-
1
-
-
0003964363
-
-
American Cancer Society, 2013. Atlanta: American Cancer Society
-
American Cancer Society. Cancer Facts & Figures 2013. Atlanta: American Cancer Society; 2013.
-
(2013)
Cancer Facts & Figures
-
-
-
2
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang S, Wang X, Contino G, Liesa M, Sahin E, Ying H, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev 2011;25: 717-29.
-
(2011)
Genes Dev
, vol.25
, pp. 717-729
-
-
Yang, S.1
Wang, X.2
Contino, G.3
Liesa, M.4
Sahin, E.5
Ying, H.6
-
3
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008;132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
4
-
-
80053634368
-
The dynamic nature of autophagy in cancer
-
Kimmelman AC. The dynamic nature of autophagy in cancer. Genes Dev 2011;25:1999-2010.
-
(2011)
Genes Dev
, vol.25
, pp. 1999-2010
-
-
Kimmelman, A.C.1
-
5
-
-
79955377420
-
Autophagy-defi cient mice develop multiple liver tumors
-
Takamura A, Komatsu M, Hara T, Sakamoto A, Kishi C, Waguri S, et al. Autophagy-defi cient mice develop multiple liver tumors. Genes Dev 2011;25:795-800.
-
(2011)
Genes Dev
, vol.25
, pp. 795-800
-
-
Takamura, A.1
Komatsu, M.2
Hara, T.3
Sakamoto, A.4
Kishi, C.5
Waguri, S.6
-
6
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo JY, Chen HY, Mathew R, Fan J, Strohecker AM, Karsli-Uzunbas G, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev 2011;25:460-70.
-
(2011)
Genes Dev
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
Chen, H.Y.2
Mathew, R.3
Fan, J.4
Strohecker, A.M.5
Karsli-Uzunbas, G.6
-
7
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock R, Roy S, Kenific CM, Su JS, Salas E, Ronen SM, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell 2011;22:165-78.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
Roy, S.2
Kenific, C.M.3
Su, J.S.4
Salas, E.5
Ronen, S.M.6
-
8
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo JY, Karsli-Uzunbas G, Mathew R, Aisner SC, Kamphorst JJ, Strohecker AM, etal. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev 2013;27:1447-61.
-
(2013)
Genes Dev
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
Karsli-Uzunbas, G.2
Mathew, R.3
Aisner, S.C.4
Kamphorst, J.J.5
Strohecker, A.M.6
-
9
-
-
84892882660
-
A dual role for autophagy in a murine model of lung cancer
-
Rao S, Tortola L, Perlot T, Wirnsberger G, Novatchkova M, Nitsch R, et al. A dual role for autophagy in a murine model of lung cancer. Nat Commun 2014;5:3056.
-
(2014)
Nat Commun
, vol.5
, pp. 3056
-
-
Rao, S.1
Tortola, L.2
Perlot, T.3
Wirnsberger, G.4
Novatchkova, M.5
Nitsch, R.6
-
10
-
-
0024292722
-
Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes
-
Almoguera C, Shibata D, Forrester K, Martin J, Arnheim N, Perucho M. Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell1 988;53:549-54.
-
Cell1
, vol.988
, Issue.53
, pp. 549-554
-
-
Almoguera, C.1
Shibata, D.2
Forrester, K.3
Martin, J.4
Arnheim, N.5
Perucho, M.6
-
11
-
-
0346455774
-
Activated Kras and Ink4a/Arf defi ciency cooperate to produce metastatic pancreatic ductal adenocarcinoma
-
Aguirre AJ, Bardeesy N, Sinha M, Lopez L, Tuveson DA, Horner J, et al. Activated Kras and Ink4a/Arf defi ciency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev 2003;17: 3112-26.
-
(2003)
Genes Dev
, vol.17
, pp. 3112-3126
-
-
Aguirre, A.J.1
Bardeesy, N.2
Sinha, M.3
Lopez, L.4
Tuveson, D.A.5
Horner, J.6
-
12
-
-
9144266295
-
Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
-
Hingorani SR, Petricoin EF, Maitra A, Rajapakse V, King C, Jacobetz MA, et al. Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell 2003;4:437-50.
-
(2003)
Cancer Cell
, vol.4
, pp. 437-450
-
-
Hingorani, S.R.1
Petricoin, E.F.2
Maitra, A.3
Rajapakse, V.4
King, C.5
Jacobetz, M.A.6
-
13
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying H, Kimmelman AC, Lyssiotis CA, Hua S, Chu GC, Fletcher-Sananikone E, et al. Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell 2012;149: 656-70.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
Kimmelman, A.C.2
Lyssiotis, C.A.3
Hua, S.4
Chu, G.C.5
Fletcher-Sananikone, E.6
-
14
-
-
52149123619
-
Core signaling pathways in human pancreatic cancers revealed by global genomic analyses
-
Jones S, Zhang X, Parsons D W, Lin JC, Leary R J, Angenendt P, et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008;321:1801-6.
-
(2008)
Science
, vol.321
, pp. 1801-1806
-
-
Jones, S.1
Zhang, X.2
Parsons, D.W.3
Lin, J.C.4
Leary, R.J.5
Angenendt, P.6
-
15
-
-
0024387728
-
Mutations in the p53 gene occur in diverse human tumour types
-
Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, et al. Mutations in the p53 gene occur in diverse human tumour types. Nature 1989;342:705-8.
-
(1989)
Nature
, vol.342
, pp. 705-708
-
-
Nigro, J.M.1
Baker, S.J.2
Preisinger, A.C.3
Jessup, J.M.4
Hostetter, R.5
Cleary, K.6
-
16
-
-
33645824724
-
Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse
-
Bardeesy N, Aguirre AJ, Chu GC, Cheng KH, Lopez L V, Hezel AF, et al. Both p16(Ink4a) and the p19(Arf)-p53 pathway constrain progression of pancreatic adenocarcinoma in the mouse. Proc Natl Acad Sci USA 2006;103:5947-52.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 5947-5952
-
-
Bardeesy, N.1
Aguirre, A.J.2
Chu, G.C.3
Cheng, K.H.4
Lopez, L.V.5
Hezel, A.F.6
-
17
-
-
84871196163
-
Genetically engineered mouse models of pancreatic cancer
-
Westphalen CB, Olive KP. Genetically engineered mouse models of pancreatic cancer. Cancer J 2012;18:502-10.
-
(2012)
Cancer J
, vol.18
, pp. 502-510
-
-
Westphalen, C.B.1
Olive, K.P.2
-
18
-
-
19344362405
-
Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
-
Hingorani SR, Wang L, Multani AS, Combs C, Deramaudt TB, Hruban RH, et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 2005;7:469-83.
-
(2005)
Cancer Cell
, vol.7
, pp. 469-483
-
-
Hingorani, S.R.1
Wang, L.2
Multani, A.S.3
Combs, C.4
Deramaudt, T.B.5
Hruban, R.H.6
-
19
-
-
84890432985
-
p53 status determines the role of autophagy in pancreatic tumour development
-
Rosenfeldt MT, O'Prey J, Morton JP, Nixon C, MacKay G, Mrowinska A, et al. p53 status determines the role of autophagy in pancreatic tumour development. Nature 2013;504:296-300.
-
(2013)
Nature
, vol.504
, pp. 296-300
-
-
Rosenfeldt, M.T.1
O'Prey, J.2
Morton, J.P.3
Nixon, C.4
Mackay, G.5
Mrowinska, A.6
-
20
-
-
0036340074
-
Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors
-
Gu G, Dubauskaite J, Melton DA. Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 2002;129:2447-57.
-
(2002)
Development
, vol.129
, pp. 2447-2457
-
-
Gu, G.1
Dubauskaite, J.2
Melton, D.A.3
-
21
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C, Uchida T, Arakawa M, Komatsu M, Ueno T, Komiya K, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008;8:325-32.
-
(2008)
Cell Metab
, vol.8
, pp. 325-332
-
-
Ebato, C.1
Uchida, T.2
Arakawa, M.3
Komatsu, M.4
Ueno, T.5
Komiya, K.6
-
22
-
-
79952051544
-
Regeneration of the exocrine pancreas is delayed in telomere-dysfunctional mice
-
von Figura G, Wagner M, Nalapareddy K, Hartmann D, Kleger A, Guachalla LM, et al. Regeneration of the exocrine pancreas is delayed in telomere-dysfunctional mice. PLoS ONE 2011;6:e17122.
-
(2011)
PLoS ONE
, vol.6
-
-
von Figura, G.1
Wagner, M.2
Nalapareddy, K.3
Hartmann, D.4
Kleger, A.5
Guachalla, L.M.6
-
23
-
-
9144240441
-
Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
-
Qu X, Yu J, Bhagat G, Furuya N, Hibshoosh H, Troxel A, etal. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest 2003;112:1809-20.
-
(2003)
J Clin Invest
, vol.112
, pp. 1809-1820
-
-
Qu, X.1
Yu, J.2
Bhagat, G.3
Furuya, N.4
Hibshoosh, H.5
Troxel, A.6
-
24
-
-
0345166111
-
Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor
-
Yue Z, Jin S, Yang C, Levine AJ, Heintz N. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 2003;100:15077-82.
-
(2003)
Proc Natl Acad Sci U S A
, vol.100
, pp. 15077-15082
-
-
Yue, Z.1
Jin, S.2
Yang, C.3
Levine, A.J.4
Heintz, N.5
-
25
-
-
33846794896
-
Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
-
Amaravadi RK, Yu D, Lum JJ, Bui T, Christophorou MA, Evan GI, et al. Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J Clin Invest 2007;117:326-36.
-
(2007)
J Clin Invest
, vol.117
, pp. 326-336
-
-
Amaravadi, R.K.1
Yu, D.2
Lum, J.J.3
Bui, T.4
Christophorou, M.A.5
Evan, G.I.6
-
26
-
-
77951243028
-
Autophagy regulation by p53
-
Maiuri MC, Galluzzi L, Morselli E, Kepp O, Malik SA, Kroemer G. Autophagy regulation by p53. Curr Opin Cell Biol 2010;22:181-5.
-
(2010)
Curr Opin Cell Biol
, vol.22
, pp. 181-185
-
-
Maiuri, M.C.1
Galluzzi, L.2
Morselli, E.3
Kepp, O.4
Malik, S.A.5
Kroemer, G.6
-
27
-
-
33745192802
-
Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
-
Hara T, Nakamura K, Matsui M, Yamamoto A, Nakahara Y, Suzuki-Migishima R, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 2006;441: 885-9.
-
(2006)
Nature
, vol.441
, pp. 885-889
-
-
Hara, T.1
Nakamura, K.2
Matsui, M.3
Yamamoto, A.4
Nakahara, Y.5
Suzuki-Migishima, R.6
-
28
-
-
0034656212
-
Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum
-
Marino S, Vooijs M, van Der Gulden H, Jonkers J, Berns A. Induction of medulloblastomas in p53-null mutant mice by somatic inactivation of Rb in the external granular layer cells of the cerebellum. Genes Dev 2000;14:994-1004.
-
(2000)
Genes Dev
, vol.14
, pp. 994-1004
-
-
Marino, S.1
Vooijs, M.2
van Der Gulden, H.3
Jonkers, J.4
Berns, A.5
-
29
-
-
84878459227
-
Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer
-
Yabuuchi S, Pai SG, Campbell NR, de Wilde RF, De Oliveira E, Korangath P, et al. Notch signaling pathway targeted therapy suppresses tumor progression and metastatic spread in pancreatic cancer. Cancer Lett 2013;335:41-51.
-
(2013)
Cancer Lett
, vol.335
, pp. 41-51
-
-
Yabuuchi, S.1
Pai, S.G.2
Campbell, N.R.3
de Wilde, R.F.4
de Oliveira, E.5
Korangath, P.6
-
30
-
-
84866064437
-
The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models
-
Mizuma M, Rasheed ZA, Yabuuchi S, Omura N, Campbell NR, de Wilde RF, et al. The gamma secretase inhibitor MRK-003 attenuates pancreatic cancer growth in preclinical models. Mol Cancer Ther 2012;11: 1999-2009.
-
(2012)
Mol Cancer Ther
, vol.11
, pp. 1999-2009
-
-
Mizuma, M.1
Rasheed, Z.A.2
Yabuuchi, S.3
Omura, N.4
Campbell, N.R.5
de Wilde, R.F.6
-
31
-
-
0344375083
-
Lentivirus-delivered stable gene silencing by RNAi in primary cells
-
Stewart SA, Dykxhoorn DM, Palliser D, Mizuno H, Yu EY, An DS, et al. Lentivirus-delivered stable gene silencing by RNAi in primary cells. RNA 2003;9:493-501.
-
(2003)
RNA
, vol.9
, pp. 493-501
-
-
Stewart, S.A.1
Dykxhoorn, D.M.2
Palliser, D.3
Mizuno, H.4
Yu, E.Y.5
An, D.S.6
-
32
-
-
0029088005
-
Localization of GTPases by indirect immunofluorescence and immunoelectron microscopy
-
McCaffery JM, Farquhar M G. Localization of GTPases by indirect immunofluorescence and immunoelectron microscopy. Methods Enzymol 1995;257:259-79.
-
(1995)
Methods Enzymol
, vol.257
, pp. 259-279
-
-
McCaffery, J.M.1
Farquhar, M.G.2
-
33
-
-
80051588648
-
A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer
-
Hidalgo M, Bruckheimer E, Rajeshkumar NV, Garrido-Laguna I, De Oliveira E, Rubio-Viqueira B, et al. A pilot clinical study of treatment guided by personalized tumorgrafts in patients with advanced cancer. Mol Cancer Ther 2011;10:1311-6.
-
(2011)
Mol Cancer Ther
, vol.10
, pp. 1311-1316
-
-
Hidalgo, M.1
Bruckheimer, E.2
Rajeshkumar, N.V.3
Garrido-Laguna, I.4
de Oliveira, E.5
Rubio-Viqueira, B.6
|