010), 53–67.
-
(2010)
Essays Biochem.
, vol.47
, pp. 53-67
-
-
Jastroch, M.1
Divakaruni, A.S.2
Mookerjee, S.3
Treberg, J.R.4
Brand, M.D.5
-
28
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
[28] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48 (2012), 158–167.
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
Chandel, N.S.2
-
29
-
-
84863738048
-
Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
-
[29] Drose, S., Brandt, U., Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748 (2012), 145–169.
-
(2012)
Adv. Exp. Med. Biol.
, vol.748
, pp. 145-169
-
-
Drose, S.1
Brandt, U.2
-
30
-
-
84897444272
-
2 generation: redox signaling and oxidative stress
-
2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289 (2014), 8735–8741.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8735-8741
-
-
Sies, H.1
-
31
-
-
84894165975
-
Cardiac mitochondria and reactive oxygen species generation
-
[31] Chen, Y.R., Zweier, J.L., Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 114 (2014), 524–537.
-
(2014)
Circ. Res.
, vol.114
, pp. 524-537
-
-
Chen, Y.R.1
Zweier, J.L.2
-
32
-
-
84901316606
-
Cellular mechanisms and physiological consequences of redox-dependent signalling
-
[32] Holmstrom, K.M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15 (2014), 411–421.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 411-421
-
-
Holmstrom, K.M.1
Finkel, T.2
-
33
-
-
84928993541
-
Mitochondrial ROS metabolism: 10 years later
-
[33] Andreyev, A.Y., Kushnareva, Y.E., Murphy, A.N., Starkov, A.A., Mitochondrial ROS metabolism: 10 years later. Biochem. Biokhimiia 80 (2015), 517–531.
-
(2015)
Biochem. Biokhimiia
, vol.80
, pp. 517-531
-
-
Andreyev, A.Y.1
Kushnareva, Y.E.2
Murphy, A.N.3
Starkov, A.A.4
-
34
-
-
33846225260
-
Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling
-
[34] Hoffman, D.L., Salter, J.D., Brookes, P.S., Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H101–H108.
-
(2007)
Am. J. Physiol. Heart Circ. Physiol.
, vol.292
, pp. H101-H108
-
-
Hoffman, D.L.1
Salter, J.D.2
Brookes, P.S.3
-
35
-
-
67650248980
-
Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions
-
[35] Hoffman, D.L., Brookes, P.S., Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J. Biol. Chem. 284 (2009), 16236–16245.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 16236-16245
-
-
Hoffman, D.L.1
Brookes, P.S.2
-
36
-
-
0034682786
-
2 sensing
-
2 sensing. J. Biol. Chem. 275 (2000), 25130–25138.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
McClintock, D.S.2
Feliciano, C.E.3
Wood, T.M.4
Melendez, J.A.5
Rodriguez, A.M.6
Schumacker, P.T.7
-
37
-
-
0018776894
-
Hydroperoxide metabolism in mammalian organs
-
[37] Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59 (1979), 527–605.
-
(1979)
Physiol. Rev.
, vol.59
, pp. 527-605
-
-
Chance, B.1
Sies, H.2
Boveris, A.3
-
38
-
-
0032413244
-
Mitochondrial aging: open questions
-
[38] Beckman, K.B., Ames, B.N., Mitochondrial aging: open questions. Ann. N.Y. Acad. Sci. 854 (2006), 118–127.
-
(2006)
Ann. N.Y. Acad. Sci.
, vol.854
, pp. 118-127
-
-
Beckman, K.B.1
Ames, B.N.2
-
40
-
-
0037160091
-
Topology of superoxide production from different sites in the mitochondrial electron transport chain
-
[40] St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277 (2002), 44784–44790.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 44784-44790
-
-
St-Pierre, J.1
Buckingham, J.A.2
Roebuck, S.J.3
Brand, M.D.4
-
41
-
-
1042301416
-
Characterization of superoxide-producing sites in isolated brain mitochondria
-
[41] Kudin, A.P., Bimpong-Buta, N.Y., Vielhaber, S., Elger, C.E., Kunz, W.S., Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 (2004), 4127–4135.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 4127-4135
-
-
Kudin, A.P.1
Bimpong-Buta, N.Y.2
Vielhaber, S.3
Elger, C.E.4
Kunz, W.S.5
-
42
-
-
84920520304
-
Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise
-
[42] Goncalves, R.L., Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Brand, M.D., Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290 (2015), 209–227.
-
(2015)
J. Biol. Chem.
, vol.290
, pp. 209-227
-
-
Goncalves, R.L.1
Quinlan, C.L.2
Perevoshchikova, I.V.3
Hey-Mogensen, M.4
Brand, M.D.5
-
43
-
-
79953180902
-
Assessing mitochondrial dysfunction in cells
-
[43] Brand, M.D., Nicholls, D.G., Assessing mitochondrial dysfunction in cells. Biochem. J. 435 (2011), 297–312.
-
(2011)
Biochem. J.
, vol.435
, pp. 297-312
-
-
Brand, M.D.1
Nicholls, D.G.2
-
44
-
-
0035371184
-
Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
-
[44] Schafer, F.Q., Buettner, G.R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30 (2001), 1191–1212.
-
(2001)
Free Radic. Biol. Med.
, vol.30
, pp. 1191-1212
-
-
Schafer, F.Q.1
Buettner, G.R.2
-
45
-
-
84916598956
-
2 by mouse brain mitochondria
-
2 by mouse brain mitochondria. J. Bioenerg. Biomembr. 46 (2014), 471–477.
-
(2014)
J. Bioenerg. Biomembr.
, vol.46
, pp. 471-477
-
-
Starkov, A.A.1
Andreyev, A.Y.2
Zhang, S.F.3
Starkova, N.N.4
Korneeva, M.5
Syromyatnikov, M.6
Popov, V.N.7
-
46
-
-
77953565915
-
Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion
-
[46] Treberg, J.R., Quinlan, C.L., Brand, M.D., Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion. FEBS J. 277 (2010), 2766–2778.
-
(2010)
FEBS J.
, vol.277
, pp. 2766-2778
-
-
Treberg, J.R.1
Quinlan, C.L.2
Brand, M.D.3
-
47
-
-
84867401800
-
Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
-
[47] Quinlan, C.L., Treberg, J.R., Perevoshchikova, I.V., Orr, A.L., Brand, M.D., Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic. Biol. Med. 53 (2012), 1807–1817.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 1807-1817
-
-
Quinlan, C.L.1
Treberg, J.R.2
Perevoshchikova, I.V.3
Orr, A.L.4
Brand, M.D.5
-
48
-
-
84879774696
-
The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production
-
[48] Quinlan, C.L., Perevoschikova, I.V., Goncalves, R.L., Hey-Mogensen, M., Brand, M.D., The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Meth. Enzymol. 526 (2013), 189–217.
-
(2013)
Meth. Enzymol.
, vol.526
, pp. 189-217
-
-
Quinlan, C.L.1
Perevoschikova, I.V.2
Goncalves, R.L.3
Hey-Mogensen, M.4
Brand, M.D.5
-
49
-
-
0031984162
-
Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability
-
[49] Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M., Bindoli, A., Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic. Biol. Med. 24 (1998), 370–376.
-
(1998)
Free Radic. Biol. Med.
, vol.24
, pp. 370-376
-
-
Rigobello, M.P.1
Callegaro, M.T.2
Barzon, E.3
Benetti, M.4
Bindoli, A.5
-
50
-
-
84864707133
-
The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria
-
[50] Kudin, A.P., Augustynek, B., Lehmann, A.K., Kovacs, R., Kunz, W.S., The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim. Biophys. Acta 1817 (2012), 1901–1906.
-
(2012)
Biochim. Biophys. Acta
, vol.1817
, pp. 1901-1906
-
-
Kudin, A.P.1
Augustynek, B.2
Lehmann, A.K.3
Kovacs, R.4
Kunz, W.S.5
-
51
-
-
80052419584
-
The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
-
[51] Quinlan, C.L., Gerencser, A.A., Treberg, J.R., Brand, M.D., The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J. Biol. Chem. 286 (2011), 31361–31372.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 31361-31372
-
-
Quinlan, C.L.1
Gerencser, A.A.2
Treberg, J.R.3
Brand, M.D.4
-
52
-
-
84871139444
-
A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
-
[52] Orr, A.L., Quinlan, C.L., Perevoshchikova, I.V., Brand, M.D., A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 287 (2012), 42921–42935.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 42921-42935
-
-
Orr, A.L.1
Quinlan, C.L.2
Perevoshchikova, I.V.3
Brand, M.D.4
-
53
-
-
84864540083
-
Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
-
[53] Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., Treberg, J.R., Ackrell, B.A., Brand, M.D., Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287 (2012), 27255–27264.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 27255-27264
-
-
Quinlan, C.L.1
Orr, A.L.2
Perevoshchikova, I.V.3
Treberg, J.R.4
Ackrell, B.A.5
Brand, M.D.6
-
54
-
-
84879430920
-
Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
-
[54] Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D., Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1 (2013), 304–312.
-
(2013)
Redox Biol.
, vol.1
, pp. 304-312
-
-
Quinlan, C.L.1
Perevoshchikova, I.V.2
Hey-Mogensen, M.3
Orr, A.L.4
Brand, M.D.5
-
55
-
-
84896935583
-
The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
-
[55] Quinlan, C.L., Goncalves, R.L., Hey-Mogensen, M., Yadava, N., Bunik, V.I., Brand, M.D., The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 289 (2014), 8312–8325.
-
(2014)
J. Biol. Chem.
, vol.289
, pp. 8312-8325
-
-
Quinlan, C.L.1
Goncalves, R.L.2
Hey-Mogensen, M.3
Yadava, N.4
Bunik, V.I.5
Brand, M.D.6
-
56
-
-
84952342515
-
Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex
-
[56] Goncalves, R.L.S., Bunik, V.I., Brand, M.D., Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic. Biol. Med. 91 (2016), 247–255.
-
(2016)
Free Radic. Biol. Med.
, vol.91
, pp. 247-255
-
-
Goncalves, R.L.S.1
Bunik, V.I.2
Brand, M.D.3
-
57
-
-
0019083215
-
Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
-
[57] Turrens, J.F., Boveris, A., Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191 (1980), 421–427.
-
(1980)
Biochem. J.
, vol.191
, pp. 421-427
-
-
Turrens, J.F.1
Boveris, A.2
-
58
-
-
0142210179
-
Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria
-
[58] Han, D., Canali, R., Rettori, D., Kaplowitz, N., Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol. Pharmacol. 64 (2003), 1136–1144.
-
(2003)
Mol. Pharmacol.
, vol.64
, pp. 1136-1144
-
-
Han, D.1
Canali, R.2
Rettori, D.3
Kaplowitz, N.4
-
59
-
-
10344221083
-
Complex III releases superoxide to both sides of the inner mitochondrial membrane
-
[59] Muller, F.L., Liu, Y., Van Remmen, H., Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279 (2004), 49064–49073.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 49064-49073
-
-
Muller, F.L.1
Liu, Y.2
Van Remmen, H.3
-
60
-
-
33646716659
-
The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
-
[60] Kussmaul, L., Hirst, J., The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 103 (2006), 7607–7612.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 7607-7612
-
-
Kussmaul, L.1
Hirst, J.2
-
61
-
-
84872786353
-
Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I
-
[61] Grivennikova, V.G., Vinogradov, A.D., Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim. Biophys. Acta 1827 (2013), 446–454.
-
(2013)
Biochim. Biophys. Acta
, vol.1827
, pp. 446-454
-
-
Grivennikova, V.G.1
Vinogradov, A.D.2
-
62
-
-
0021996572
-
Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
-
[62] Turrens, J.F., Alexandre, A., Lehninger, A.L., Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237 (1985), 408–414.
-
(1985)
Arch. Biochem. Biophys.
, vol.237
, pp. 408-414
-
-
Turrens, J.F.1
Alexandre, A.2
Lehninger, A.L.3
-
63
-
-
0032545269
-
Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria
-
[63] Zhang, L., Yu, L., Yu, C.A., Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273 (1998), 33972–33976.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 33972-33976
-
-
Zhang, L.1
Yu, L.2
Yu, C.A.3
-
64
-
-
0141526414
-
Superoxide and hydrogen peroxide production by Drosophila mitochondria
-
[64] Miwa, S., St-Pierre, J., Partridge, L., Brand, M.D., Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35 (2003), 938–948.
-
(2003)
Free Radic. Biol. Med.
, vol.35
, pp. 938-948
-
-
Miwa, S.1
St-Pierre, J.2
Partridge, L.3
Brand, M.D.4
-
65
-
-
77956262775
-
Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production
-
[65] Sarewicz, M., Borek, A., Cieluch, E., Swierczek, M., Osyczka, A., Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production. Biochim. Biophys. Acta 1797 (2010), 1820–1827.
-
(2010)
Biochim. Biophys. Acta
, vol.1797
, pp. 1820-1827
-
-
Sarewicz, M.1
Borek, A.2
Cieluch, E.3
Swierczek, M.4
Osyczka, A.5
-
66
-
-
0037044847
-
Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase
-
[66] Messner, K.R., Imlay, J.A., Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277 (2002), 42563–42571.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 42563-42571
-
-
Messner, K.R.1
Imlay, J.A.2
-
67
-
-
84884593391
-
Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
-
[67] Siebels, I., Drose, S., Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim. Biophys Acta 1827 (2013), 1156–1164.
-
(2013)
Biochim. Biophys Acta
, vol.1827
, pp. 1156-1164
-
-
Siebels, I.1
Drose, S.2
-
68
-
-
0036408866
-
Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species
-
[68] Bunik, V.I., Sievers, C., Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur. J. Biochem. 269 (2002), 5004–5015.
-
(2002)
Eur. J. Biochem.
, vol.269
, pp. 5004-5015
-
-
Bunik, V.I.1
Sievers, C.2
-
69
-
-
0037155880
-
Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase
-
[69] Gazaryan, I.G., Krasnikov, B.F., Ashby, G.A., Thorneley, R.N., Kristal, B.S., Brown, A.M., Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J. Biol. Chem. 277 (2002), 10064–10072.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 10064-10072
-
-
Gazaryan, I.G.1
Krasnikov, B.F.2
Ashby, G.A.3
Thorneley, R.N.4
Kristal, B.S.5
Brown, A.M.6
-
70
-
-
4544226082
-
Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
-
[70] Tretter, L., Adam-Vizi, V., Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 24 (2004), 7771–7778.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7771-7778
-
-
Tretter, L.1
Adam-Vizi, V.2
-
71
-
-
79955977892
-
Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer
-
[71] Pryde, K.R., Hirst, J., Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286 (2011), 18056–18065.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 18056-18065
-
-
Pryde, K.R.1
Hirst, J.2
-
72
-
-
84878009179
-
Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
-
[72] Perevoshchikova, I.V., Quinlan, C.L., Orr, A.L., Gerencser, A.A., Brand, M.D., Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radic. Biol. Med. 61 (2013), 298–309.
-
(2013)
Free Radic. Biol. Med.
, vol.61
, pp. 298-309
-
-
Perevoshchikova, I.V.1
Quinlan, C.L.2
Orr, A.L.3
Gerencser, A.A.4
Brand, M.D.5
-
73
-
-
0016750459
-
Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid
-
[73] Forman, H.J., Kennedy, J., Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250 (1975), 4322–4326.
-
(1975)
J. Biol. Chem.
, vol.250
, pp. 4322-4326
-
-
Forman, H.J.1
Kennedy, J.2
-
75
-
-
84911476354
-
Generator-specific targets of mitochondrial reactive oxygen species
-
[75] Bleier, L., Wittig, I., Heide, H., Steger, M., Brandt, U., Drose, S., Generator-specific targets of mitochondrial reactive oxygen species. Free Radic. Biol. Med. 78 (2015), 1–10.
-
(2015)
Free Radic. Biol. Med.
, vol.78
, pp. 1-10
-
-
Bleier, L.1
Wittig, I.2
Heide, H.3
Steger, M.4
Brandt, U.5
Drose, S.6
-
76
-
-
84924362186
-
Mitochondrial and cytoplasmic ROS have opposing effects on lifespan
-
[76] Schaar, C.E., Dues, D.J., Spielbauer, K.K., Machiela, E., Cooper, J.F., Senchuk, M., Hekimi, S., Van Raamsdonk, J.M., Mitochondrial and cytoplasmic ROS have opposing effects on lifespan. PLoS Genet., 11, 2015, e1004972.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1004972
-
-
Schaar, C.E.1
Dues, D.J.2
Spielbauer, K.K.3
Machiela, E.4
Cooper, J.F.5
Senchuk, M.6
Hekimi, S.7
Van Raamsdonk, J.M.8
-
77
-
-
24344508510
-
The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
-
[77] Miwa, S., Brand, M.D., The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta, 1709(214–219), 2005.
-
(2005)
Biochim. Biophys. Acta
, vol.1709
, Issue.214-219
-
-
Miwa, S.1
Brand, M.D.2
-
78
-
-
84879390427
-
The role of mitochondrial function and cellular bioenergetics in ageing and disease
-
[78] Brand, M.D., Orr, A.L., Perevoshchikova, I.V., Quinlan, C.L., The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol. 169:Suppl. 2 (2013), S1–S8.
-
(2013)
Br. J. Dermatol.
, vol.169
, pp. S1-S8
-
-
Brand, M.D.1
Orr, A.L.2
Perevoshchikova, I.V.3
Quinlan, C.L.4
-
79
-
-
4043090717
-
Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
-
[79] Lambert, A.J., Brand, M.D., Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. The Biochem. J. 382 (2004), 511–517.
-
(2004)
The Biochem. J.
, vol.382
, pp. 511-517
-
-
Lambert, A.J.1
Brand, M.D.2
-
80
-
-
84925734283
-
Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles
-
[80] Crochemore, C., Mekki, M., Corbiere, C., Karoui, A., Noel, R., Vendeville, C., Vaugeois, J.M., Monteil, C., Subsarcolemmal and interfibrillar mitochondria display distinct superoxide production profiles. Free Radic. Res. 49 (2015), 331–337.
-
(2015)
Free Radic. Res.
, vol.49
, pp. 331-337
-
-
Crochemore, C.1
Mekki, M.2
Corbiere, C.3
Karoui, A.4
Noel, R.5
Vendeville, C.6
Vaugeois, J.M.7
Monteil, C.8
-
81
-
-
0025363588
-
Hydrogen peroxide production by liver mitochondria in different species
-
[81] Sohal, R.S., Svensson, I., Brunk, U.T., Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53 (1990), 209–215.
-
(1990)
Mech. Ageing Dev.
, vol.53
, pp. 209-215
-
-
Sohal, R.S.1
Svensson, I.2
Brunk, U.T.3
-
82
-
-
0027365312
-
Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species
-
[82] Ku, H.H., Brunk, U.T., Sohal, R.S., Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15 (1993), 621–627.
-
(1993)
Free Radic. Biol. Med.
, vol.15
, pp. 621-627
-
-
Ku, H.H.1
Brunk, U.T.2
Sohal, R.S.3
-
83
-
-
0032525349
-
2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved
-
2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech. Ageing Dev. 103 (1998), 133–146.
-
(1998)
Mech. Ageing Dev.
, vol.103
, pp. 133-146
-
-
Herrero, A.1
Barja, G.2
-
84
-
-
1542563727
-
The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach
-
[84] Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C., Barja, G., The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Physiol. B 168 (1998), 149–158.
-
(1998)
J. Comp. Physiol. B
, vol.168
, pp. 149-158
-
-
Perez-Campo, R.1
Lopez-Torres, M.2
Cadenas, S.3
Rojas, C.4
Barja, G.5
-
85
-
-
0033369476
-
Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity
-
[85] Barja, G., Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31 (1999), 347–366.
-
(1999)
J. Bioenerg. Biomembr.
, vol.31
, pp. 347-366
-
-
Barja, G.1
-
86
-
-
34548617735
-
Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms
-
[86] Lambert, A.J., Boysen, H.M., Buckingham, J.A., Yang, T., Podlutsky, A., Austad, S.N., Kunz, T.H., Buffenstein, R., Brand, M.D., Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6 (2007), 607–618.
-
(2007)
Aging Cell
, vol.6
, pp. 607-618
-
-
Lambert, A.J.1
Boysen, H.M.2
Buckingham, J.A.3
Yang, T.4
Podlutsky, A.5
Austad, S.N.6
Kunz, T.H.7
Buffenstein, R.8
Brand, M.D.9
-
87
-
-
76249116705
-
Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia
-
[87] Lambert, A.J., Buckingham, J.A., Boysen, H.M., Brand, M.D., Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9 (2010), 78–91.
-
(2010)
Aging Cell
, vol.9
, pp. 78-91
-
-
Lambert, A.J.1
Buckingham, J.A.2
Boysen, H.M.3
Brand, M.D.4
-
88
-
-
0037352050
-
2-Oxo acid dehydrogenase complexes in redox regulation
-
[88] Bunik, V.I., 2-Oxo acid dehydrogenase complexes in redox regulation. Eur. J. Biochem. 270 (2003), 1036–1042.
-
(2003)
Eur. J. Biochem.
, vol.270
, pp. 1036-1042
-
-
Bunik, V.I.1
-
89
-
-
4544359913
-
Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species
-
[89] Starkov, A.A., Fiskum, G., Chinopoulos, C., Lorenzo, B.J., Browne, S.E., Patel, M.S., Beal, M.F., Mitochondrial alpha-ketoglutarate dehydrogenase complex generates reactive oxygen species. J. Neurosci. 24 (2004), 7779–7788.
-
(2004)
J. Neurosci.
, vol.24
, pp. 7779-7788
-
-
Starkov, A.A.1
Fiskum, G.2
Chinopoulos, C.3
Lorenzo, B.J.4
Browne, S.E.5
Patel, M.S.6
Beal, M.F.7
-
91
-
-
47849099861
-
Ammonium-dependent hydrogen peroxide production by mitochondria
-
[91] Grivennikova, V.G., Cecchini, G., Vinogradov, A.D., Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett. 582 (2008), 2719–2724.
-
(2008)
FEBS Lett.
, vol.582
, pp. 2719-2724
-
-
Grivennikova, V.G.1
Cecchini, G.2
Vinogradov, A.D.3
-
92
-
-
78651366651
-
Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production
-
[92] Kareyeva, A.V., Grivennikova, V.G., Cecchini, G., Vinogradov, A.D., Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett. 585 (2011), 385–389.
-
(2011)
FEBS Lett.
, vol.585
, pp. 385-389
-
-
Kareyeva, A.V.1
Grivennikova, V.G.2
Cecchini, G.3
Vinogradov, A.D.4
-
93
-
-
0033522924
-
Titrating the effects of mitochondrial complex I impairment in the cell physiology
-
[93] Barrientos, A., Moraes, C.T., Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274 (1999), 16188–16197.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 16188-16197
-
-
Barrientos, A.1
Moraes, C.T.2
-
94
-
-
0035860682
-
Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons
-
[94] Nakamura, K., Bindokas, V.P., Kowlessur, D., Elas, M., Milstien, S., Marks, J.D., Halpern, H.J., Kang, U.J., Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons. J. Biol. Chem. 276 (2001), 34402–34407.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 34402-34407
-
-
Nakamura, K.1
Bindokas, V.P.2
Kowlessur, D.3
Elas, M.4
Milstien, S.5
Marks, J.D.6
Halpern, H.J.7
Kang, U.J.8
-
95
-
-
0036138662
-
Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes
-
[95] Siraki, A.G., Pourahmad, J., Chan, T.S., Khan, S., O'Brien, P.J., Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32 (2002), 2–10.
-
(2002)
Free Radic. Biol. Med.
, vol.32
, pp. 2-10
-
-
Siraki, A.G.1
Pourahmad, J.2
Chan, T.S.3
Khan, S.4
O'Brien, P.J.5
-
96
-
-
0037424245
-
Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
-
[96] Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A., Robinson, J.P., Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278 (2003), 8516–8525.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 8516-8525
-
-
Li, N.1
Ragheb, K.2
Lawler, G.3
Sturgis, J.4
Rajwa, B.5
Melendez, J.A.6
Robinson, J.P.7
-
97
-
-
33746326513
-
Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration
-
[97] Radad, K., Rausch, W.D., Gille, G., Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49 (2006), 379–386.
-
(2006)
Neurochem. Int.
, vol.49
, pp. 379-386
-
-
Radad, K.1
Rausch, W.D.2
Gille, G.3
-
98
-
-
33645767663
-
Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells
-
[98] Reinecke, F., Levanets, O., Olivier, Y., Louw, R., Semete, B., Grobler, A., Hidalgo, J., Smeitink, J., Olckers, A., Van der Westhuizen, F.H., Metallothionein isoform 2A expression is inducible and protects against ROS-mediated cell death in rotenone-treated HeLa cells. Biochem. J. 395 (2006), 405–415.
-
(2006)
Biochem. J.
, vol.395
, pp. 405-415
-
-
Reinecke, F.1
Levanets, O.2
Olivier, Y.3
Louw, R.4
Semete, B.5
Grobler, A.6
Hidalgo, J.7
Smeitink, J.8
Olckers, A.9
Van der Westhuizen, F.H.10
-
99
-
-
84884902071
-
Oxidative damage to macromolecules in human Parkinson disease and the rotenone model
-
[99] Sanders, L.H., Greenamyre, J.T., Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 62 (2013), 111–120.
-
(2013)
Free Radic. Biol. Med.
, vol.62
, pp. 111-120
-
-
Sanders, L.H.1
Greenamyre, J.T.2
-
100
-
-
61449250478
-
Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria
-
[100] Chinta, S.J., Rane, A., Yadava, N., Andersen, J.K., Nicholls, D.G., Polster, B.M., Reactive oxygen species regulation by AIF- and complex I-depleted brain mitochondria. Free Radic. Biol. Med. 46 (2009), 939–947.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, pp. 939-947
-
-
Chinta, S.J.1
Rane, A.2
Yadava, N.3
Andersen, J.K.4
Nicholls, D.G.5
Polster, B.M.6
-
102
-
-
33644872938
-
Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus
-
[102] Sazanov, L.A., Hinchliffe, P., Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311 (2006), 1430–1436.
-
(2006)
Science
, vol.311
, pp. 1430-1436
-
-
Sazanov, L.A.1
Hinchliffe, P.2
-
103
-
-
84884519058
-
Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening
-
[103] Orr, A.L., Ashok, D., Sarantos, M.R., Shi, T., Hughes, R.E., Brand, M.D., Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic. Biol. Med. 65 (2013), 1047–1059.
-
(2013)
Free Radic. Biol. Med.
, vol.65
, pp. 1047-1059
-
-
Orr, A.L.1
Ashok, D.2
Sarantos, M.R.3
Shi, T.4
Hughes, R.E.5
Brand, M.D.6
-
104
-
-
84945306969
-
Suppressors of superoxide production from mitochondrial complex III
-
[104] Orr, A.L., Vargas, L., Turk, C.N., Baaten, J.E., Matzen, J.T., Dardov, V.J., Attle, S.J., Li, J., Quackenbush, D.C., Goncalves, R.L.S., Perevoshchikova, I.V., Petrassi, H.M., Meeusen, S.L., Ainscow, E.K., Brand, M.D., Suppressors of superoxide production from mitochondrial complex III. Nat. Chem. Biol. 11 (2015), 834–836.
-
(2015)
Nat. Chem. Biol.
, vol.11
, pp. 834-836
-
-
Orr, A.L.1
Vargas, L.2
Turk, C.N.3
Baaten, J.E.4
Matzen, J.T.5
Dardov, V.J.6
Attle, S.J.7
Li, J.8
Quackenbush, D.C.9
Goncalves, R.L.S.10
Perevoshchikova, I.V.11
Petrassi, H.M.12
Meeusen, S.L.13
Ainscow, E.K.14
Brand, M.D.15
-
105
-
-
0024548927
-
Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia
-
[105] Cino, M., Del Maestro, R.F., Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269 (1989), 623–638.
-
(1989)
Arch. Biochem. Biophys.
, vol.269
, pp. 623-638
-
-
Cino, M.1
Del Maestro, R.F.2
-
106
-
-
0034740585
-
m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
-
m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79 (2001), 266–277.
-
(2001)
J. Neurochem.
, vol.79
, pp. 266-277
-
-
Votyakova, T.V.1
Reynolds, I.J.2
-
107
-
-
0036319021
-
Generation of reactive oxygen species by the mitochondrial electron transport chain
-
[107] Liu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80 (2002), 780–787.
-
(2002)
J. Neurochem.
, vol.80
, pp. 780-787
-
-
Liu, Y.1
Fiskum, G.2
Schubert, D.3
-
108
-
-
4544354262
-
Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
-
[108] Lambert, A.J., Brand, M.D., Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279 (2004), 39414–39420.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 39414-39420
-
-
Lambert, A.J.1
Brand, M.D.2
-
109
-
-
43549110469
-
Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state
-
[109] Lambert, A.J., Buckingham, J.A., Brand, M.D., Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state. FEBS Lett. 582 (2008), 1711–1714.
-
(2008)
FEBS Lett.
, vol.582
, pp. 1711-1714
-
-
Lambert, A.J.1
Buckingham, J.A.2
Brand, M.D.3
-
110
-
-
0030722043
-
Generating partitioning, targeting and functioning of superoxide in mitochondria
-
[110] Liu, S.S., Generating partitioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17 (1997), 259–272.
-
(1997)
Biosci. Rep.
, vol.17
, pp. 259-272
-
-
Liu, S.S.1
-
111
-
-
0030729851
-
High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
-
[111] Korshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997), 15–18.
-
(1997)
FEBS Lett.
, vol.416
, pp. 15-18
-
-
Korshunov, S.S.1
Skulachev, V.P.2
Starkov, A.A.3
-
112
-
-
79961008706
-
Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
-
[112] Treberg, J.R., Quinlan, C.L., Brand, M.D., Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 286 (2011), 27103–27110.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 27103-27110
-
-
Treberg, J.R.1
Quinlan, C.L.2
Brand, M.D.3
-
113
-
-
79955966782
-
A model of the proton translocation mechanism of complex I
-
[113] Treberg, J.R., Brand, M.D., A model of the proton translocation mechanism of complex I. J. Biol. Chem. 286 (2011), 17579–17584.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 17579-17584
-
-
Treberg, J.R.1
Brand, M.D.2
-
114
-
-
43049141441
-
Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport
-
[114] Lambert, A.J., Buckingham, J.A., Boysen, H.M., Brand, M.D., Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim. Biophys. Acta, 397–403(1777), 2008.
-
(2008)
Biochim. Biophys. Acta
, vol.397-403
, Issue.1777
-
-
Lambert, A.J.1
Buckingham, J.A.2
Boysen, H.M.3
Brand, M.D.4
-
115
-
-
84922479528
-
Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I
-
[115] Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., Brandt, U., Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347 (2015), 44–49.
-
(2015)
Science
, vol.347
, pp. 44-49
-
-
Zickermann, V.1
Wirth, C.2
Nasiri, H.3
Siegmund, K.4
Schwalbe, H.5
Hunte, C.6
Brandt, U.7
-
116
-
-
84957951849
-
A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury
-
[116] Chouchani, E.T., Pell, V.R., James, A.M., Work, L.M., Saeb-Parsy, K., Frezza, C., Krieg, T., Murphy, M.P., A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab., 2016.
-
(2016)
Cell Metab.
-
-
Chouchani, E.T.1
Pell, V.R.2
James, A.M.3
Work, L.M.4
Saeb-Parsy, K.5
Frezza, C.6
Krieg, T.7
Murphy, M.P.8
-
117
-
-
84874352529
-
Crystal structure of the entire respiratory complex I
-
[117] Baradaran, R., Berrisford, J.M., Minhas, G.S., Sazanov, L.A., Crystal structure of the entire respiratory complex I. Nature 494 (2013), 443–448.
-
(2013)
Nature
, vol.494
, pp. 443-448
-
-
Baradaran, R.1
Berrisford, J.M.2
Minhas, G.S.3
Sazanov, L.A.4
-
118
-
-
0017074295
-
566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3
-
566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3. Arch. Biochem. Biophys. 174 (1976), 143–157.
-
(1976)
Arch. Biochem. Biophys.
, vol.174
, pp. 143-157
-
-
Erecinska, M.1
Wilson, D.F.2
-
120
-
-
1942447877
-
1 complex: function in the context of structure
-
1 complex: function in the context of structure. Annu. Rev. Physiol. 66 (2004), 689–733.
-
(2004)
Annu. Rev. Physiol.
, vol.66
, pp. 689-733
-
-
Crofts, A.R.1
-
121
-
-
0346850862
-
The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide
-
[121] Guo, J., Lemire, B.D., The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J. Biol. Chem. 278 (2003), 47629–47635.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 47629-47635
-
-
Guo, J.1
Lemire, B.D.2
-
122
-
-
76049086567
-
Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
-
[122] Paranagama, M.P., Sakamoto, K., Amino, H., Awano, M., Miyoshi, H., Kita, K., Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 10 (2010), 158–165.
-
(2010)
Mitochondrion
, vol.10
, pp. 158-165
-
-
Paranagama, M.P.1
Sakamoto, K.2
Amino, H.3
Awano, M.4
Miyoshi, H.5
Kita, K.6
-
123
-
-
0036805853
-
Cytopathies involving mitochondrial complex II
-
[123] Ackrell, B.A., Cytopathies involving mitochondrial complex II. Mol. Asp. Med. 23 (2002), 369–384.
-
(2002)
Mol. Asp. Med.
, vol.23
, pp. 369-384
-
-
Ackrell, B.A.1
-
124
-
-
84875703869
-
The role of complex II in disease
-
[124] Hoekstra, A.S., Bayley, J.P., The role of complex II in disease. Biochim. Biophys. Acta, 543–551(1827), 2013.
-
(2013)
Biochim. Biophys. Acta
, vol.543-551
, Issue.1827
-
-
Hoekstra, A.S.1
Bayley, J.P.2
-
125
-
-
0018066282
-
Mammalian succinate dehydrogenase
-
[125] Ackrell, B.A., Kearney, E.B., Singer, T.P., Mammalian succinate dehydrogenase. Methods Enzymol. 53 (1978), 466–483.
-
(1978)
Methods Enzymol.
, vol.53
, pp. 466-483
-
-
Ackrell, B.A.1
Kearney, E.B.2
Singer, T.P.3
-
126
-
-
0043269302
-
Function and structure of complex II of the respiratory chain
-
[126] Cecchini, G., Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72 (2003), 77–109.
-
(2003)
Annu. Rev. Biochem.
, vol.72
, pp. 77-109
-
-
Cecchini, G.1
-
127
-
-
0036244950
-
Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide
-
[127] Drahota, Z., Chowdhury, S.K., Floryk, D., Mracek, T., Wilhelm, J., Rauchova, H., Lenaz, G., Houstek, J., Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J. Bioenerg. Biomembr. 34 (2002), 105–113.
-
(2002)
J. Bioenerg. Biomembr.
, vol.34
, pp. 105-113
-
-
Drahota, Z.1
Chowdhury, S.K.2
Floryk, D.3
Mracek, T.4
Wilhelm, J.5
Rauchova, H.6
Lenaz, G.7
Houstek, J.8
-
129
-
-
57449106484
-
High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria
-
[129] Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z., Houstek, J., High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch. Biochem. Biophys. 481 (2009), 30–36.
-
(2009)
Arch. Biochem. Biophys.
, vol.481
, pp. 30-36
-
-
Mracek, T.1
Pecinova, A.2
Vrbacky, M.3
Drahota, Z.4
Houstek, J.5
-
130
-
-
84896075464
-
Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase
-
[130] Orr, A.L., Ashok, D., Sarantos, M.R., Ng, R., Shi, T., Gerencser, A.A., Hughes, R.E., Brand, M.D., Novel inhibitors of mitochondrial sn-glycerol 3-phosphate dehydrogenase. PLoS One, 9, 2015, e89938.
-
(2015)
PLoS One
, vol.9
, pp. e89938
-
-
Orr, A.L.1
Ashok, D.2
Sarantos, M.R.3
Ng, R.4
Shi, T.5
Gerencser, A.A.6
Hughes, R.E.7
Brand, M.D.8
-
131
-
-
42149117451
-
Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism
-
[131] Yeh, J.I., Chinte, U., Du, S., Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc. Natl. Acad. Sci. USA 105 (2008), 3280–3285.
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 3280-3285
-
-
Yeh, J.I.1
Chinte, U.2
Du, S.3
-
132
-
-
63349087445
-
Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
-
[132] Tahara, E.B., Navarete, F.D., Kowaltowski, A.J., Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 46 (2009), 1283–1297.
-
(2009)
Free Radic. Biol. Med.
, vol.46
, pp. 1283-1297
-
-
Tahara, E.B.1
Navarete, F.D.2
Kowaltowski, A.J.3
-
134
-
-
0037441390
-
External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide
-
[134] Fang, J., Beattie, D.S., External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34 (2003), 478–488.
-
(2003)
Free Radic. Biol. Med.
, vol.34
, pp. 478-488
-
-
Fang, J.1
Beattie, D.S.2
-
135
-
-
22744447211
-
Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis
-
[135] Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., Pelliccia, G., Luzi, L., Minucci, S., Marcaccio, M., Pinton, P., Rizzuto, R., Bernardi, P., Paolucci, F., Pelicci, P.G., Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122 (2005), 221–233.
-
(2005)
Cell
, vol.122
, pp. 221-233
-
-
Giorgio, M.1
Migliaccio, E.2
Orsini, F.3
Paolucci, D.4
Moroni, M.5
Contursi, C.6
Pelliccia, G.7
Luzi, L.8
Minucci, S.9
Marcaccio, M.10
Pinton, P.11
Rizzuto, R.12
Bernardi, P.13
Paolucci, F.14
Pelicci, P.G.15
-
136
-
-
84896690861
-
Functional role of mitochondrial respiratory supercomplexes
-
[136] Genova, M.L., Lenaz, G., Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta, 427–443(1837), 2014.
-
(2014)
Biochim. Biophys. Acta
, vol.427-443
, Issue.1837
-
-
Genova, M.L.1
Lenaz, G.2
-
137
-
-
38749087624
-
High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I-and complex II-linked substrates
-
[137] Muller, F.L., Liu, Y., Abdul-Ghani, M.A., Lustgarten, M.S., Bhattacharya, A., Jang, Y.C., Van Remmen, H., High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I-and complex II-linked substrates. Biochem. J. 409 (2008), 491–499.
-
(2008)
Biochem. J.
, vol.409
, pp. 491-499
-
-
Muller, F.L.1
Liu, Y.2
Abdul-Ghani, M.A.3
Lustgarten, M.S.4
Bhattacharya, A.5
Jang, Y.C.6
Van Remmen, H.7
-
138
-
-
55949118714
-
Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production
-
[138] Powers, S.K., Jackson, M.J., Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88 (2008), 1243–1276.
-
(2008)
Physiol. Rev.
, vol.88
, pp. 1243-1276
-
-
Powers, S.K.1
Jackson, M.J.2
-
139
-
-
84890084174
-
Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases
-
[139] Sakellariou, G.K., Jackson, M.J., Vasilaki, A., Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic. Res. 48 (2014), 12–29.
-
(2014)
Free Radic. Res.
, vol.48
, pp. 12-29
-
-
Sakellariou, G.K.1
Jackson, M.J.2
Vasilaki, A.3
-
140
-
-
34548126843
-
Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects
-
[140] Wardman, P., Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43 (2007), 995–1022.
-
(2007)
Free Radic. Biol. Med.
, vol.43
, pp. 995-1022
-
-
Wardman, P.1
-
141
-
-
79953762174
-
Unraveling the biological roles of reactive oxygen species
-
[141] Murphy, M.P., Holmgren, A., Larsson, N.G., Halliwell, B., Chang, C.J., Kalyanaraman, B., Rhee, S.G., Thornalley, P.J., Partridge, L., Gems, D., Nystrom, T., Belousov, V., Schumacker, P.T., Winterbourn, C.C., Unraveling the biological roles of reactive oxygen species. Cell Metab. 13 (2011), 361–366.
-
(2011)
Cell Metab.
, vol.13
, pp. 361-366
-
-
Murphy, M.P.1
Holmgren, A.2
Larsson, N.G.3
Halliwell, B.4
Chang, C.J.5
Kalyanaraman, B.6
Rhee, S.G.7
Thornalley, P.J.8
Partridge, L.9
Gems, D.10
Nystrom, T.11
Belousov, V.12
Schumacker, P.T.13
Winterbourn, C.C.14
-
142
-
-
84856556021
-
There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
-
[142] Brown, G.C., Borutaite, V., There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12 (2012), 1–4.
-
(2012)
Mitochondrion
, vol.12
, pp. 1-4
-
-
Brown, G.C.1
Borutaite, V.2
-
143
-
-
84947732762
-
Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications
-
[143] Casas, A.I., Dao, V.T., Daiber, A., Maghzal, G.J., Di Lisa, F., Kaludercic, N., Leach, S., Cuadrado, A., Jaquet, V., Seredenina, T., Krause, K.H., Lopez, M.G., Stocker, R., Ghezzi, P., Schmidt, H.H., Reactive oxygen-related diseases: therapeutic targets and emerging clinical indications. Antioxid. Redox Signal. 23 (2015), 1171–1185.
-
(2015)
Antioxid. Redox Signal.
, vol.23
, pp. 1171-1185
-
-
Casas, A.I.1
Dao, V.T.2
Daiber, A.3
Maghzal, G.J.4
Di Lisa, F.5
Kaludercic, N.6
Leach, S.7
Cuadrado, A.8
Jaquet, V.9
Seredenina, T.10
Krause, K.H.11
Lopez, M.G.12
Stocker, R.13
Ghezzi, P.14
Schmidt, H.H.15
-
144
-
-
77956186783
-
Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
-
[144] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35 (2010), 505–513.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 505-513
-
-
Hamanaka, R.B.1
Chandel, N.S.2
-
145
-
-
84857116578
-
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
-
[145] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24 (2012), 981–990.
-
(2012)
Cell Signal.
, vol.24
, pp. 981-990
-
-
Ray, P.D.1
Huang, B.W.2
Tsuji, Y.3
-
146
-
-
84975755192
-
Mitochondrial ROS signaling in organismal homeostasis
-
[146] Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
-
(2015)
Cell
, vol.163
, pp. 560-569
-
-
Shadel, G.S.1
Horvath, T.L.2
-
147
-
-
84908574562
-
Mitochondrial oxidative stress in aging and healthspan
-
[147] Dai, D.F., Chiao, Y.A., Marcinek, D.J., Szeto, H.H., Rabinovitch, P.S., Mitochondrial oxidative stress in aging and healthspan. Longev. Healthspan, 3, 2014, 6.
-
(2014)
Longev. Healthspan
, vol.3
, pp. 6
-
-
Dai, D.F.1
Chiao, Y.A.2
Marcinek, D.J.3
Szeto, H.H.4
Rabinovitch, P.S.5
-
148
-
-
33847045900
-
Mitochondrial oxidative stress: implications for cell death
-
[148] Orrenius, S., Gogvadze, V., Zhivotovsky, B., Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47 (2007), 143–183.
-
(2007)
Annu. Rev. Pharmacol. Toxicol.
, vol.47
, pp. 143-183
-
-
Orrenius, S.1
Gogvadze, V.2
Zhivotovsky, B.3
-
149
-
-
76049083966
-
Reactive oxygen species, cellular redox systems, and apoptosis
-
[149] Circu, M.L., Aw, T.Y., Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48 (2010), 749–762.
-
(2010)
Free Radic. Biol. Med.
, vol.48
, pp. 749-762
-
-
Circu, M.L.1
Aw, T.Y.2
-
150
-
-
84922735590
-
Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis
-
[150] Lim, C.B., Prele, C.M., Baltic, S., Arthur, P.G., Creaney, J., Watkins, D.N., Thompson, P.J., Mutsaers, S.E., Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis. Oncotarget 6 (2015), 1519–1530.
-
(2015)
Oncotarget
, vol.6
, pp. 1519-1530
-
-
Lim, C.B.1
Prele, C.M.2
Baltic, S.3
Arthur, P.G.4
Creaney, J.5
Watkins, D.N.6
Thompson, P.J.7
Mutsaers, S.E.8
-
151
-
-
80054087824
-
Mitochondrial ROS generation for regulation of autophagic pathways in cancer
-
[151] Li, Z.Y., Yang, Y., Ming, M., Liu, B., Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun. 414 (2011), 5–8.
-
(2011)
Biochem. Biophys. Res. Commun.
, vol.414
, pp. 5-8
-
-
Li, Z.Y.1
Yang, Y.2
Ming, M.3
Liu, B.4
-
152
-
-
78650890352
-
Regulation of autophagy by ROS: physiology and pathology
-
[152] Scherz-Shouval, R., Elazar, Z., Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36 (2011), 30–38.
-
(2011)
Trends Biochem. Sci.
, vol.36
, pp. 30-38
-
-
Scherz-Shouval, R.1
Elazar, Z.2
-
153
-
-
84867602835
-
Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
-
[153] Li, L., Chen, Y., Gibson, S.B., Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 25 (2013), 50–65.
-
(2013)
Cell Signal.
, vol.25
, pp. 50-65
-
-
Li, L.1
Chen, Y.2
Gibson, S.B.3
-
154
-
-
80053904684
-
Mitochondrial complex III ROS regulate adipocyte differentiation
-
[154] Tormos, K.V., Anso, E., Hamanaka, R.B., Eisenbart, J., Joseph, J., Kalyanaraman, B., Chandel, N.S., Mitochondrial complex III ROS regulate adipocyte differentiation. Cell Metab. 14 (2011), 537–544.
-
(2011)
Cell Metab.
, vol.14
, pp. 537-544
-
-
Tormos, K.V.1
Anso, E.2
Hamanaka, R.B.3
Eisenbart, J.4
Joseph, J.5
Kalyanaraman, B.6
Chandel, N.S.7
-
155
-
-
84928879644
-
The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review
-
[155] Atashi, F., Modarressi, A., Pepper, M.S., The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 24 (2015), 1150–1163.
-
(2015)
Stem Cells Dev.
, vol.24
, pp. 1150-1163
-
-
Atashi, F.1
Modarressi, A.2
Pepper, M.S.3
-
156
-
-
84891794636
-
JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death
-
[156] Win, S., Than, T.A., Fernandez-Checa, J.C., Kaplowitz, N., JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis., 5, 2014, e989.
-
(2014)
Cell Death Dis.
, vol.5
, pp. e989
-
-
Win, S.1
Than, T.A.2
Fernandez-Checa, J.C.3
Kaplowitz, N.4
-
157
-
-
79959350253
-
Extending life span by increasing oxidative stress
-
[157] Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51 (2011), 327–336.
-
(2011)
Free Radic. Biol. Med.
, vol.51
, pp. 327-336
-
-
Ristow, M.1
Schmeisser, S.2
-
158
-
-
40949126440
-
Mitochondrial complex III regulates hypoxic activation of HIF
-
[158] Klimova, T., Chandel, N.S., Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 15 (2008), 660–666.
-
(2008)
Cell Death Differ.
, vol.15
, pp. 660-666
-
-
Klimova, T.1
Chandel, N.S.2
-
159
-
-
79955532516
-
TLR signalling augments macrophage bactericidal activity through mitochondrial ROS
-
[159] West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., Walsh, M.C., Choi, Y., Shadel, G.S., Ghosh, S., TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472 (2011), 476–480.
-
(2011)
Nature
, vol.472
, pp. 476-480
-
-
West, A.P.1
Brodsky, I.E.2
Rahner, C.3
Woo, D.K.4
Erdjument-Bromage, H.5
Tempst, P.6
Walsh, M.C.7
Choi, Y.8
Shadel, G.S.9
Ghosh, S.10
-
160
-
-
84929162383
-
Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium
-
[160] Kim, S., Kim, M.J., Park do, Y., Chung, H.J., Kim, C.H., Yoon, J.H., Kim, H.J., Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium. Antiviral. Res. 119 (2015), 78–83.
-
(2015)
Antiviral. Res.
, vol.119
, pp. 78-83
-
-
Kim, S.1
Kim, M.J.2
Park do, Y.3
Chung, H.J.4
Kim, C.H.5
Yoon, J.H.6
Kim, H.J.7
-
161
-
-
0035965322
-
Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat
-
[161] Wheeler, M.D., Nakagami, M., Bradford, B.U., Uesugi, T., Mason, R.P., Connor, H.D., Dikalova, A., Kadiiska, M., Thurman, R.G., Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat. J. Biol. Chem. 276 (2001), 36664–36672.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 36664-36672
-
-
Wheeler, M.D.1
Nakagami, M.2
Bradford, B.U.3
Uesugi, T.4
Mason, R.P.5
Connor, H.D.6
Dikalova, A.7
Kadiiska, M.8
Thurman, R.G.9
-
162
-
-
0036137559
-
Contribution of mitochondria to oxidative stress associated with alcoholic liver disease
-
[162] Bailey, S.M., Cunningham, C.C., Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic. Biol. Med. 32 (2002), 11–16.
-
(2002)
Free Radic. Biol. Med.
, vol.32
, pp. 11-16
-
-
Bailey, S.M.1
Cunningham, C.C.2
-
163
-
-
84899582553
-
Role of mitochondria in alcoholic liver disease
-
[163] Garcia-Ruiz, C., Kaplowitz, N., Fernandez-Checa, J.C., Role of mitochondria in alcoholic liver disease. Curr. Pathobiol. Rep. 1 (2013), 159–168.
-
(2013)
Curr. Pathobiol. Rep.
, vol.1
, pp. 159-168
-
-
Garcia-Ruiz, C.1
Kaplowitz, N.2
Fernandez-Checa, J.C.3
-
164
-
-
0026023219
-
Hydrogen peroxide release by mitochondria increases during aging
-
[164] Sohal, R.S., Sohal, B.H., Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 57 (1991), 187–202.
-
(1991)
Mech. Ageing Dev.
, vol.57
, pp. 187-202
-
-
Sohal, R.S.1
Sohal, B.H.2
-
165
-
-
84874591240
-
The role of mitochondria in aging
-
[165] Bratic, A., Larsson, N.G., The role of mitochondria in aging. J. Clin. Investig. 123 (2013), 951–957.
-
(2013)
J. Clin. Investig.
, vol.123
, pp. 951-957
-
-
Bratic, A.1
Larsson, N.G.2
-
166
-
-
84878864199
-
The hallmarks of aging
-
[166] Lopez-Otin, C., Blasco, M.A., Partridge, L., Serrano, M., Kroemer, G., The hallmarks of aging. Cell 153 (2013), 1194–1217.
-
(2013)
Cell
, vol.153
, pp. 1194-1217
-
-
Lopez-Otin, C.1
Blasco, M.A.2
Partridge, L.3
Serrano, M.4
Kroemer, G.5
-
167
-
-
0033520497
-
Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1
-
[167] Wenk, J., Brenneisen, P., Wlaschek, M., Poswig, A., Briviba, K., Oberley, T.D., Scharffetter-Kochanek, K., Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J. Biol. Chem. 274 (1999), 25869–25876.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 25869-25876
-
-
Wenk, J.1
Brenneisen, P.2
Wlaschek, M.3
Poswig, A.4
Briviba, K.5
Oberley, T.D.6
Scharffetter-Kochanek, K.7
-
168
-
-
33646922865
-
Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice
-
[168] Esposito, L., Raber, J., Kekonius, L., Yan, F., Yu, G.Q., Bien-Ly, N., Puolivali, J., Scearce-Levie, K., Masliah, E., Mucke, L., Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26 (2006), 5167–5179.
-
(2006)
J. Neurosci.
, vol.26
, pp. 5167-5179
-
-
Esposito, L.1
Raber, J.2
Kekonius, L.3
Yan, F.4
Yu, G.Q.5
Bien-Ly, N.6
Puolivali, J.7
Scearce-Levie, K.8
Masliah, E.9
Mucke, L.10
-
169
-
-
84859421209
-
A mitochondrial etiology of Alzheimer and Parkinson disease
-
[169] Coskun, P., Wyrembak, J., Schriner, S.E., Chen, H.W., Marciniack, C., Laferla, F., Wallace, D.C., A mitochondrial etiology of Alzheimer and Parkinson disease. Biochim. Biophys. Acta, 553–564(1820), 2012.
-
(2012)
Biochim. Biophys. Acta
, vol.553-564
, Issue.1820
-
-
Coskun, P.1
Wyrembak, J.2
Schriner, S.E.3
Chen, H.W.4
Marciniack, C.5
Laferla, F.6
Wallace, D.C.7
-
171
-
-
84903304059
-
Oxidative stress and mitochondrial dysfunction in Alzheimer's disease
-
[171] Wang, X., Wang, W., Li, L., Perry, G., Lee, H.G., Zhu, X., Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim. Biophys. acta, 1240–1247(1842), 2014.
-
(2014)
Biochim. Biophys. acta
, vol.1240-1247
, Issue.1842
-
-
Wang, X.1
Wang, W.2
Li, L.3
Perry, G.4
Lee, H.G.5
Zhu, X.6
-
172
-
-
0030695482
-
Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits
-
[172] Kinscherf, R., Deigner, H.P., Usinger, C., Pill, J., Wagner, M., Kamencic, H., Hou, D., Chen, M., Schmiedt, W., Schrader, M., Kovacs, G., Kato, K., Metz, J., Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB J. 11 (1997), 1317–1328.
-
(1997)
FASEB J.
, vol.11
, pp. 1317-1328
-
-
Kinscherf, R.1
Deigner, H.P.2
Usinger, C.3
Pill, J.4
Wagner, M.5
Kamencic, H.6
Hou, D.7
Chen, M.8
Schmiedt, W.9
Schrader, M.10
Kovacs, G.11
Kato, K.12
Metz, J.13
-
173
-
-
84861234894
-
Mitochondrial reactive oxygen species and risk of atherosclerosis
-
[173] Hulsmans, M., Van Dooren, E., Holvoet, P., Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr. Atheroscler. Rep. 14 (2012), 264–276.
-
(2012)
Curr. Atheroscler. Rep.
, vol.14
, pp. 264-276
-
-
Hulsmans, M.1
Van Dooren, E.2
Holvoet, P.3
-
174
-
-
84894070483
-
Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-kappaB-mediated inflammation in macrophages
-
[174] Wang, Y., Wang, G.Z., Rabinovitch, P.S., Tabas, I., Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-kappaB-mediated inflammation in macrophages. Circ. Res. 114 (2014), 421–433.
-
(2014)
Circ. Res.
, vol.114
, pp. 421-433
-
-
Wang, Y.1
Wang, G.Z.2
Rabinovitch, P.S.3
Tabas, I.4
-
175
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
[175] Weinberg, F., Hamanaka, R., Wheaton, W.W., Weinberg, S., Joseph, J., Lopez, M., Kalyanaraman, B., Mutlu, G.M., Budinger, G.R., Chandel, N.S., Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. USA 107 (2010), 8788–8793.
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
Hamanaka, R.2
Wheaton, W.W.3
Weinberg, S.4
Joseph, J.5
Lopez, M.6
Kalyanaraman, B.7
Mutlu, G.M.8
Budinger, G.R.9
Chandel, N.S.10
-
176
-
-
84867853849
-
Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila
-
[176] Ohsawa, S., Sato, Y., Enomoto, M., Nakamura, M., Betsumiya, A., Igaki, T., Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490 (2012), 547–551.
-
(2012)
Nature
, vol.490
, pp. 547-551
-
-
Ohsawa, S.1
Sato, Y.2
Enomoto, M.3
Nakamura, M.4
Betsumiya, A.5
Igaki, T.6
-
177
-
-
84908213474
-
Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?
-
[177] Sabharwal, S.S., Schumacker, P.T., Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 14 (2014), 709–721.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 709-721
-
-
Sabharwal, S.S.1
Schumacker, P.T.2
-
178
-
-
84940030548
-
Mitochondrial ROS and cancer drug resistance: Implications for therapy
-
[178] Okon, I.S., Zou, M.H., Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharmacol. Res. 100 (2015), 170–174.
-
(2015)
Pharmacol. Res.
, vol.100
, pp. 170-174
-
-
Okon, I.S.1
Zou, M.H.2
-
179
-
-
0028827252
-
Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase
-
[179] Li, Y., Huang, T.T., Carlson, E.J., Melov, S., Ursell, P.C., Olson, J.L., Noble, L.J., Yoshimura, M.P., Berger, C., Chan, P.H., Wallace, D.C., Epstein, C.J., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking manganese superoxide dismutase. Nat. Genet. 11 (1995), 376–381.
-
(1995)
Nat. Genet.
, vol.11
, pp. 376-381
-
-
Li, Y.1
Huang, T.T.2
Carlson, E.J.3
Melov, S.4
Ursell, P.C.5
Olson, J.L.6
Noble, L.J.7
Yoshimura, M.P.8
Berger, C.9
Chan, P.H.10
Wallace, D.C.11
Epstein, C.J.12
-
180
-
-
84929503093
-
Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function
-
[180] Huang, Q., Zhou, H.J., Zhang, H., Huang, Y., Hinojosa-Kirschenbaum, F., Fan, P., Yao, L., Belardinelli, L., Tellides, G., Giordano, F.J., Budas, G.R., Min, W., Thioredoxin-2 inhibits mitochondrial reactive oxygen species generation and apoptosis stress kinase-1 activity to maintain cardiac function. Circulation 131 (2015), 1082–1097.
-
(2015)
Circulation
, vol.131
, pp. 1082-1097
-
-
Huang, Q.1
Zhou, H.J.2
Zhang, H.3
Huang, Y.4
Hinojosa-Kirschenbaum, F.5
Fan, P.6
Yao, L.7
Belardinelli, L.8
Tellides, G.9
Giordano, F.J.10
Budas, G.R.11
Min, W.12
-
181
-
-
84930862762
-
Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy
-
[181] Christiansen, L.B., Dela, F., Koch, J., Hansen, C.N., Leifsson, P.S., Yokota, T., Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 308 (2015), H1237–H1247.
-
(2015)
Am. J. Physiol. Heart Circ. Physiol.
, vol.308
, pp. H1237-H1247
-
-
Christiansen, L.B.1
Dela, F.2
Koch, J.3
Hansen, C.N.4
Leifsson, P.S.5
Yokota, T.6
-
182
-
-
20044376702
-
The pathobiology of diabetic complications: a unifying mechanism
-
[182] Brownlee, M., The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54 (2005), 1615–1625.
-
(2005)
Diabetes
, vol.54
, pp. 1615-1625
-
-
Brownlee, M.1
-
183
-
-
12344305124
-
Mitochondrial dysfunction and type 2 diabetes
-
[183] Lowell, B.B., Shulman, G.I., Mitochondrial dysfunction and type 2 diabetes. Science 307 (2005), 384–387.
-
(2005)
Science
, vol.307
, pp. 384-387
-
-
Lowell, B.B.1
Shulman, G.I.2
-
184
-
-
33749070956
-
Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress
-
[184] Kowluru, R.A., Kowluru, V., Xiong, Y., Ho, Y.S., Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic. Biol. Med. 41 (2006), 1191–1196.
-
(2006)
Free Radic. Biol. Med.
, vol.41
, pp. 1191-1196
-
-
Kowluru, R.A.1
Kowluru, V.2
Xiong, Y.3
Ho, Y.S.4
-
185
-
-
84923649971
-
Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy
-
[185] Nishikawa, T., Brownlee, M., Araki, E., Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy. J. Diabetes Investig. 6 (2015), 137–139.
-
(2015)
J. Diabetes Investig.
, vol.6
, pp. 137-139
-
-
Nishikawa, T.1
Brownlee, M.2
Araki, E.3
-
186
-
-
84949604431
-
Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway
-
[186] Al-Lahham, R., Deford, J.H., Papaconstantinou, J., Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway. Mol. Cell. Endocrinol. 419 (2016), 1–11.
-
(2016)
Mol. Cell. Endocrinol.
, vol.419
, pp. 1-11
-
-
Al-Lahham, R.1
Deford, J.H.2
Papaconstantinou, J.3
-
187
-
-
0034669186
-
Mitochondrial superoxide production in kainate-induced hippocampal damage
-
[187] Liang, L.P., Ho, Y.S., Patel, M., Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101 (2000), 563–570.
-
(2000)
Neuroscience
, vol.101
, pp. 563-570
-
-
Liang, L.P.1
Ho, Y.S.2
Patel, M.3
-
188
-
-
84884906665
-
Mitochondrial involvement and oxidative stress in temporal lobe epilepsy
-
[188] Rowley, S., Patel, M., Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62 (2013), 121–131.
-
(2013)
Free Radic. Biol. Med.
, vol.62
, pp. 121-131
-
-
Rowley, S.1
Patel, M.2
-
189
-
-
84951954910
-
Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy
-
[189] Pearson, J.N., Rowley, S., Liang, L.P., White, A.M., Day, B.J., Patel, M., Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 82 (2015), 289–297.
-
(2015)
Neurobiol. Dis.
, vol.82
, pp. 289-297
-
-
Pearson, J.N.1
Rowley, S.2
Liang, L.P.3
White, A.M.4
Day, B.J.5
Patel, M.6
-
190
-
-
84880577813
-
The mitochondrion: a perpetrator of acquired hearing loss
-
[190] Bottger, E.C., Schacht, J., The mitochondrion: a perpetrator of acquired hearing loss. Hearing Res. 303 (2013), 12–19.
-
(2013)
Hearing Res.
, vol.303
, pp. 12-19
-
-
Bottger, E.C.1
Schacht, J.2
-
191
-
-
84927153575
-
Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss
-
617207
-
[191] Kamogashira, T., Fujimoto, C., Yamasoba, T., Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res. Int., 2015, 2015, 617207.
-
(2015)
BioMed Res. Int.
, vol.2015
-
-
Kamogashira, T.1
Fujimoto, C.2
Yamasoba, T.3
-
192
-
-
84872486948
-
Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation
-
[192] Sanderson, T.H., Reynolds, C.A., Kumar, R., Przyklenk, K., Huttemann, M., Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol. Neurobiol. 47 (2013), 9–23.
-
(2013)
Mol. Neurobiol.
, vol.47
, pp. 9-23
-
-
Sanderson, T.H.1
Reynolds, C.A.2
Kumar, R.3
Przyklenk, K.4
Huttemann, M.5
-
193
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
[193] Chouchani, E.T., Pell, V.R., Gaude, E., Aksentijevic, D., Sundier, S.Y., Robb, E.L., Logan, A., Nadtochiy, S.M., Ord, E.N., Smith, A.C., Eyassu, F., Shirley, R., Hu, C.H., Dare, A.J., James, A.M., Rogatti, S., Hartley, R.C., Eaton, S., Costa, A.S., Brookes, P.S., Davidson, S.M., Duchen, M.R., Saeb-Parsy, K., Shattock, M.J., Robinson, A.J., Work, L.M., Frezza, C., Krieg, T., Murphy, M.P., Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515 (2014), 431–435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
Pell, V.R.2
Gaude, E.3
Aksentijevic, D.4
Sundier, S.Y.5
Robb, E.L.6
Logan, A.7
Nadtochiy, S.M.8
Ord, E.N.9
Smith, A.C.10
Eyassu, F.11
Shirley, R.12
Hu, C.H.13
Dare, A.J.14
James, A.M.15
Rogatti, S.16
Hartley, R.C.17
Eaton, S.18
Costa, A.S.19
Brookes, P.S.20
Davidson, S.M.21
Duchen, M.R.22
Saeb-Parsy, K.23
Shattock, M.J.24
Robinson, A.J.25
Work, L.M.26
Frezza, C.27
Krieg, T.28
Murphy, M.P.29
more..
-
194
-
-
84946487152
-
The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model
-
[194] Dare, A.J., Logan, A., Prime, T.A., Rogatti, S., Goddard, M., Bolton, E.M., Bradley, J.A., Pettigrew, G.J., Murphy, M.P., Saeb-Parsy, K., The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J. Heart Lung Transplant. 34 (2015), 1471–1480.
-
(2015)
J. Heart Lung Transplant.
, vol.34
, pp. 1471-1480
-
-
Dare, A.J.1
Logan, A.2
Prime, T.A.3
Rogatti, S.4
Goddard, M.5
Bolton, E.M.6
Bradley, J.A.7
Pettigrew, G.J.8
Murphy, M.P.9
Saeb-Parsy, K.10
-
195
-
-
84655169624
-
Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis
-
[195] Rolo, A.P., Teodoro, J.S., Palmeira, C.M., Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 52 (2012), 59–69.
-
(2012)
Free Radic. Biol. Med.
, vol.52
, pp. 59-69
-
-
Rolo, A.P.1
Teodoro, J.S.2
Palmeira, C.M.3
-
196
-
-
84910147372
-
Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease
-
[196] Paradies, G., Paradies, V., Ruggiero, F.M., Petrosillo, G., Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol. 20 (2014), 14205–14218.
-
(2014)
World J. Gastroenterol.
, vol.20
, pp. 14205-14218
-
-
Paradies, G.1
Paradies, V.2
Ruggiero, F.M.3
Petrosillo, G.4
-
197
-
-
0031742961
-
Manganese superoxide dismutase overexpression attenuates MPTP toxicity
-
[197] Klivenyi, P. St, Clair, D., Wermer, M., Yen, H.C., Oberley, T., Yang, L., Beal, M.F., Manganese superoxide dismutase overexpression attenuates MPTP toxicity. Neurobiol. Dis. 5 (1998), 253–258.
-
(1998)
Neurobiol. Dis.
, vol.5
, pp. 253-258
-
-
Klivenyi, P.1
Clair, D.2
Wermer, M.3
Yen, H.C.4
Oberley, T.5
Yang, L.6
Beal, M.F.7
-
198
-
-
84952052287
-
Mitochondrial dysfunction in Parkinson's disease
-
[198] Moon, H.E., Paek, S.H., Mitochondrial dysfunction in Parkinson's disease. Exp. Neurobiol. 24 (2015), 103–116.
-
(2015)
Exp. Neurobiol.
, vol.24
, pp. 103-116
-
-
Moon, H.E.1
Paek, S.H.2
|