메뉴 건너뛰기




Volumn 100, Issue , 2016, Pages 14-31

Mitochondrial generation of superoxide and hydrogen peroxide as the source of mitochondrial redox signaling

Author keywords

Hydrogen peroxide; Mitochondria; Oxidative damage; Reactive oxygen species; Redox signaling; Superoxide

Indexed keywords

2 OXOACID DEHYDROGENASE; DIHYDROLIPOAMIDE DEHYDROGENASE; GLYCEROL 3 PHOSPHATE DEHYDROGENASE; HYDROGEN PEROXIDE; REACTIVE OXYGEN METABOLITE; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE DEHYDROGENASE (UBIQUINONE); SUCCINATE DEHYDROGENASE (UBIQUINONE); SUPEROXIDE; UBIQUINOL CYTOCHROME C REDUCTASE; UBIQUINONE;

EID: 84964890374     PISSN: 08915849     EISSN: 18734596     Source Type: Journal    
DOI: 10.1016/j.freeradbiomed.2016.04.001     Document Type: Review
Times cited : (754)

References (198)
  • 2
    • 0015882341 scopus 로고
    • The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen
    • [2] Boveris, A., Chance, B., The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem. J. 134 (1973), 707–716.
    • (1973) Biochem. J. , vol.134 , pp. 707-716
    • Boveris, A.1    Chance, B.2
  • 3
    • 0016148483 scopus 로고
    • Superoxide radicals as precursors of mitochondrial hydrogen peroxide
    • [3] Loschen, G., Azzi, A., Richter, C., Flohe, L., Superoxide radicals as precursors of mitochondrial hydrogen peroxide. FEBS Lett. 42 (1974), 68–72.
    • (1974) FEBS Lett. , vol.42 , pp. 68-72
    • Loschen, G.1    Azzi, A.2    Richter, C.3    Flohe, L.4
  • 4
    • 0016681098 scopus 로고
    • Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
    • [4] Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54 (1975), 311–314.
    • (1975) FEBS Lett. , vol.54 , pp. 311-314
    • Boveris, A.1    Cadenas, E.2
  • 5
    • 0017406503 scopus 로고
    • Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
    • [5] Cadenas, E., Boveris, A., Ragan, C.I., Stoppani, A.O., Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180 (1977), 248–257.
    • (1977) Arch. Biochem. Biophys. , vol.180 , pp. 248-257
    • Cadenas, E.1    Boveris, A.2    Ragan, C.I.3    Stoppani, A.O.4
  • 7
    • 0030969868 scopus 로고    scopus 로고
    • Superoxide production by the mitochondrial respiratory chain
    • [7] Turrens, J.F., Superoxide production by the mitochondrial respiratory chain. Biosci. Rep. 17 (1997), 3–8.
    • (1997) Biosci. Rep. , vol.17 , pp. 3-8
    • Turrens, J.F.1
  • 8
    • 0033796250 scopus 로고    scopus 로고
    • Mitochondrial free radical generation, oxidative stress, and aging
    • [8] Cadenas, E., Davies, K.J., Mitochondrial free radical generation, oxidative stress, and aging. Free Radic. Biol. Med. 29 (2000), 222–230.
    • (2000) Free Radic. Biol. Med. , vol.29 , pp. 222-230
    • Cadenas, E.1    Davies, K.J.2
  • 9
    • 0034306267 scopus 로고    scopus 로고
    • Mitochondria, oxygen free radicals, disease and ageing
    • [9] Raha, S., Robinson, B.H., Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem. Sci. 25 (2000), 502–508.
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 502-508
    • Raha, S.1    Robinson, B.H.2
  • 10
    • 0036139856 scopus 로고    scopus 로고
    • The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology
    • [10] Lenaz, G., The mitochondrial production of reactive oxygen species: mechanisms and implications in human pathology. IUBMB Life 52 (2001), 159–164.
    • (2001) IUBMB Life , vol.52 , pp. 159-164
    • Lenaz, G.1
  • 11
    • 0142150051 scopus 로고    scopus 로고
    • Mitochondrial formation of reactive oxygen species
    • [11] Turrens, J.F., Mitochondrial formation of reactive oxygen species. J. Physiol. 552 (2003), 335–344.
    • (2003) J. Physiol. , vol.552 , pp. 335-344
    • Turrens, J.F.1
  • 13
    • 1642422773 scopus 로고    scopus 로고
    • Mitochondrial free radical production and cell signaling
    • [13] Cadenas, E., Mitochondrial free radical production and cell signaling. Mol. Asp. Med. 25 (2004), 17–26.
    • (2004) Mol. Asp. Med. , vol.25 , pp. 17-26
    • Cadenas, E.1
  • 15
    • 13944278132 scopus 로고    scopus 로고
    • Mitochondria, oxidants, and aging
    • [15] Balaban, R.S., Nemoto, S., Finkel, T., Mitochondria, oxidants, and aging. Cell 120 (2005), 483–495.
    • (2005) Cell , vol.120 , pp. 483-495
    • Balaban, R.S.1    Nemoto, S.2    Finkel, T.3
  • 16
    • 25844520458 scopus 로고    scopus 로고
    • Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism
    • [16] Jezek, P., Hlavata, L., Mitochondria in homeostasis of reactive oxygen species in cell, tissues, and organism. Int. J. Biochem. Cell Biol. 37 (2005), 2478–2503.
    • (2005) Int. J. Biochem. Cell Biol. , vol.37 , pp. 2478-2503
    • Jezek, P.1    Hlavata, L.2
  • 18
    • 10344264960 scopus 로고    scopus 로고
    • + leak and ROS generation: an odd couple
    • + leak and ROS generation: an odd couple. Free Radic. Biol. Med. 38 (2005), 12–23.
    • (2005) Free Radic. Biol. Med. , vol.38 , pp. 12-23
    • Brookes, P.S.1
  • 19
    • 24144464489 scopus 로고    scopus 로고
    • Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources
    • [19] Adam-Vizi, V., Production of reactive oxygen species in brain mitochondria: contribution by electron transport chain and non-electron transport chain sources. Antioxid. Redox Signal. 7 (2005), 1140–1149.
    • (2005) Antioxid. Redox Signal. , vol.7 , pp. 1140-1149
    • Adam-Vizi, V.1
  • 20
    • 33745684904 scopus 로고    scopus 로고
    • Mitochondrial ROS-induced ROS release: an update and review
    • [20] Zorov, D.B., Juhaszova, M., Sollott, S.J., Mitochondrial ROS-induced ROS release: an update and review. Biochim. Biophys. Acta 1757 (2006), 509–517.
    • (2006) Biochim. Biophys. Acta , vol.1757 , pp. 509-517
    • Zorov, D.B.1    Juhaszova, M.2    Sollott, S.J.3
  • 21
    • 57649233079 scopus 로고    scopus 로고
    • The role of mitochondria in reactive oxygen species metabolism and signaling
    • [21] Starkov, A.A., The role of mitochondria in reactive oxygen species metabolism and signaling. Ann. N.Y. Acad. Sci. 1147 (2008), 37–52.
    • (2008) Ann. N.Y. Acad. Sci. , vol.1147 , pp. 37-52
    • Starkov, A.A.1
  • 23
    • 70349769764 scopus 로고    scopus 로고
    • Reactive oxygen species production by mitochondria
    • [23] Lambert, A.J., Brand, M.D., Reactive oxygen species production by mitochondria. Methods Mol. Biol. 554 (2009), 165–181.
    • (2009) Methods Mol. Biol. , vol.554 , pp. 165-181
    • Lambert, A.J.1    Brand, M.D.2
  • 24
    • 58249093939 scopus 로고    scopus 로고
    • How mitochondria produce reactive oxygen species
    • [24] Murphy, M.P., How mitochondria produce reactive oxygen species. Biochem. J. 417 (2009), 1–13.
    • (2009) Biochem. J. , vol.417 , pp. 1-13
    • Murphy, M.P.1
  • 25
    • 77952541558 scopus 로고    scopus 로고
    • The sites and topology of mitochondrial superoxide production
    • [25] Brand, M.D., The sites and topology of mitochondrial superoxide production. Exp. Gerontol. 45 (2010), 466–472.
    • (2010) Exp. Gerontol. , vol.45 , pp. 466-472
    • Brand, M.D.1
  • 28
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • [28] Sena, L.A., Chandel, N.S., Physiological roles of mitochondrial reactive oxygen species. Mol. Cell 48 (2012), 158–167.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1    Chandel, N.S.2
  • 29
    • 84863738048 scopus 로고    scopus 로고
    • Molecular mechanisms of superoxide production by the mitochondrial respiratory chain
    • [29] Drose, S., Brandt, U., Molecular mechanisms of superoxide production by the mitochondrial respiratory chain. Adv. Exp. Med. Biol. 748 (2012), 145–169.
    • (2012) Adv. Exp. Med. Biol. , vol.748 , pp. 145-169
    • Drose, S.1    Brandt, U.2
  • 30
    • 84897444272 scopus 로고    scopus 로고
    • 2 generation: redox signaling and oxidative stress
    • 2 generation: redox signaling and oxidative stress. J. Biol. Chem. 289 (2014), 8735–8741.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8735-8741
    • Sies, H.1
  • 31
    • 84894165975 scopus 로고    scopus 로고
    • Cardiac mitochondria and reactive oxygen species generation
    • [31] Chen, Y.R., Zweier, J.L., Cardiac mitochondria and reactive oxygen species generation. Circ. Res. 114 (2014), 524–537.
    • (2014) Circ. Res. , vol.114 , pp. 524-537
    • Chen, Y.R.1    Zweier, J.L.2
  • 32
    • 84901316606 scopus 로고    scopus 로고
    • Cellular mechanisms and physiological consequences of redox-dependent signalling
    • [32] Holmstrom, K.M., Finkel, T., Cellular mechanisms and physiological consequences of redox-dependent signalling. Nat. Rev. Mol. Cell Biol. 15 (2014), 411–421.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 411-421
    • Holmstrom, K.M.1    Finkel, T.2
  • 34
    • 33846225260 scopus 로고    scopus 로고
    • Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling
    • [34] Hoffman, D.L., Salter, J.D., Brookes, P.S., Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am. J. Physiol. Heart Circ. Physiol. 292 (2007), H101–H108.
    • (2007) Am. J. Physiol. Heart Circ. Physiol. , vol.292 , pp. H101-H108
    • Hoffman, D.L.1    Salter, J.D.2    Brookes, P.S.3
  • 35
    • 67650248980 scopus 로고    scopus 로고
    • Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions
    • [35] Hoffman, D.L., Brookes, P.S., Oxygen sensitivity of mitochondrial reactive oxygen species generation depends on metabolic conditions. J. Biol. Chem. 284 (2009), 16236–16245.
    • (2009) J. Biol. Chem. , vol.284 , pp. 16236-16245
    • Hoffman, D.L.1    Brookes, P.S.2
  • 37
    • 0018776894 scopus 로고
    • Hydroperoxide metabolism in mammalian organs
    • [37] Chance, B., Sies, H., Boveris, A., Hydroperoxide metabolism in mammalian organs. Physiol. Rev. 59 (1979), 527–605.
    • (1979) Physiol. Rev. , vol.59 , pp. 527-605
    • Chance, B.1    Sies, H.2    Boveris, A.3
  • 38
    • 0032413244 scopus 로고    scopus 로고
    • Mitochondrial aging: open questions
    • [38] Beckman, K.B., Ames, B.N., Mitochondrial aging: open questions. Ann. N.Y. Acad. Sci. 854 (2006), 118–127.
    • (2006) Ann. N.Y. Acad. Sci. , vol.854 , pp. 118-127
    • Beckman, K.B.1    Ames, B.N.2
  • 40
    • 0037160091 scopus 로고    scopus 로고
    • Topology of superoxide production from different sites in the mitochondrial electron transport chain
    • [40] St-Pierre, J., Buckingham, J.A., Roebuck, S.J., Brand, M.D., Topology of superoxide production from different sites in the mitochondrial electron transport chain. J. Biol. Chem. 277 (2002), 44784–44790.
    • (2002) J. Biol. Chem. , vol.277 , pp. 44784-44790
    • St-Pierre, J.1    Buckingham, J.A.2    Roebuck, S.J.3    Brand, M.D.4
  • 41
    • 1042301416 scopus 로고    scopus 로고
    • Characterization of superoxide-producing sites in isolated brain mitochondria
    • [41] Kudin, A.P., Bimpong-Buta, N.Y., Vielhaber, S., Elger, C.E., Kunz, W.S., Characterization of superoxide-producing sites in isolated brain mitochondria. J. Biol. Chem. 279 (2004), 4127–4135.
    • (2004) J. Biol. Chem. , vol.279 , pp. 4127-4135
    • Kudin, A.P.1    Bimpong-Buta, N.Y.2    Vielhaber, S.3    Elger, C.E.4    Kunz, W.S.5
  • 42
    • 84920520304 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise
    • [42] Goncalves, R.L., Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Brand, M.D., Sites of superoxide and hydrogen peroxide production by muscle mitochondria assessed ex vivo under conditions mimicking rest and exercise. J. Biol. Chem. 290 (2015), 209–227.
    • (2015) J. Biol. Chem. , vol.290 , pp. 209-227
    • Goncalves, R.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Hey-Mogensen, M.4    Brand, M.D.5
  • 43
    • 79953180902 scopus 로고    scopus 로고
    • Assessing mitochondrial dysfunction in cells
    • [43] Brand, M.D., Nicholls, D.G., Assessing mitochondrial dysfunction in cells. Biochem. J. 435 (2011), 297–312.
    • (2011) Biochem. J. , vol.435 , pp. 297-312
    • Brand, M.D.1    Nicholls, D.G.2
  • 44
    • 0035371184 scopus 로고    scopus 로고
    • Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple
    • [44] Schafer, F.Q., Buettner, G.R., Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radic. Biol. Med. 30 (2001), 1191–1212.
    • (2001) Free Radic. Biol. Med. , vol.30 , pp. 1191-1212
    • Schafer, F.Q.1    Buettner, G.R.2
  • 46
    • 77953565915 scopus 로고    scopus 로고
    • Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion
    • [46] Treberg, J.R., Quinlan, C.L., Brand, M.D., Hydrogen peroxide efflux from muscle mitochondria underestimates matrix superoxide production – a correction using glutathione depletion. FEBS J. 277 (2010), 2766–2778.
    • (2010) FEBS J. , vol.277 , pp. 2766-2778
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 47
    • 84867401800 scopus 로고    scopus 로고
    • Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters
    • [47] Quinlan, C.L., Treberg, J.R., Perevoshchikova, I.V., Orr, A.L., Brand, M.D., Native rates of superoxide production from multiple sites in isolated mitochondria measured using endogenous reporters. Free Radic. Biol. Med. 53 (2012), 1807–1817.
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 1807-1817
    • Quinlan, C.L.1    Treberg, J.R.2    Perevoshchikova, I.V.3    Orr, A.L.4    Brand, M.D.5
  • 48
    • 84879774696 scopus 로고    scopus 로고
    • The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production
    • [48] Quinlan, C.L., Perevoschikova, I.V., Goncalves, R.L., Hey-Mogensen, M., Brand, M.D., The determination and analysis of site-specific rates of mitochondrial reactive oxygen species production. Meth. Enzymol. 526 (2013), 189–217.
    • (2013) Meth. Enzymol. , vol.526 , pp. 189-217
    • Quinlan, C.L.1    Perevoschikova, I.V.2    Goncalves, R.L.3    Hey-Mogensen, M.4    Brand, M.D.5
  • 49
    • 0031984162 scopus 로고    scopus 로고
    • Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability
    • [49] Rigobello, M.P., Callegaro, M.T., Barzon, E., Benetti, M., Bindoli, A., Purification of mitochondrial thioredoxin reductase and its involvement in the redox regulation of membrane permeability. Free Radic. Biol. Med. 24 (1998), 370–376.
    • (1998) Free Radic. Biol. Med. , vol.24 , pp. 370-376
    • Rigobello, M.P.1    Callegaro, M.T.2    Barzon, E.3    Benetti, M.4    Bindoli, A.5
  • 50
    • 84864707133 scopus 로고    scopus 로고
    • The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria
    • [50] Kudin, A.P., Augustynek, B., Lehmann, A.K., Kovacs, R., Kunz, W.S., The contribution of thioredoxin-2 reductase and glutathione peroxidase to H2O2 detoxification of rat brain mitochondria. Biochim. Biophys. Acta 1817 (2012), 1901–1906.
    • (2012) Biochim. Biophys. Acta , vol.1817 , pp. 1901-1906
    • Kudin, A.P.1    Augustynek, B.2    Lehmann, A.K.3    Kovacs, R.4    Kunz, W.S.5
  • 51
    • 80052419584 scopus 로고    scopus 로고
    • The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle
    • [51] Quinlan, C.L., Gerencser, A.A., Treberg, J.R., Brand, M.D., The mechanism of superoxide production by the antimycin-inhibited mitochondrial Q-cycle. J. Biol. Chem. 286 (2011), 31361–31372.
    • (2011) J. Biol. Chem. , vol.286 , pp. 31361-31372
    • Quinlan, C.L.1    Gerencser, A.A.2    Treberg, J.R.3    Brand, M.D.4
  • 52
    • 84871139444 scopus 로고    scopus 로고
    • A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase
    • [52] Orr, A.L., Quinlan, C.L., Perevoshchikova, I.V., Brand, M.D., A refined analysis of superoxide production by mitochondrial sn-glycerol 3-phosphate dehydrogenase. J. Biol. Chem. 287 (2012), 42921–42935.
    • (2012) J. Biol. Chem. , vol.287 , pp. 42921-42935
    • Orr, A.L.1    Quinlan, C.L.2    Perevoshchikova, I.V.3    Brand, M.D.4
  • 53
    • 84864540083 scopus 로고    scopus 로고
    • Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions
    • [53] Quinlan, C.L., Orr, A.L., Perevoshchikova, I.V., Treberg, J.R., Ackrell, B.A., Brand, M.D., Mitochondrial complex II can generate reactive oxygen species at high rates in both the forward and reverse reactions. J. Biol. Chem. 287 (2012), 27255–27264.
    • (2012) J. Biol. Chem. , vol.287 , pp. 27255-27264
    • Quinlan, C.L.1    Orr, A.L.2    Perevoshchikova, I.V.3    Treberg, J.R.4    Ackrell, B.A.5    Brand, M.D.6
  • 54
    • 84879430920 scopus 로고    scopus 로고
    • Sites of reactive oxygen species generation by mitochondria oxidizing different substrates
    • [54] Quinlan, C.L., Perevoshchikova, I.V., Hey-Mogensen, M., Orr, A.L., Brand, M.D., Sites of reactive oxygen species generation by mitochondria oxidizing different substrates. Redox Biol. 1 (2013), 304–312.
    • (2013) Redox Biol. , vol.1 , pp. 304-312
    • Quinlan, C.L.1    Perevoshchikova, I.V.2    Hey-Mogensen, M.3    Orr, A.L.4    Brand, M.D.5
  • 55
    • 84896935583 scopus 로고    scopus 로고
    • The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I
    • [55] Quinlan, C.L., Goncalves, R.L., Hey-Mogensen, M., Yadava, N., Bunik, V.I., Brand, M.D., The 2-oxoacid dehydrogenase complexes in mitochondria can produce superoxide/hydrogen peroxide at much higher rates than complex I. J. Biol. Chem. 289 (2014), 8312–8325.
    • (2014) J. Biol. Chem. , vol.289 , pp. 8312-8325
    • Quinlan, C.L.1    Goncalves, R.L.2    Hey-Mogensen, M.3    Yadava, N.4    Bunik, V.I.5    Brand, M.D.6
  • 56
    • 84952342515 scopus 로고    scopus 로고
    • Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex
    • [56] Goncalves, R.L.S., Bunik, V.I., Brand, M.D., Production of superoxide/hydrogen peroxide by the mitochondrial 2-oxoadipate dehydrogenase complex. Free Radic. Biol. Med. 91 (2016), 247–255.
    • (2016) Free Radic. Biol. Med. , vol.91 , pp. 247-255
    • Goncalves, R.L.S.1    Bunik, V.I.2    Brand, M.D.3
  • 57
    • 0019083215 scopus 로고
    • Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria
    • [57] Turrens, J.F., Boveris, A., Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochem. J. 191 (1980), 421–427.
    • (1980) Biochem. J. , vol.191 , pp. 421-427
    • Turrens, J.F.1    Boveris, A.2
  • 58
    • 0142210179 scopus 로고    scopus 로고
    • Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria
    • [58] Han, D., Canali, R., Rettori, D., Kaplowitz, N., Effect of glutathione depletion on sites and topology of superoxide and hydrogen peroxide production in mitochondria. Mol. Pharmacol. 64 (2003), 1136–1144.
    • (2003) Mol. Pharmacol. , vol.64 , pp. 1136-1144
    • Han, D.1    Canali, R.2    Rettori, D.3    Kaplowitz, N.4
  • 59
    • 10344221083 scopus 로고    scopus 로고
    • Complex III releases superoxide to both sides of the inner mitochondrial membrane
    • [59] Muller, F.L., Liu, Y., Van Remmen, H., Complex III releases superoxide to both sides of the inner mitochondrial membrane. J. Biol. Chem. 279 (2004), 49064–49073.
    • (2004) J. Biol. Chem. , vol.279 , pp. 49064-49073
    • Muller, F.L.1    Liu, Y.2    Van Remmen, H.3
  • 60
    • 33646716659 scopus 로고    scopus 로고
    • The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria
    • [60] Kussmaul, L., Hirst, J., The mechanism of superoxide production by NADH:ubiquinone oxidoreductase (complex I) from bovine heart mitochondria. Proc. Natl. Acad. Sci. USA 103 (2006), 7607–7612.
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 7607-7612
    • Kussmaul, L.1    Hirst, J.2
  • 61
    • 84872786353 scopus 로고    scopus 로고
    • Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I
    • [61] Grivennikova, V.G., Vinogradov, A.D., Partitioning of superoxide and hydrogen peroxide production by mitochondrial respiratory complex I. Biochim. Biophys. Acta 1827 (2013), 446–454.
    • (2013) Biochim. Biophys. Acta , vol.1827 , pp. 446-454
    • Grivennikova, V.G.1    Vinogradov, A.D.2
  • 62
    • 0021996572 scopus 로고
    • Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria
    • [62] Turrens, J.F., Alexandre, A., Lehninger, A.L., Ubisemiquinone is the electron donor for superoxide formation by complex III of heart mitochondria. Arch. Biochem. Biophys. 237 (1985), 408–414.
    • (1985) Arch. Biochem. Biophys. , vol.237 , pp. 408-414
    • Turrens, J.F.1    Alexandre, A.2    Lehninger, A.L.3
  • 63
    • 0032545269 scopus 로고    scopus 로고
    • Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria
    • [63] Zhang, L., Yu, L., Yu, C.A., Generation of superoxide anion by succinate-cytochrome c reductase from bovine heart mitochondria. J. Biol. Chem. 273 (1998), 33972–33976.
    • (1998) J. Biol. Chem. , vol.273 , pp. 33972-33976
    • Zhang, L.1    Yu, L.2    Yu, C.A.3
  • 64
    • 0141526414 scopus 로고    scopus 로고
    • Superoxide and hydrogen peroxide production by Drosophila mitochondria
    • [64] Miwa, S., St-Pierre, J., Partridge, L., Brand, M.D., Superoxide and hydrogen peroxide production by Drosophila mitochondria. Free Radic. Biol. Med. 35 (2003), 938–948.
    • (2003) Free Radic. Biol. Med. , vol.35 , pp. 938-948
    • Miwa, S.1    St-Pierre, J.2    Partridge, L.3    Brand, M.D.4
  • 65
    • 77956262775 scopus 로고    scopus 로고
    • Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production
    • [65] Sarewicz, M., Borek, A., Cieluch, E., Swierczek, M., Osyczka, A., Discrimination between two possible reaction sequences that create potential risk of generation of deleterious radicals by cytochrome bc1. Implications for the mechanism of superoxide production. Biochim. Biophys. Acta 1797 (2010), 1820–1827.
    • (2010) Biochim. Biophys. Acta , vol.1797 , pp. 1820-1827
    • Sarewicz, M.1    Borek, A.2    Cieluch, E.3    Swierczek, M.4    Osyczka, A.5
  • 66
    • 0037044847 scopus 로고    scopus 로고
    • Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase
    • [66] Messner, K.R., Imlay, J.A., Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J. Biol. Chem. 277 (2002), 42563–42571.
    • (2002) J. Biol. Chem. , vol.277 , pp. 42563-42571
    • Messner, K.R.1    Imlay, J.A.2
  • 67
    • 84884593391 scopus 로고    scopus 로고
    • Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates
    • [67] Siebels, I., Drose, S., Q-site inhibitor induced ROS production of mitochondrial complex II is attenuated by TCA cycle dicarboxylates. Biochim. Biophys Acta 1827 (2013), 1156–1164.
    • (2013) Biochim. Biophys Acta , vol.1827 , pp. 1156-1164
    • Siebels, I.1    Drose, S.2
  • 68
    • 0036408866 scopus 로고    scopus 로고
    • Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species
    • [68] Bunik, V.I., Sievers, C., Inactivation of the 2-oxo acid dehydrogenase complexes upon generation of intrinsic radical species. Eur. J. Biochem. 269 (2002), 5004–5015.
    • (2002) Eur. J. Biochem. , vol.269 , pp. 5004-5015
    • Bunik, V.I.1    Sievers, C.2
  • 69
    • 0037155880 scopus 로고    scopus 로고
    • Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase
    • [69] Gazaryan, I.G., Krasnikov, B.F., Ashby, G.A., Thorneley, R.N., Kristal, B.S., Brown, A.M., Zinc is a potent inhibitor of thiol oxidoreductase activity and stimulates reactive oxygen species production by lipoamide dehydrogenase. J. Biol. Chem. 277 (2002), 10064–10072.
    • (2002) J. Biol. Chem. , vol.277 , pp. 10064-10072
    • Gazaryan, I.G.1    Krasnikov, B.F.2    Ashby, G.A.3    Thorneley, R.N.4    Kristal, B.S.5    Brown, A.M.6
  • 70
    • 4544226082 scopus 로고    scopus 로고
    • Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase
    • [70] Tretter, L., Adam-Vizi, V., Generation of reactive oxygen species in the reaction catalyzed by alpha-ketoglutarate dehydrogenase. J. Neurosci. 24 (2004), 7771–7778.
    • (2004) J. Neurosci. , vol.24 , pp. 7771-7778
    • Tretter, L.1    Adam-Vizi, V.2
  • 71
    • 79955977892 scopus 로고    scopus 로고
    • Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer
    • [71] Pryde, K.R., Hirst, J., Superoxide is produced by the reduced flavin in mitochondrial complex I: a single, unified mechanism that applies during both forward and reverse electron transfer. J. Biol. Chem. 286 (2011), 18056–18065.
    • (2011) J. Biol. Chem. , vol.286 , pp. 18056-18065
    • Pryde, K.R.1    Hirst, J.2
  • 72
    • 84878009179 scopus 로고    scopus 로고
    • Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria
    • [72] Perevoshchikova, I.V., Quinlan, C.L., Orr, A.L., Gerencser, A.A., Brand, M.D., Sites of superoxide and hydrogen peroxide production during fatty acid oxidation in rat skeletal muscle mitochondria. Free Radic. Biol. Med. 61 (2013), 298–309.
    • (2013) Free Radic. Biol. Med. , vol.61 , pp. 298-309
    • Perevoshchikova, I.V.1    Quinlan, C.L.2    Orr, A.L.3    Gerencser, A.A.4    Brand, M.D.5
  • 73
    • 0016750459 scopus 로고
    • Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid
    • [73] Forman, H.J., Kennedy, J., Superoxide production and electron transport in mitochondrial oxidation of dihydroorotic acid. J. Biol. Chem. 250 (1975), 4322–4326.
    • (1975) J. Biol. Chem. , vol.250 , pp. 4322-4326
    • Forman, H.J.1    Kennedy, J.2
  • 77
    • 24344508510 scopus 로고    scopus 로고
    • The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria
    • [77] Miwa, S., Brand, M.D., The topology of superoxide production by complex III and glycerol 3-phosphate dehydrogenase in Drosophila mitochondria. Biochim. Biophys. Acta, 1709(214–219), 2005.
    • (2005) Biochim. Biophys. Acta , vol.1709 , Issue.214-219
    • Miwa, S.1    Brand, M.D.2
  • 78
    • 84879390427 scopus 로고    scopus 로고
    • The role of mitochondrial function and cellular bioenergetics in ageing and disease
    • [78] Brand, M.D., Orr, A.L., Perevoshchikova, I.V., Quinlan, C.L., The role of mitochondrial function and cellular bioenergetics in ageing and disease. Br. J. Dermatol. 169:Suppl. 2 (2013), S1–S8.
    • (2013) Br. J. Dermatol. , vol.169 , pp. S1-S8
    • Brand, M.D.1    Orr, A.L.2    Perevoshchikova, I.V.3    Quinlan, C.L.4
  • 79
    • 4043090717 scopus 로고    scopus 로고
    • Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane
    • [79] Lambert, A.J., Brand, M.D., Superoxide production by NADH:ubiquinone oxidoreductase (complex I) depends on the pH gradient across the mitochondrial inner membrane. The Biochem. J. 382 (2004), 511–517.
    • (2004) The Biochem. J. , vol.382 , pp. 511-517
    • Lambert, A.J.1    Brand, M.D.2
  • 81
    • 0025363588 scopus 로고
    • Hydrogen peroxide production by liver mitochondria in different species
    • [81] Sohal, R.S., Svensson, I., Brunk, U.T., Hydrogen peroxide production by liver mitochondria in different species. Mech. Ageing Dev. 53 (1990), 209–215.
    • (1990) Mech. Ageing Dev. , vol.53 , pp. 209-215
    • Sohal, R.S.1    Svensson, I.2    Brunk, U.T.3
  • 82
    • 0027365312 scopus 로고
    • Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species
    • [82] Ku, H.H., Brunk, U.T., Sohal, R.S., Relationship between mitochondrial superoxide and hydrogen peroxide production and longevity of mammalian species. Free Radic. Biol. Med. 15 (1993), 621–627.
    • (1993) Free Radic. Biol. Med. , vol.15 , pp. 621-627
    • Ku, H.H.1    Brunk, U.T.2    Sohal, R.S.3
  • 83
    • 0032525349 scopus 로고    scopus 로고
    • 2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved
    • 2 production of heart mitochondria and aging rate are slower in canaries and parakeets than in mice: sites of free radical generation and mechanisms involved. Mech. Ageing Dev. 103 (1998), 133–146.
    • (1998) Mech. Ageing Dev. , vol.103 , pp. 133-146
    • Herrero, A.1    Barja, G.2
  • 84
    • 1542563727 scopus 로고    scopus 로고
    • The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach
    • [84] Perez-Campo, R., Lopez-Torres, M., Cadenas, S., Rojas, C., Barja, G., The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J. Comp. Physiol. B 168 (1998), 149–158.
    • (1998) J. Comp. Physiol. B , vol.168 , pp. 149-158
    • Perez-Campo, R.1    Lopez-Torres, M.2    Cadenas, S.3    Rojas, C.4    Barja, G.5
  • 85
    • 0033369476 scopus 로고    scopus 로고
    • Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity
    • [85] Barja, G., Mitochondrial oxygen radical generation and leak: sites of production in states 4 and 3, organ specificity, and relation to aging and longevity. J. Bioenerg. Biomembr. 31 (1999), 347–366.
    • (1999) J. Bioenerg. Biomembr. , vol.31 , pp. 347-366
    • Barja, G.1
  • 86
    • 34548617735 scopus 로고    scopus 로고
    • Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms
    • [86] Lambert, A.J., Boysen, H.M., Buckingham, J.A., Yang, T., Podlutsky, A., Austad, S.N., Kunz, T.H., Buffenstein, R., Brand, M.D., Low rates of hydrogen peroxide production by isolated heart mitochondria associate with long maximum lifespan in vertebrate homeotherms. Aging Cell 6 (2007), 607–618.
    • (2007) Aging Cell , vol.6 , pp. 607-618
    • Lambert, A.J.1    Boysen, H.M.2    Buckingham, J.A.3    Yang, T.4    Podlutsky, A.5    Austad, S.N.6    Kunz, T.H.7    Buffenstein, R.8    Brand, M.D.9
  • 87
    • 76249116705 scopus 로고    scopus 로고
    • Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia
    • [87] Lambert, A.J., Buckingham, J.A., Boysen, H.M., Brand, M.D., Low complex I content explains the low hydrogen peroxide production rate of heart mitochondria from the long-lived pigeon, Columba livia. Aging Cell 9 (2010), 78–91.
    • (2010) Aging Cell , vol.9 , pp. 78-91
    • Lambert, A.J.1    Buckingham, J.A.2    Boysen, H.M.3    Brand, M.D.4
  • 88
    • 0037352050 scopus 로고    scopus 로고
    • 2-Oxo acid dehydrogenase complexes in redox regulation
    • [88] Bunik, V.I., 2-Oxo acid dehydrogenase complexes in redox regulation. Eur. J. Biochem. 270 (2003), 1036–1042.
    • (2003) Eur. J. Biochem. , vol.270 , pp. 1036-1042
    • Bunik, V.I.1
  • 91
    • 47849099861 scopus 로고    scopus 로고
    • Ammonium-dependent hydrogen peroxide production by mitochondria
    • [91] Grivennikova, V.G., Cecchini, G., Vinogradov, A.D., Ammonium-dependent hydrogen peroxide production by mitochondria. FEBS Lett. 582 (2008), 2719–2724.
    • (2008) FEBS Lett. , vol.582 , pp. 2719-2724
    • Grivennikova, V.G.1    Cecchini, G.2    Vinogradov, A.D.3
  • 92
    • 78651366651 scopus 로고    scopus 로고
    • Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production
    • [92] Kareyeva, A.V., Grivennikova, V.G., Cecchini, G., Vinogradov, A.D., Molecular identification of the enzyme responsible for the mitochondrial NADH-supported ammonium-dependent hydrogen peroxide production. FEBS Lett. 585 (2011), 385–389.
    • (2011) FEBS Lett. , vol.585 , pp. 385-389
    • Kareyeva, A.V.1    Grivennikova, V.G.2    Cecchini, G.3    Vinogradov, A.D.4
  • 93
    • 0033522924 scopus 로고    scopus 로고
    • Titrating the effects of mitochondrial complex I impairment in the cell physiology
    • [93] Barrientos, A., Moraes, C.T., Titrating the effects of mitochondrial complex I impairment in the cell physiology. J. Biol. Chem. 274 (1999), 16188–16197.
    • (1999) J. Biol. Chem. , vol.274 , pp. 16188-16197
    • Barrientos, A.1    Moraes, C.T.2
  • 95
    • 0036138662 scopus 로고    scopus 로고
    • Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes
    • [95] Siraki, A.G., Pourahmad, J., Chan, T.S., Khan, S., O'Brien, P.J., Endogenous and endobiotic induced reactive oxygen species formation by isolated hepatocytes. Free Radic. Biol. Med. 32 (2002), 2–10.
    • (2002) Free Radic. Biol. Med. , vol.32 , pp. 2-10
    • Siraki, A.G.1    Pourahmad, J.2    Chan, T.S.3    Khan, S.4    O'Brien, P.J.5
  • 96
    • 0037424245 scopus 로고    scopus 로고
    • Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production
    • [96] Li, N., Ragheb, K., Lawler, G., Sturgis, J., Rajwa, B., Melendez, J.A., Robinson, J.P., Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. J. Biol. Chem. 278 (2003), 8516–8525.
    • (2003) J. Biol. Chem. , vol.278 , pp. 8516-8525
    • Li, N.1    Ragheb, K.2    Lawler, G.3    Sturgis, J.4    Rajwa, B.5    Melendez, J.A.6    Robinson, J.P.7
  • 97
    • 33746326513 scopus 로고    scopus 로고
    • Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration
    • [97] Radad, K., Rausch, W.D., Gille, G., Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration. Neurochem. Int. 49 (2006), 379–386.
    • (2006) Neurochem. Int. , vol.49 , pp. 379-386
    • Radad, K.1    Rausch, W.D.2    Gille, G.3
  • 99
    • 84884902071 scopus 로고    scopus 로고
    • Oxidative damage to macromolecules in human Parkinson disease and the rotenone model
    • [99] Sanders, L.H., Greenamyre, J.T., Oxidative damage to macromolecules in human Parkinson disease and the rotenone model. Free Radic. Biol. Med. 62 (2013), 111–120.
    • (2013) Free Radic. Biol. Med. , vol.62 , pp. 111-120
    • Sanders, L.H.1    Greenamyre, J.T.2
  • 102
    • 33644872938 scopus 로고    scopus 로고
    • Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus
    • [102] Sazanov, L.A., Hinchliffe, P., Structure of the hydrophilic domain of respiratory complex I from Thermus thermophilus. Science 311 (2006), 1430–1436.
    • (2006) Science , vol.311 , pp. 1430-1436
    • Sazanov, L.A.1    Hinchliffe, P.2
  • 103
    • 84884519058 scopus 로고    scopus 로고
    • Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening
    • [103] Orr, A.L., Ashok, D., Sarantos, M.R., Shi, T., Hughes, R.E., Brand, M.D., Inhibitors of ROS production by the ubiquinone-binding site of mitochondrial complex I identified by chemical screening. Free Radic. Biol. Med. 65 (2013), 1047–1059.
    • (2013) Free Radic. Biol. Med. , vol.65 , pp. 1047-1059
    • Orr, A.L.1    Ashok, D.2    Sarantos, M.R.3    Shi, T.4    Hughes, R.E.5    Brand, M.D.6
  • 105
    • 0024548927 scopus 로고
    • Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia
    • [105] Cino, M., Del Maestro, R.F., Generation of hydrogen peroxide by brain mitochondria: the effect of reoxygenation following postdecapitative ischemia. Arch. Biochem. Biophys. 269 (1989), 623–638.
    • (1989) Arch. Biochem. Biophys. , vol.269 , pp. 623-638
    • Cino, M.1    Del Maestro, R.F.2
  • 106
    • 0034740585 scopus 로고    scopus 로고
    • m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria
    • m-Dependent and -independent production of reactive oxygen species by rat brain mitochondria. J. Neurochem. 79 (2001), 266–277.
    • (2001) J. Neurochem. , vol.79 , pp. 266-277
    • Votyakova, T.V.1    Reynolds, I.J.2
  • 107
    • 0036319021 scopus 로고    scopus 로고
    • Generation of reactive oxygen species by the mitochondrial electron transport chain
    • [107] Liu, Y., Fiskum, G., Schubert, D., Generation of reactive oxygen species by the mitochondrial electron transport chain. J. Neurochem. 80 (2002), 780–787.
    • (2002) J. Neurochem. , vol.80 , pp. 780-787
    • Liu, Y.1    Fiskum, G.2    Schubert, D.3
  • 108
    • 4544354262 scopus 로고    scopus 로고
    • Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I)
    • [108] Lambert, A.J., Brand, M.D., Inhibitors of the quinone-binding site allow rapid superoxide production from mitochondrial NADH:ubiquinone oxidoreductase (complex I). J. Biol. Chem. 279 (2004), 39414–39420.
    • (2004) J. Biol. Chem. , vol.279 , pp. 39414-39420
    • Lambert, A.J.1    Brand, M.D.2
  • 109
    • 43549110469 scopus 로고    scopus 로고
    • Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state
    • [109] Lambert, A.J., Buckingham, J.A., Brand, M.D., Dissociation of superoxide production by mitochondrial complex I from NAD(P)H redox state. FEBS Lett. 582 (2008), 1711–1714.
    • (2008) FEBS Lett. , vol.582 , pp. 1711-1714
    • Lambert, A.J.1    Buckingham, J.A.2    Brand, M.D.3
  • 110
    • 0030722043 scopus 로고    scopus 로고
    • Generating partitioning, targeting and functioning of superoxide in mitochondria
    • [110] Liu, S.S., Generating partitioning, targeting and functioning of superoxide in mitochondria. Biosci. Rep. 17 (1997), 259–272.
    • (1997) Biosci. Rep. , vol.17 , pp. 259-272
    • Liu, S.S.1
  • 111
    • 0030729851 scopus 로고    scopus 로고
    • High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria
    • [111] Korshunov, S.S., Skulachev, V.P., Starkov, A.A., High protonic potential actuates a mechanism of production of reactive oxygen species in mitochondria. FEBS Lett. 416 (1997), 15–18.
    • (1997) FEBS Lett. , vol.416 , pp. 15-18
    • Korshunov, S.S.1    Skulachev, V.P.2    Starkov, A.A.3
  • 112
    • 79961008706 scopus 로고    scopus 로고
    • Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I)
    • [112] Treberg, J.R., Quinlan, C.L., Brand, M.D., Evidence for two sites of superoxide production by mitochondrial NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 286 (2011), 27103–27110.
    • (2011) J. Biol. Chem. , vol.286 , pp. 27103-27110
    • Treberg, J.R.1    Quinlan, C.L.2    Brand, M.D.3
  • 113
    • 79955966782 scopus 로고    scopus 로고
    • A model of the proton translocation mechanism of complex I
    • [113] Treberg, J.R., Brand, M.D., A model of the proton translocation mechanism of complex I. J. Biol. Chem. 286 (2011), 17579–17584.
    • (2011) J. Biol. Chem. , vol.286 , pp. 17579-17584
    • Treberg, J.R.1    Brand, M.D.2
  • 114
    • 43049141441 scopus 로고    scopus 로고
    • Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport
    • [114] Lambert, A.J., Buckingham, J.A., Boysen, H.M., Brand, M.D., Diphenyleneiodonium acutely inhibits reactive oxygen species production by mitochondrial complex I during reverse, but not forward electron transport. Biochim. Biophys. Acta, 397–403(1777), 2008.
    • (2008) Biochim. Biophys. Acta , vol.397-403 , Issue.1777
    • Lambert, A.J.1    Buckingham, J.A.2    Boysen, H.M.3    Brand, M.D.4
  • 115
    • 84922479528 scopus 로고    scopus 로고
    • Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I
    • [115] Zickermann, V., Wirth, C., Nasiri, H., Siegmund, K., Schwalbe, H., Hunte, C., Brandt, U., Structural biology. Mechanistic insight from the crystal structure of mitochondrial complex I. Science 347 (2015), 44–49.
    • (2015) Science , vol.347 , pp. 44-49
    • Zickermann, V.1    Wirth, C.2    Nasiri, H.3    Siegmund, K.4    Schwalbe, H.5    Hunte, C.6    Brandt, U.7
  • 117
    • 84874352529 scopus 로고    scopus 로고
    • Crystal structure of the entire respiratory complex I
    • [117] Baradaran, R., Berrisford, J.M., Minhas, G.S., Sazanov, L.A., Crystal structure of the entire respiratory complex I. Nature 494 (2013), 443–448.
    • (2013) Nature , vol.494 , pp. 443-448
    • Baradaran, R.1    Berrisford, J.M.2    Minhas, G.S.3    Sazanov, L.A.4
  • 118
    • 0017074295 scopus 로고
    • 566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3
    • 566, and their relationship to ubiquinone and the iron-sulfer centers S-1 (+N-2) and S-3. Arch. Biochem. Biophys. 174 (1976), 143–157.
    • (1976) Arch. Biochem. Biophys. , vol.174 , pp. 143-157
    • Erecinska, M.1    Wilson, D.F.2
  • 120
    • 1942447877 scopus 로고    scopus 로고
    • 1 complex: function in the context of structure
    • 1 complex: function in the context of structure. Annu. Rev. Physiol. 66 (2004), 689–733.
    • (2004) Annu. Rev. Physiol. , vol.66 , pp. 689-733
    • Crofts, A.R.1
  • 121
    • 0346850862 scopus 로고    scopus 로고
    • The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide
    • [121] Guo, J., Lemire, B.D., The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J. Biol. Chem. 278 (2003), 47629–47635.
    • (2003) J. Biol. Chem. , vol.278 , pp. 47629-47635
    • Guo, J.1    Lemire, B.D.2
  • 122
    • 76049086567 scopus 로고    scopus 로고
    • Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II
    • [122] Paranagama, M.P., Sakamoto, K., Amino, H., Awano, M., Miyoshi, H., Kita, K., Contribution of the FAD and quinone binding sites to the production of reactive oxygen species from Ascaris suum mitochondrial complex II. Mitochondrion 10 (2010), 158–165.
    • (2010) Mitochondrion , vol.10 , pp. 158-165
    • Paranagama, M.P.1    Sakamoto, K.2    Amino, H.3    Awano, M.4    Miyoshi, H.5    Kita, K.6
  • 123
    • 0036805853 scopus 로고    scopus 로고
    • Cytopathies involving mitochondrial complex II
    • [123] Ackrell, B.A., Cytopathies involving mitochondrial complex II. Mol. Asp. Med. 23 (2002), 369–384.
    • (2002) Mol. Asp. Med. , vol.23 , pp. 369-384
    • Ackrell, B.A.1
  • 124
    • 84875703869 scopus 로고    scopus 로고
    • The role of complex II in disease
    • [124] Hoekstra, A.S., Bayley, J.P., The role of complex II in disease. Biochim. Biophys. Acta, 543–551(1827), 2013.
    • (2013) Biochim. Biophys. Acta , vol.543-551 , Issue.1827
    • Hoekstra, A.S.1    Bayley, J.P.2
  • 126
    • 0043269302 scopus 로고    scopus 로고
    • Function and structure of complex II of the respiratory chain
    • [126] Cecchini, G., Function and structure of complex II of the respiratory chain. Annu. Rev. Biochem. 72 (2003), 77–109.
    • (2003) Annu. Rev. Biochem. , vol.72 , pp. 77-109
    • Cecchini, G.1
  • 127
    • 0036244950 scopus 로고    scopus 로고
    • Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide
    • [127] Drahota, Z., Chowdhury, S.K., Floryk, D., Mracek, T., Wilhelm, J., Rauchova, H., Lenaz, G., Houstek, J., Glycerophosphate-dependent hydrogen peroxide production by brown adipose tissue mitochondria and its activation by ferricyanide. J. Bioenerg. Biomembr. 34 (2002), 105–113.
    • (2002) J. Bioenerg. Biomembr. , vol.34 , pp. 105-113
    • Drahota, Z.1    Chowdhury, S.K.2    Floryk, D.3    Mracek, T.4    Wilhelm, J.5    Rauchova, H.6    Lenaz, G.7    Houstek, J.8
  • 129
    • 57449106484 scopus 로고    scopus 로고
    • High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria
    • [129] Mracek, T., Pecinova, A., Vrbacky, M., Drahota, Z., Houstek, J., High efficiency of ROS production by glycerophosphate dehydrogenase in mammalian mitochondria. Arch. Biochem. Biophys. 481 (2009), 30–36.
    • (2009) Arch. Biochem. Biophys. , vol.481 , pp. 30-36
    • Mracek, T.1    Pecinova, A.2    Vrbacky, M.3    Drahota, Z.4    Houstek, J.5
  • 131
    • 42149117451 scopus 로고    scopus 로고
    • Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism
    • [131] Yeh, J.I., Chinte, U., Du, S., Structure of glycerol-3-phosphate dehydrogenase, an essential monotopic membrane enzyme involved in respiration and metabolism. Proc. Natl. Acad. Sci. USA 105 (2008), 3280–3285.
    • (2008) Proc. Natl. Acad. Sci. USA , vol.105 , pp. 3280-3285
    • Yeh, J.I.1    Chinte, U.2    Du, S.3
  • 132
    • 63349087445 scopus 로고    scopus 로고
    • Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation
    • [132] Tahara, E.B., Navarete, F.D., Kowaltowski, A.J., Tissue-, substrate-, and site-specific characteristics of mitochondrial reactive oxygen species generation. Free Radic. Biol. Med. 46 (2009), 1283–1297.
    • (2009) Free Radic. Biol. Med. , vol.46 , pp. 1283-1297
    • Tahara, E.B.1    Navarete, F.D.2    Kowaltowski, A.J.3
  • 134
    • 0037441390 scopus 로고    scopus 로고
    • External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide
    • [134] Fang, J., Beattie, D.S., External alternative NADH dehydrogenase of Saccharomyces cerevisiae: a potential source of superoxide. Free Radic. Biol. Med. 34 (2003), 478–488.
    • (2003) Free Radic. Biol. Med. , vol.34 , pp. 478-488
    • Fang, J.1    Beattie, D.S.2
  • 136
    • 84896690861 scopus 로고    scopus 로고
    • Functional role of mitochondrial respiratory supercomplexes
    • [136] Genova, M.L., Lenaz, G., Functional role of mitochondrial respiratory supercomplexes. Biochim. Biophys. Acta, 427–443(1837), 2014.
    • (2014) Biochim. Biophys. Acta , vol.427-443 , Issue.1837
    • Genova, M.L.1    Lenaz, G.2
  • 137
    • 38749087624 scopus 로고    scopus 로고
    • High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I-and complex II-linked substrates
    • [137] Muller, F.L., Liu, Y., Abdul-Ghani, M.A., Lustgarten, M.S., Bhattacharya, A., Jang, Y.C., Van Remmen, H., High rates of superoxide production in skeletal-muscle mitochondria respiring on both complex I-and complex II-linked substrates. Biochem. J. 409 (2008), 491–499.
    • (2008) Biochem. J. , vol.409 , pp. 491-499
    • Muller, F.L.1    Liu, Y.2    Abdul-Ghani, M.A.3    Lustgarten, M.S.4    Bhattacharya, A.5    Jang, Y.C.6    Van Remmen, H.7
  • 138
    • 55949118714 scopus 로고    scopus 로고
    • Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production
    • [138] Powers, S.K., Jackson, M.J., Exercise-induced oxidative stress: cellular mechanisms and impact on muscle force production. Physiol. Rev. 88 (2008), 1243–1276.
    • (2008) Physiol. Rev. , vol.88 , pp. 1243-1276
    • Powers, S.K.1    Jackson, M.J.2
  • 139
    • 84890084174 scopus 로고    scopus 로고
    • Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases
    • [139] Sakellariou, G.K., Jackson, M.J., Vasilaki, A., Redefining the major contributors to superoxide production in contracting skeletal muscle. The role of NAD(P)H oxidases. Free Radic. Res. 48 (2014), 12–29.
    • (2014) Free Radic. Res. , vol.48 , pp. 12-29
    • Sakellariou, G.K.1    Jackson, M.J.2    Vasilaki, A.3
  • 140
    • 34548126843 scopus 로고    scopus 로고
    • Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects
    • [140] Wardman, P., Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic. Biol. Med. 43 (2007), 995–1022.
    • (2007) Free Radic. Biol. Med. , vol.43 , pp. 995-1022
    • Wardman, P.1
  • 142
    • 84856556021 scopus 로고    scopus 로고
    • There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells
    • [142] Brown, G.C., Borutaite, V., There is no evidence that mitochondria are the main source of reactive oxygen species in mammalian cells. Mitochondrion 12 (2012), 1–4.
    • (2012) Mitochondrion , vol.12 , pp. 1-4
    • Brown, G.C.1    Borutaite, V.2
  • 144
    • 77956186783 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes
    • [144] Hamanaka, R.B., Chandel, N.S., Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends Biochem. Sci. 35 (2010), 505–513.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 505-513
    • Hamanaka, R.B.1    Chandel, N.S.2
  • 145
    • 84857116578 scopus 로고    scopus 로고
    • Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling
    • [145] Ray, P.D., Huang, B.W., Tsuji, Y., Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 24 (2012), 981–990.
    • (2012) Cell Signal. , vol.24 , pp. 981-990
    • Ray, P.D.1    Huang, B.W.2    Tsuji, Y.3
  • 146
    • 84975755192 scopus 로고    scopus 로고
    • Mitochondrial ROS signaling in organismal homeostasis
    • [146] Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
    • (2015) Cell , vol.163 , pp. 560-569
    • Shadel, G.S.1    Horvath, T.L.2
  • 149
    • 76049083966 scopus 로고    scopus 로고
    • Reactive oxygen species, cellular redox systems, and apoptosis
    • [149] Circu, M.L., Aw, T.Y., Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic. Biol. Med. 48 (2010), 749–762.
    • (2010) Free Radic. Biol. Med. , vol.48 , pp. 749-762
    • Circu, M.L.1    Aw, T.Y.2
  • 151
    • 80054087824 scopus 로고    scopus 로고
    • Mitochondrial ROS generation for regulation of autophagic pathways in cancer
    • [151] Li, Z.Y., Yang, Y., Ming, M., Liu, B., Mitochondrial ROS generation for regulation of autophagic pathways in cancer. Biochem. Biophys. Res. Commun. 414 (2011), 5–8.
    • (2011) Biochem. Biophys. Res. Commun. , vol.414 , pp. 5-8
    • Li, Z.Y.1    Yang, Y.2    Ming, M.3    Liu, B.4
  • 152
    • 78650890352 scopus 로고    scopus 로고
    • Regulation of autophagy by ROS: physiology and pathology
    • [152] Scherz-Shouval, R., Elazar, Z., Regulation of autophagy by ROS: physiology and pathology. Trends Biochem. Sci. 36 (2011), 30–38.
    • (2011) Trends Biochem. Sci. , vol.36 , pp. 30-38
    • Scherz-Shouval, R.1    Elazar, Z.2
  • 153
    • 84867602835 scopus 로고    scopus 로고
    • Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation
    • [153] Li, L., Chen, Y., Gibson, S.B., Starvation-induced autophagy is regulated by mitochondrial reactive oxygen species leading to AMPK activation. Cell Signal. 25 (2013), 50–65.
    • (2013) Cell Signal. , vol.25 , pp. 50-65
    • Li, L.1    Chen, Y.2    Gibson, S.B.3
  • 155
    • 84928879644 scopus 로고    scopus 로고
    • The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review
    • [155] Atashi, F., Modarressi, A., Pepper, M.S., The role of reactive oxygen species in mesenchymal stem cell adipogenic and osteogenic differentiation: a review. Stem Cells Dev. 24 (2015), 1150–1163.
    • (2015) Stem Cells Dev. , vol.24 , pp. 1150-1163
    • Atashi, F.1    Modarressi, A.2    Pepper, M.S.3
  • 156
    • 84891794636 scopus 로고    scopus 로고
    • JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death
    • [156] Win, S., Than, T.A., Fernandez-Checa, J.C., Kaplowitz, N., JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death. Cell Death Dis., 5, 2014, e989.
    • (2014) Cell Death Dis. , vol.5 , pp. e989
    • Win, S.1    Than, T.A.2    Fernandez-Checa, J.C.3    Kaplowitz, N.4
  • 157
    • 79959350253 scopus 로고    scopus 로고
    • Extending life span by increasing oxidative stress
    • [157] Ristow, M., Schmeisser, S., Extending life span by increasing oxidative stress. Free Radic. Biol. Med. 51 (2011), 327–336.
    • (2011) Free Radic. Biol. Med. , vol.51 , pp. 327-336
    • Ristow, M.1    Schmeisser, S.2
  • 158
    • 40949126440 scopus 로고    scopus 로고
    • Mitochondrial complex III regulates hypoxic activation of HIF
    • [158] Klimova, T., Chandel, N.S., Mitochondrial complex III regulates hypoxic activation of HIF. Cell Death Differ. 15 (2008), 660–666.
    • (2008) Cell Death Differ. , vol.15 , pp. 660-666
    • Klimova, T.1    Chandel, N.S.2
  • 160
    • 84929162383 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium
    • [160] Kim, S., Kim, M.J., Park do, Y., Chung, H.J., Kim, C.H., Yoon, J.H., Kim, H.J., Mitochondrial reactive oxygen species modulate innate immune response to influenza A virus in human nasal epithelium. Antiviral. Res. 119 (2015), 78–83.
    • (2015) Antiviral. Res. , vol.119 , pp. 78-83
    • Kim, S.1    Kim, M.J.2    Park do, Y.3    Chung, H.J.4    Kim, C.H.5    Yoon, J.H.6    Kim, H.J.7
  • 162
    • 0036137559 scopus 로고    scopus 로고
    • Contribution of mitochondria to oxidative stress associated with alcoholic liver disease
    • [162] Bailey, S.M., Cunningham, C.C., Contribution of mitochondria to oxidative stress associated with alcoholic liver disease. Free Radic. Biol. Med. 32 (2002), 11–16.
    • (2002) Free Radic. Biol. Med. , vol.32 , pp. 11-16
    • Bailey, S.M.1    Cunningham, C.C.2
  • 164
    • 0026023219 scopus 로고
    • Hydrogen peroxide release by mitochondria increases during aging
    • [164] Sohal, R.S., Sohal, B.H., Hydrogen peroxide release by mitochondria increases during aging. Mech. Ageing Dev. 57 (1991), 187–202.
    • (1991) Mech. Ageing Dev. , vol.57 , pp. 187-202
    • Sohal, R.S.1    Sohal, B.H.2
  • 165
    • 84874591240 scopus 로고    scopus 로고
    • The role of mitochondria in aging
    • [165] Bratic, A., Larsson, N.G., The role of mitochondria in aging. J. Clin. Investig. 123 (2013), 951–957.
    • (2013) J. Clin. Investig. , vol.123 , pp. 951-957
    • Bratic, A.1    Larsson, N.G.2
  • 167
    • 0033520497 scopus 로고    scopus 로고
    • Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1
    • [167] Wenk, J., Brenneisen, P., Wlaschek, M., Poswig, A., Briviba, K., Oberley, T.D., Scharffetter-Kochanek, K., Stable overexpression of manganese superoxide dismutase in mitochondria identifies hydrogen peroxide as a major oxidant in the AP-1-mediated induction of matrix-degrading metalloprotease-1. J. Biol. Chem. 274 (1999), 25869–25876.
    • (1999) J. Biol. Chem. , vol.274 , pp. 25869-25876
    • Wenk, J.1    Brenneisen, P.2    Wlaschek, M.3    Poswig, A.4    Briviba, K.5    Oberley, T.D.6    Scharffetter-Kochanek, K.7
  • 168
    • 33646922865 scopus 로고    scopus 로고
    • Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice
    • [168] Esposito, L., Raber, J., Kekonius, L., Yan, F., Yu, G.Q., Bien-Ly, N., Puolivali, J., Scearce-Levie, K., Masliah, E., Mucke, L., Reduction in mitochondrial superoxide dismutase modulates Alzheimer's disease-like pathology and accelerates the onset of behavioral changes in human amyloid precursor protein transgenic mice. J. Neurosci. 26 (2006), 5167–5179.
    • (2006) J. Neurosci. , vol.26 , pp. 5167-5179
    • Esposito, L.1    Raber, J.2    Kekonius, L.3    Yan, F.4    Yu, G.Q.5    Bien-Ly, N.6    Puolivali, J.7    Scearce-Levie, K.8    Masliah, E.9    Mucke, L.10
  • 171
    • 84903304059 scopus 로고    scopus 로고
    • Oxidative stress and mitochondrial dysfunction in Alzheimer's disease
    • [171] Wang, X., Wang, W., Li, L., Perry, G., Lee, H.G., Zhu, X., Oxidative stress and mitochondrial dysfunction in Alzheimer's disease. Biochim. Biophys. acta, 1240–1247(1842), 2014.
    • (2014) Biochim. Biophys. acta , vol.1240-1247 , Issue.1842
    • Wang, X.1    Wang, W.2    Li, L.3    Perry, G.4    Lee, H.G.5    Zhu, X.6
  • 172
    • 0030695482 scopus 로고    scopus 로고
    • Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits
    • [172] Kinscherf, R., Deigner, H.P., Usinger, C., Pill, J., Wagner, M., Kamencic, H., Hou, D., Chen, M., Schmiedt, W., Schrader, M., Kovacs, G., Kato, K., Metz, J., Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits. FASEB J. 11 (1997), 1317–1328.
    • (1997) FASEB J. , vol.11 , pp. 1317-1328
    • Kinscherf, R.1    Deigner, H.P.2    Usinger, C.3    Pill, J.4    Wagner, M.5    Kamencic, H.6    Hou, D.7    Chen, M.8    Schmiedt, W.9    Schrader, M.10    Kovacs, G.11    Kato, K.12    Metz, J.13
  • 173
    • 84861234894 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species and risk of atherosclerosis
    • [173] Hulsmans, M., Van Dooren, E., Holvoet, P., Mitochondrial reactive oxygen species and risk of atherosclerosis. Curr. Atheroscler. Rep. 14 (2012), 264–276.
    • (2012) Curr. Atheroscler. Rep. , vol.14 , pp. 264-276
    • Hulsmans, M.1    Van Dooren, E.2    Holvoet, P.3
  • 174
    • 84894070483 scopus 로고    scopus 로고
    • Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-kappaB-mediated inflammation in macrophages
    • [174] Wang, Y., Wang, G.Z., Rabinovitch, P.S., Tabas, I., Macrophage mitochondrial oxidative stress promotes atherosclerosis and nuclear factor-kappaB-mediated inflammation in macrophages. Circ. Res. 114 (2014), 421–433.
    • (2014) Circ. Res. , vol.114 , pp. 421-433
    • Wang, Y.1    Wang, G.Z.2    Rabinovitch, P.S.3    Tabas, I.4
  • 176
    • 84867853849 scopus 로고    scopus 로고
    • Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila
    • [176] Ohsawa, S., Sato, Y., Enomoto, M., Nakamura, M., Betsumiya, A., Igaki, T., Mitochondrial defect drives non-autonomous tumour progression through Hippo signalling in Drosophila. Nature 490 (2012), 547–551.
    • (2012) Nature , vol.490 , pp. 547-551
    • Ohsawa, S.1    Sato, Y.2    Enomoto, M.3    Nakamura, M.4    Betsumiya, A.5    Igaki, T.6
  • 177
    • 84908213474 scopus 로고    scopus 로고
    • Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?
    • [177] Sabharwal, S.S., Schumacker, P.T., Mitochondrial ROS in cancer: initiators, amplifiers or an Achilles’ heel?. Nat. Rev. Cancer 14 (2014), 709–721.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 709-721
    • Sabharwal, S.S.1    Schumacker, P.T.2
  • 178
    • 84940030548 scopus 로고    scopus 로고
    • Mitochondrial ROS and cancer drug resistance: Implications for therapy
    • [178] Okon, I.S., Zou, M.H., Mitochondrial ROS and cancer drug resistance: Implications for therapy. Pharmacol. Res. 100 (2015), 170–174.
    • (2015) Pharmacol. Res. , vol.100 , pp. 170-174
    • Okon, I.S.1    Zou, M.H.2
  • 181
    • 84930862762 scopus 로고    scopus 로고
    • Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy
    • [181] Christiansen, L.B., Dela, F., Koch, J., Hansen, C.N., Leifsson, P.S., Yokota, T., Impaired cardiac mitochondrial oxidative phosphorylation and enhanced mitochondrial oxidative stress in feline hypertrophic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol. 308 (2015), H1237–H1247.
    • (2015) Am. J. Physiol. Heart Circ. Physiol. , vol.308 , pp. H1237-H1247
    • Christiansen, L.B.1    Dela, F.2    Koch, J.3    Hansen, C.N.4    Leifsson, P.S.5    Yokota, T.6
  • 182
    • 20044376702 scopus 로고    scopus 로고
    • The pathobiology of diabetic complications: a unifying mechanism
    • [182] Brownlee, M., The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54 (2005), 1615–1625.
    • (2005) Diabetes , vol.54 , pp. 1615-1625
    • Brownlee, M.1
  • 183
    • 12344305124 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and type 2 diabetes
    • [183] Lowell, B.B., Shulman, G.I., Mitochondrial dysfunction and type 2 diabetes. Science 307 (2005), 384–387.
    • (2005) Science , vol.307 , pp. 384-387
    • Lowell, B.B.1    Shulman, G.I.2
  • 184
    • 33749070956 scopus 로고    scopus 로고
    • Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress
    • [184] Kowluru, R.A., Kowluru, V., Xiong, Y., Ho, Y.S., Overexpression of mitochondrial superoxide dismutase in mice protects the retina from diabetes-induced oxidative stress. Free Radic. Biol. Med. 41 (2006), 1191–1196.
    • (2006) Free Radic. Biol. Med. , vol.41 , pp. 1191-1196
    • Kowluru, R.A.1    Kowluru, V.2    Xiong, Y.3    Ho, Y.S.4
  • 185
    • 84923649971 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy
    • [185] Nishikawa, T., Brownlee, M., Araki, E., Mitochondrial reactive oxygen species in the pathogenesis of early diabetic nephropathy. J. Diabetes Investig. 6 (2015), 137–139.
    • (2015) J. Diabetes Investig. , vol.6 , pp. 137-139
    • Nishikawa, T.1    Brownlee, M.2    Araki, E.3
  • 186
    • 84949604431 scopus 로고    scopus 로고
    • Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway
    • [186] Al-Lahham, R., Deford, J.H., Papaconstantinou, J., Mitochondrial-generated ROS down regulates insulin signaling via activation of the p38MAPK stress response pathway. Mol. Cell. Endocrinol. 419 (2016), 1–11.
    • (2016) Mol. Cell. Endocrinol. , vol.419 , pp. 1-11
    • Al-Lahham, R.1    Deford, J.H.2    Papaconstantinou, J.3
  • 187
    • 0034669186 scopus 로고    scopus 로고
    • Mitochondrial superoxide production in kainate-induced hippocampal damage
    • [187] Liang, L.P., Ho, Y.S., Patel, M., Mitochondrial superoxide production in kainate-induced hippocampal damage. Neuroscience 101 (2000), 563–570.
    • (2000) Neuroscience , vol.101 , pp. 563-570
    • Liang, L.P.1    Ho, Y.S.2    Patel, M.3
  • 188
    • 84884906665 scopus 로고    scopus 로고
    • Mitochondrial involvement and oxidative stress in temporal lobe epilepsy
    • [188] Rowley, S., Patel, M., Mitochondrial involvement and oxidative stress in temporal lobe epilepsy. Free Radic. Biol. Med. 62 (2013), 121–131.
    • (2013) Free Radic. Biol. Med. , vol.62 , pp. 121-131
    • Rowley, S.1    Patel, M.2
  • 189
    • 84951954910 scopus 로고    scopus 로고
    • Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy
    • [189] Pearson, J.N., Rowley, S., Liang, L.P., White, A.M., Day, B.J., Patel, M., Reactive oxygen species mediate cognitive deficits in experimental temporal lobe epilepsy. Neurobiol. Dis. 82 (2015), 289–297.
    • (2015) Neurobiol. Dis. , vol.82 , pp. 289-297
    • Pearson, J.N.1    Rowley, S.2    Liang, L.P.3    White, A.M.4    Day, B.J.5    Patel, M.6
  • 190
    • 84880577813 scopus 로고    scopus 로고
    • The mitochondrion: a perpetrator of acquired hearing loss
    • [190] Bottger, E.C., Schacht, J., The mitochondrion: a perpetrator of acquired hearing loss. Hearing Res. 303 (2013), 12–19.
    • (2013) Hearing Res. , vol.303 , pp. 12-19
    • Bottger, E.C.1    Schacht, J.2
  • 191
    • 84927153575 scopus 로고    scopus 로고
    • Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss
    • 617207
    • [191] Kamogashira, T., Fujimoto, C., Yamasoba, T., Reactive oxygen species, apoptosis, and mitochondrial dysfunction in hearing loss. BioMed Res. Int., 2015, 2015, 617207.
    • (2015) BioMed Res. Int. , vol.2015
    • Kamogashira, T.1    Fujimoto, C.2    Yamasoba, T.3
  • 192
    • 84872486948 scopus 로고    scopus 로고
    • Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation
    • [192] Sanderson, T.H., Reynolds, C.A., Kumar, R., Przyklenk, K., Huttemann, M., Molecular mechanisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane potential in reactive oxygen species generation. Mol. Neurobiol. 47 (2013), 9–23.
    • (2013) Mol. Neurobiol. , vol.47 , pp. 9-23
    • Sanderson, T.H.1    Reynolds, C.A.2    Kumar, R.3    Przyklenk, K.4    Huttemann, M.5
  • 195
    • 84655169624 scopus 로고    scopus 로고
    • Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis
    • [195] Rolo, A.P., Teodoro, J.S., Palmeira, C.M., Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic. Biol. Med. 52 (2012), 59–69.
    • (2012) Free Radic. Biol. Med. , vol.52 , pp. 59-69
    • Rolo, A.P.1    Teodoro, J.S.2    Palmeira, C.M.3
  • 196
    • 84910147372 scopus 로고    scopus 로고
    • Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease
    • [196] Paradies, G., Paradies, V., Ruggiero, F.M., Petrosillo, G., Oxidative stress, cardiolipin and mitochondrial dysfunction in nonalcoholic fatty liver disease. World J. Gastroenterol. 20 (2014), 14205–14218.
    • (2014) World J. Gastroenterol. , vol.20 , pp. 14205-14218
    • Paradies, G.1    Paradies, V.2    Ruggiero, F.M.3    Petrosillo, G.4
  • 198
    • 84952052287 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in Parkinson's disease
    • [198] Moon, H.E., Paek, S.H., Mitochondrial dysfunction in Parkinson's disease. Exp. Neurobiol. 24 (2015), 103–116.
    • (2015) Exp. Neurobiol. , vol.24 , pp. 103-116
    • Moon, H.E.1    Paek, S.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.