-
1
-
-
84872967522
-
Cancer Statistics, 2013
-
Siegel, R. et al. (2013) Cancer Statistics, 2013. 63, 11-30.
-
(2013)
, vol.63
, pp. 11-30
-
-
Siegel, R.1
-
2
-
-
17644421000
-
SEER Cancer Statistics Factsheets: Pancreas Cancer
-
National Cancer Institute. Bethesda, MD, [Online]. Available
-
SEER Cancer Statistics Factsheets: Pancreas Cancer. National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/statfacts/html/pancreas.html. [Online]. Available: Http://seer.cancer.gov/statfacts/html/pancreas.html.
-
-
-
-
3
-
-
77951755278
-
Pancreatic cancer
-
Hidalgo, M. (2010) Pancreatic cancer. N. Engl. J. Med., 362, 1605-17.
-
(2010)
N. Engl. J. Med.
, vol.362
, pp. 1605-1617
-
-
Hidalgo, M.1
-
4
-
-
80051700067
-
Pancreatic cancer
-
Vincent, A. et al. (2011) Pancreatic cancer. Lancet, 378, 607-20.
-
(2011)
Lancet
, vol.378
, pp. 607-620
-
-
Vincent, A.1
-
5
-
-
1642588228
-
Pancreatic cancer
-
Li, D. et al. (2004) Pancreatic cancer. Lancet, 363, 1049-57.
-
(2004)
Lancet
, vol.363
, pp. 1049-1057
-
-
Li, D.1
-
6
-
-
84855201311
-
StellaTUM: Current consensus and discussion on pancreatic stellate cell research
-
Erkan, M. et al. (2012) StellaTUM: Current consensus and discussion on pancreatic stellate cell research. Gut, 61, 172-8.
-
(2012)
Gut
, vol.61
, pp. 172-178
-
-
Erkan, M.1
-
7
-
-
34447260549
-
Stromal biology of pancreatic cancer
-
Chu, G.C. et al. (2007) Stromal biology of pancreatic cancer. J. Cell. Biochem., 101, 887-907.
-
(2007)
J. Cell. Biochem.
, vol.101
, pp. 887-907
-
-
Chu, G.C.1
-
8
-
-
0034333026
-
Pancreatic tumors show high levels of hypoxia
-
Koong, a C. et al. (2000) Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys., 48, 919-22.
-
(2000)
Int. J. Radiat. Oncol. Biol. Phys.
, vol.48
, pp. 919-922
-
-
Koong, C.1
-
9
-
-
84874614138
-
Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
-
Guillaumond, F. et al. (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. U. S. A., 110, 3919-24.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 3919-3924
-
-
Guillaumond, F.1
-
10
-
-
67149143399
-
Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
-
Olive, K.P. et al. (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457-61.
-
(2009)
Science
, vol.324
, pp. 1457-1461
-
-
Olive, K.P.1
-
11
-
-
84858602107
-
Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma
-
Provenzano, P.P. et al. (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21, 418-29.
-
(2012)
Cancer Cell
, vol.21
, pp. 418-429
-
-
Provenzano, P.P.1
-
12
-
-
58049221106
-
Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer
-
Kimmelman, A.C. et al. (2008) Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc. Natl. Acad. Sci. U. S. A., 105, 19372-7.
-
(2008)
Proc. Natl. Acad. Sci. U. S. A.
, vol.105
, pp. 19372-19377
-
-
Kimmelman, A.C.1
-
13
-
-
78049380554
-
The patterns and dynamics of genomic instability in metastatic pancreatic cancer
-
Campbell, P.J. et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109-13.
-
(2010)
Nature
, vol.467
, pp. 1109-1113
-
-
Campbell, P.J.1
-
14
-
-
84862488620
-
Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response
-
Li, Y.-H. et al. (2012) Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PLoS One, 7, e39588.
-
(2012)
PLoS One
, vol.7
-
-
Li, Y.-H.1
-
15
-
-
84860321700
-
Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
-
Ying, H. et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149, 656-70.
-
(2012)
Cell
, vol.149
, pp. 656-670
-
-
Ying, H.1
-
16
-
-
84875894714
-
Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway
-
Son, J. et al. (2013) Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway. Nature, 496, 101-5.
-
(2013)
Nature
, vol.496
, pp. 101-105
-
-
Son, J.1
-
17
-
-
84879766148
-
Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
-
Lyssiotis, C. a et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle, 12, 1987-8.
-
(2013)
Cell Cycle
, vol.12
, pp. 1987-1988
-
-
Lyssiotis, C.1
-
18
-
-
84865080615
-
The pancreas cancer microenvironment
-
Feig, C. et al. (2012) The pancreas cancer microenvironment. Clin. Cancer Res., 18, 4266-76.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 4266-4276
-
-
Feig, C.1
-
19
-
-
79955828776
-
Stromal biology and therapy in pancreatic cancer
-
Neesse, A. et al. (2011) Stromal biology and therapy in pancreatic cancer. Gut, 60, 861-8.
-
(2011)
Gut
, vol.60
, pp. 861-868
-
-
Neesse, A.1
-
20
-
-
84866445523
-
Pancreatic stellate cells: A starring role in normal and diseased pancreas
-
Apte, M. V et al. (2012) Pancreatic stellate cells: A starring role in normal and diseased pancreas. Front. Physiol., 3, 344.
-
(2012)
Front. Physiol.
, vol.3
, pp. 344
-
-
Apte, M.V.1
-
21
-
-
84878334221
-
Pancreatic cancer: why is it so hard to treat? Therap
-
Oberstein, P.E. et al. (2013) Pancreatic cancer: why is it so hard to treat? Therap. Adv. Gastroenterol., 6, 321-37.
-
(2013)
Adv. Gastroenterol.
, vol.6
, pp. 321-337
-
-
Oberstein, P.E.1
-
22
-
-
84859408670
-
Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer
-
Milosevic, M. et al. (2012) Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res., 18, 2108-14.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 2108-2114
-
-
Milosevic, M.1
-
23
-
-
77955510947
-
Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer
-
Heller, a et al. (2010) Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer. Cancer Immunol. Immunother., 59, 1389-400.
-
(2010)
Cancer Immunol. Immunother.
, vol.59
, pp. 1389-1400
-
-
Heller, A.1
-
24
-
-
84890287082
-
Overcoming immunosuppression as a new immunotherapeutic approach against pancreatic cancer
-
Bazhin, A. V et al. (2013) Overcoming immunosuppression as a new immunotherapeutic approach against pancreatic cancer. Oncoimmunology, 2, e25736.
-
(2013)
Oncoimmunology
, vol.2
-
-
Bazhin, A.V.1
-
25
-
-
84862150896
-
Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
-
Bayne, L.J. et al. (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 21, 822-35.
-
(2012)
Cancer Cell
, vol.21
, pp. 822-835
-
-
Bayne, L.J.1
-
26
-
-
84862147254
-
Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
-
Pylayeva-Gupta, Y. et al. (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell, 21, 836-47.
-
(2012)
Cancer Cell
, vol.21
, pp. 836-847
-
-
Pylayeva-Gupta, Y.1
-
27
-
-
35148814410
-
Dynamics of the immune reaction to pancreatic cancer from inception to invasion
-
Clark, C.E. et al. (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res., 67, 9518-27.
-
(2007)
Cancer Res.
, vol.67
, pp. 9518-9527
-
-
Clark, C.E.1
-
28
-
-
0024292722
-
Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes
-
Almoguera, C. et al. (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 53, 549-54.
-
(1988)
Cell
, vol.53
, pp. 549-554
-
-
Almoguera, C.1
-
29
-
-
1142275321
-
Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients
-
Uemura, T. et al. (2004) Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients. J. Gastroenterol., 39, 56-60.
-
(2004)
J. Gastroenterol.
, vol.39
, pp. 56-60
-
-
Uemura, T.1
-
30
-
-
80054856209
-
RAS oncogenes: Weaving a tumorigenic web
-
Pylayeva-Gupta, Y. et al. (2011) RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer, 11, 761-74.
-
(2011)
Nat. Rev. Cancer
, vol.11
, pp. 761-774
-
-
Pylayeva-Gupta, Y.1
-
31
-
-
13444274253
-
Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A metaanalysis
-
Löhr, M. et al. (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A metaanalysis. Neoplasia, 7, 17-23.
-
(2005)
Neoplasia
, vol.7
, pp. 17-23
-
-
Löhr, M.1
-
32
-
-
1242340431
-
Oncogenic Ras and its role in tumor cell invasion and metastasis
-
Campbell, P.M. et al. (2004) Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin. Cancer Biol., 14, 105-14.
-
(2004)
Semin. Cancer Biol.
, vol.14
, pp. 105-114
-
-
Campbell, P.M.1
-
33
-
-
78649474147
-
Ras history: The saga continues
-
Cox, A.D. et al. (2010) Ras history: The saga continues. Small GTPases, 1, 2-27.
-
(2010)
Small GTPases
, vol.1
, pp. 2-27
-
-
Cox, A.D.1
-
34
-
-
0346455774
-
Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma
-
Aguirre, A.J. et al. (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev., 17, 3112-26.
-
(2003)
Genes Dev.
, vol.17
, pp. 3112-3126
-
-
Aguirre, A.J.1
-
35
-
-
19344362405
-
Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
-
Hingorani, S.R. et al. (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7, 469-83.
-
(2005)
Cancer Cell
, vol.7
, pp. 469-483
-
-
Hingorani, S.R.1
-
36
-
-
33751247898
-
Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression
-
Ijichi, H. et al. (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev., 20, 3147-60.
-
(2006)
Genes Dev.
, vol.20
, pp. 3147-3160
-
-
Ijichi, H.1
-
37
-
-
33847419143
-
Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice
-
Guerra, C. et al. (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 11, 291-302.
-
(2007)
Cancer Cell
, vol.11
, pp. 291-302
-
-
Guerra, C.1
-
38
-
-
70350513347
-
Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras
-
Gidekel Friedlander, S.Y. et al. (2009) Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16, 379-89.
-
(2009)
Cancer Cell
, vol.16
, pp. 379-389
-
-
Gidekel Friedlander, S.Y.1
-
39
-
-
9144266295
-
Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
-
Hingorani, S.R. et al. (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4, 437-50.
-
(2003)
Cancer Cell
, vol.4
, pp. 437-450
-
-
Hingorani, S.R.1
-
40
-
-
0028268635
-
K-ras and p53 gene mutations in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions
-
Pellegata, N.S. et al. (1994) K-ras and p53 gene mutations in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions. Cancer Res., 54, 1556-60.
-
(1994)
Cancer Res.
, vol.54
, pp. 1556-1560
-
-
Pellegata, N.S.1
-
41
-
-
33646577163
-
Genetics and biology of pancreatic ductal adenocarcinoma
-
Hezel, A.F. et al. (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev., 20, 1218-49.
-
(2006)
Genes Dev.
, vol.20
, pp. 1218-1249
-
-
Hezel, A.F.1
-
42
-
-
77951115122
-
International network of cancer genome projects
-
Hudson, T.J. et al. (2010) International network of cancer genome projects. Nature, 464, 993-8.
-
(2010)
Nature
, vol.464
, pp. 993-998
-
-
Hudson, T.J.1
-
43
-
-
84881474788
-
Understanding pancreatic cancer genomes
-
DOI: 10.1007/s00534-013-0610-6
-
Cowley, M.J. et al. (2013) Understanding pancreatic cancer genomes. J. Hepatobiliary. Pancreat. Sci., DOI: 10.1007/s00534-013-0610-6.
-
(2013)
J. Hepatobiliary. Pancreat. Sci.
-
-
Cowley, M.J.1
-
44
-
-
84869091997
-
Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
-
Biankin, A. V et al. (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399-405.
-
(2012)
Nature
, vol.491
, pp. 399-405
-
-
Biankin, A.V.1
-
45
-
-
78049398107
-
Distant metastasis occurs late during the genetic evolution of pancreatic cancer
-
Yachida, S. et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114-7.
-
(2010)
Nature
, vol.467
, pp. 1114-1117
-
-
Yachida, S.1
-
46
-
-
66249108601
-
Understanding the Warburg effect: The metabolic requirements of cell proliferation
-
Vander Heiden, M.G. et al. (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029-33.
-
(2009)
Science
, vol.324
, pp. 1029-1033
-
-
Vander Heiden, M.G.1
-
47
-
-
80054046029
-
Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
-
Lunt, S.Y. et al. (2011) Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 27, 441-64.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 441-464
-
-
Lunt, S.Y.1
-
48
-
-
79952284127
-
Hallmarks of cancer: The next generation
-
Hanahan, D. et al. (2011) Hallmarks of cancer: The next generation. Cell, 144, 646-74.
-
(2011)
Cell
, vol.144
, pp. 646-674
-
-
Hanahan, D.1
-
49
-
-
80052242132
-
Targeting cancer metabolism: A therapeutic window opens
-
Vander Heiden, M.G. (2011) Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov., 10, 671-84.
-
(2011)
Nat. Rev. Drug Discov.
, vol.10
, pp. 671-684
-
-
Vander Heiden, M.G.1
-
50
-
-
84858604270
-
Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
-
Ward, P.S. et al. (2012) Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21, 297-308.
-
(2012)
Cancer Cell
, vol.21
, pp. 297-308
-
-
Ward, P.S.1
-
51
-
-
84865103094
-
Conceptual framework for cutting the pancreatic cancer fuel supply
-
Le, A. et al. (2012) Conceptual framework for cutting the pancreatic cancer fuel supply. Clin. Cancer Res., 18, 4285-90.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 4285-4290
-
-
Le, A.1
-
52
-
-
84885357137
-
Exploiting the bad eating habits of Ras-driven cancers
-
White, E. (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev., 27, 2065-71.
-
(2013)
Genes Dev.
, vol.27
, pp. 2065-2071
-
-
White, E.1
-
53
-
-
37449024702
-
The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
-
DeBerardinis, R.J. et al. (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 7, 11-20.
-
(2008)
Cell Metab.
, vol.7
, pp. 11-20
-
-
DeBerardinis, R.J.1
-
54
-
-
84883497454
-
Glutamine and cancer: Cell biology, physiology, and clinical opportunities
-
Hensley, C.T. et al. (2013) Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 123, 3678-84.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3678-3684
-
-
Hensley, C.T.1
-
55
-
-
84890209181
-
Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
-
Fan, J. et al. (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol., 9, 1-11.
-
(2013)
Mol. Syst. Biol.
, vol.9
, pp. 1-11
-
-
Fan, J.1
-
56
-
-
77956404377
-
Eaten alive: A history of macroautophagy
-
Yang, Z. et al. (2010) Eaten alive: A history of macroautophagy. Nat. Publ. Gr., 12, 814-822.
-
(2010)
Nat. Publ. Gr.
, vol.12
, pp. 814-822
-
-
Yang, Z.1
-
57
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine, B. et al. (2008) Autophagy in the pathogenesis of disease. Cell, 132, 27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
-
58
-
-
78649338141
-
Autophagy and the integrated stress response
-
Kroemer, G. et al. (2010) Autophagy and the integrated stress response. Mol. Cell, 40, 280-93.
-
(2010)
Mol. Cell
, vol.40
, pp. 280-293
-
-
Kroemer, G.1
-
59
-
-
80054025654
-
The role of Atg proteins in autophagosome formation
-
Mizushima, N. et al. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, 107-32.
-
(2011)
Annu. Rev. Cell Dev. Biol.
, vol.27
, pp. 107-132
-
-
Mizushima, N.1
-
60
-
-
84880376355
-
Emerging regulation and functions of autophagy
-
Boya, P. et al. (2013) Emerging regulation and functions of autophagy. Nat. Cell Biol., 15, 713-20.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 713-720
-
-
Boya, P.1
-
61
-
-
84863954409
-
Regulation and function of autophagy during cell survival and cell death
-
Das, G. et al. (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 4, 1-14.
-
(2012)
Cold Spring Harb. Perspect. Biol.
, vol.4
, pp. 1-14
-
-
Das, G.1
-
62
-
-
80655124407
-
A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
-
Klionsky, D.J. et al. (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy, 7, 1273-94.
-
(2011)
Autophagy
, vol.7
, pp. 1273-1294
-
-
Klionsky, D.J.1
-
63
-
-
77951214016
-
Mammalian autophagy: Core molecular machinery and signaling regulation
-
Yang, Z. et al. (2010) Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22, 124-31.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 124-131
-
-
Yang, Z.1
-
64
-
-
77951227871
-
TOR-dependent control of autophagy: Biting the hand that feeds
-
Neufeld, T.P. (2010) TOR-dependent control of autophagy: Biting the hand that feeds. Curr. Opin. Cell Biol., 22, 157-68.
-
(2010)
Curr. Opin. Cell Biol.
, vol.22
, pp. 157-168
-
-
Neufeld, T.P.1
-
65
-
-
84879047011
-
Cellular metabolic and autophagic pathways: Traffic control by redox signaling
-
Dodson, M. et al. (2013) Cellular metabolic and autophagic pathways: Traffic control by redox signaling. Free Radic. Biol. Med., 63, 207-21.
-
(2013)
Free Radic. Biol. Med.
, vol.63
, pp. 207-221
-
-
Dodson, M.1
-
66
-
-
79956220703
-
DNA damage and autophagy
-
Rodriguez-Rocha, H. et al. (2011) DNA damage and autophagy. Mutat. Res., 711, 158-66.
-
(2011)
Mutat. Res.
, vol.711
, pp. 158-166
-
-
Rodriguez-Rocha, H.1
-
67
-
-
80053634368
-
The dynamic nature of autophagy in cancer
-
Kimmelman, A.C. (2011) The dynamic nature of autophagy in cancer. Genes Dev., 25, 1999-2010.
-
(2011)
Genes Dev.
, vol.25
, pp. 1999-2010
-
-
Kimmelman, A.C.1
-
68
-
-
84861526009
-
Deconvoluting the context-dependent role for autophagy in cancer
-
White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 12, 401-10.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 401-410
-
-
White, E.1
-
69
-
-
33745713171
-
Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
-
Degenhardt, K. et al. (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10, 51-64.
-
(2006)
Cancer Cell
, vol.10
, pp. 51-64
-
-
Degenhardt, K.1
-
70
-
-
78649704325
-
Autophagy and metabolism
-
Rabinowitz, J.D. et al. (2010) Autophagy and metabolism. Science, 330, 1344-8.
-
(2010)
Science
, vol.330
, pp. 1344-1348
-
-
Rabinowitz, J.D.1
-
71
-
-
79951847989
-
Principles and current strategies for targeting autophagy for cancer treatment
-
Amaravadi, R.K. et al. (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 17, 654-66.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 654-666
-
-
Amaravadi, R.K.1
-
72
-
-
84887437596
-
Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
-
Sui, X. et al. (2013) Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 4, e838.
-
(2013)
Cell Death Dis.
, vol.4
-
-
Sui, X.1
-
73
-
-
54049151248
-
A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance
-
Samaddar, J.S. et al. (2008) A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol. Cancer Ther., 7, 2977-87.
-
(2008)
Mol. Cancer Ther.
, vol.7
, pp. 2977-2987
-
-
Samaddar, J.S.1
-
74
-
-
33846794896
-
Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
-
Amaravadi, R.K. et al. (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest., 117, 326-36.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 326-336
-
-
Amaravadi, R.K.1
-
75
-
-
84886789682
-
MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells
-
Wang, P. et al. (2013) MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology, 145, 1133-1143.e12.
-
(2013)
Gastroenterology
, vol.145
-
-
Wang, P.1
-
76
-
-
84864805916
-
Autophagy and cancer--issues we need to digest
-
Liu, E.Y. et al. (2012) Autophagy and cancer--issues we need to digest. J. Cell Sci., 125, 2349-58.
-
(2012)
J. Cell Sci.
, vol.125
, pp. 2349-2358
-
-
Liu, E.Y.1
-
77
-
-
79952229430
-
Pancreatic cancers require autophagy for tumor growth
-
Yang, S. et al. (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev., 25, 717-29.
-
(2011)
Genes Dev.
, vol.25
, pp. 717-729
-
-
Yang, S.1
-
78
-
-
84885609770
-
Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS G12D-driven lung tumors
-
Guo, J. et al. (2013) Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS G12D-driven lung tumors. Autophagy, 9, 1636-1638.
-
(2013)
Autophagy
, vol.9
, pp. 1636-1638
-
-
Guo, J.1
-
79
-
-
79953856887
-
Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation
-
Kim, M.-J. et al. (2011) Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem., 286, 12924-32.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 12924-12932
-
-
Kim, M.-J.1
-
80
-
-
78751511180
-
Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
-
Lock, R. et al. (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell, 22, 165-78.
-
(2011)
Mol. Biol. Cell
, vol.22
, pp. 165-178
-
-
Lock, R.1
-
81
-
-
79952228407
-
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
-
Guo, J.Y. et al. (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev., 25, 460-70.
-
(2011)
Genes Dev.
, vol.25
, pp. 460-470
-
-
Guo, J.Y.1
-
82
-
-
79960401862
-
Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
-
Wei, H. et al. (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev., 25, 1510-27.
-
(2011)
Genes Dev.
, vol.25
, pp. 1510-1527
-
-
Wei, H.1
-
83
-
-
79960720320
-
Molecular mechanism and physiological functions of clathrinmediated endocytosis
-
McMahon, H.T. et al. (2011) Molecular mechanism and physiological functions of clathrinmediated endocytosis. Nat. Rev. Mol. Cell Biol., 12, 517-33.
-
(2011)
Nat. Rev. Mol. Cell Biol.
, vol.12
, pp. 517-533
-
-
McMahon, H.T.1
-
84
-
-
0028790788
-
Macropinocytosis
-
Swanson, J. et al. (1995) Macropinocytosis. Trends Cell Biol., 5, 424-428.
-
(1995)
Trends Cell Biol.
, vol.5
, pp. 424-428
-
-
Swanson, J.1
-
85
-
-
80855144226
-
Macropinocytosis: An endocytic pathway for internalising large gulps
-
Lim, J.P. et al. (2011) Macropinocytosis: An endocytic pathway for internalising large gulps. Immunol. Cell Biol., 89, 836-43.
-
(2011)
Immunol. Cell Biol.
, vol.89
, pp. 836-843
-
-
Lim, J.P.1
-
86
-
-
0022470480
-
Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins
-
Bar-Sagi, D. et al. (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science, 233, 1061-8.
-
(1986)
Science
, vol.233
, pp. 1061-1068
-
-
Bar-Sagi, D.1
-
87
-
-
84878396462
-
Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
-
Commisso, C. et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 497, 633-7.
-
(2013)
Nature
, vol.497
, pp. 633-637
-
-
Commisso, C.1
-
88
-
-
84878464291
-
Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
-
Kamphorst, J.J. et al. (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. U. S. A., 110, 8882-7.
-
(2013)
Proc. Natl. Acad. Sci. U. S. A.
, vol.110
, pp. 8882-8887
-
-
Kamphorst, J.J.1
-
89
-
-
0003717374
-
-
(5th edn) W.H. Freeman.
-
Berg, J.M. et al. (2002) Biochemistry, (5th edn) W.H. Freeman.
-
(2002)
Biochemistry
-
-
Berg, J.M.1
-
90
-
-
84865169609
-
Metabolic pathway alterations that support cell proliferation
-
Vander Heiden, M.G. et al. (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol., 76, 325-34.
-
(2011)
Cold Spring Harb. Symp. Quant. Biol.
, vol.76
, pp. 325-334
-
-
Vander Heiden, M.G.1
-
91
-
-
84886741654
-
Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine
-
Von Hoff, D.D. et al. (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 369, 1691-703.
-
(2013)
N. Engl. J. Med.
, vol.369
, pp. 1691-1703
-
-
Von Hoff, D.D.1
-
92
-
-
70349331678
-
Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
-
Yun, J. et al. (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 325, 1555-9.
-
(2009)
Science
, vol.325
, pp. 1555-1559
-
-
Yun, J.1
-
93
-
-
80051866908
-
Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth
-
Gaglio, D. et al. (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol., 7, 523.
-
(2011)
Mol. Syst. Biol.
, vol.7
, pp. 523
-
-
Gaglio, D.1
-
94
-
-
0022364146
-
Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes
-
Racker, E. et al. (1985) Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc. Natl. Acad. Sci. U. S. A., 82, 3535-8.
-
(1985)
Proc. Natl. Acad. Sci. U. S. A.
, vol.82
, pp. 3535-3538
-
-
Racker, E.1
-
95
-
-
78149341677
-
Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes
-
Chun, S.Y. et al. (2010) Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes. Mol. Cancer, 9, 293.
-
(2010)
Mol. Cancer
, vol.9
, pp. 293
-
-
Chun, S.Y.1
-
96
-
-
84876417170
-
Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer
-
Zhao, D. et al. (2013) Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 23, 464-76.
-
(2013)
Cancer Cell
, vol.23
, pp. 464-476
-
-
Zhao, D.1
-
97
-
-
84864803714
-
A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells
-
Icard, P. et al. (2012) A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim. Biophys. Acta, 1826, 423-33.
-
(2012)
Biochim. Biophys. Acta
, vol.1826
, pp. 423-433
-
-
Icard, P.1
-
98
-
-
77956396629
-
O-GlcNAc signaling: A metabolic link between diabetes and cancer? Trends Biochem
-
Slawson, C. et al. (2010) O-GlcNAc signaling: A metabolic link between diabetes and cancer? Trends Biochem. Sci., 35, 547-55.
-
(2010)
Sci.
, vol.35
, pp. 547-555
-
-
Slawson, C.1
-
99
-
-
77949295164
-
The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine
-
Hanover, J.A. et al. (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta, 1800, 80-95.
-
(2010)
Biochim. Biophys. Acta
, vol.1800
, pp. 80-95
-
-
Hanover, J.A.1
-
100
-
-
78651144681
-
THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER
-
KORNFELD, S. et al. (1964) THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER. Proc. Natl. Acad. Sci. U. S. A., 52, 371-9.
-
(1964)
Proc. Natl. Acad. Sci. U. S. A.
, vol.52
, pp. 371-379
-
-
Kornfeld, S.1
-
101
-
-
78650181190
-
The hexosamine biosynthetic pathway couples growth factorinduced glutamine uptake to glucose metabolism
-
Wellen, K.E. et al. (2010) The hexosamine biosynthetic pathway couples growth factorinduced glutamine uptake to glucose metabolism. Genes Dev., 24, 2784-99.
-
(2010)
Genes Dev.
, vol.24
, pp. 2784-2799
-
-
Wellen, K.E.1
-
102
-
-
79751525993
-
O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy
-
Mi, W. et al. (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim. Biophys. Acta, 1812, 514-9.
-
(2011)
Biochim. Biophys. Acta
, vol.1812
, pp. 514-519
-
-
Mi, W.1
-
103
-
-
21744431575
-
The sweet and sour of cancer: Glycans as novel therapeutic targets
-
Fuster, M.M. et al. (2005) The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer, 5, 526-42.
-
(2005)
Nat. Rev. Cancer
, vol.5
, pp. 526-542
-
-
Fuster, M.M.1
-
104
-
-
79251489778
-
Glycomics hits the big time
-
Hart, G.W. et al. (2010) Glycomics hits the big time. Cell, 143, 672-6.
-
(2010)
Cell
, vol.143
, pp. 672-676
-
-
Hart, G.W.1
-
105
-
-
84871720411
-
Selumetinib plus docetaxel for KRAS-mutant advanced non-smallcell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study
-
Jänne, P.A. et al. (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-smallcell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol., 14, 38-47.
-
(2013)
Lancet Oncol.
, vol.14
, pp. 38-47
-
-
Jänne, P.A.1
-
106
-
-
2442757393
-
Free Amino Acids of Cord Plasma As Compared With Maternal Plasma During Pregnancy
-
Ghadimi, H. et al. (1964) Free Amino Acids of Cord Plasma As Compared With Maternal Plasma During Pregnancy. Pediatrics, 33, 500-6.
-
(1964)
Pediatrics
, vol.33
, pp. 500-506
-
-
Ghadimi, H.1
-
107
-
-
77955281020
-
Glutamine addiction: A new therapeutic target in cancer
-
Wise, D.R. et al. (2010) Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci., 35, 427-33.
-
(2010)
Trends Biochem. Sci.
, vol.35
, pp. 427-433
-
-
Wise, D.R.1
-
108
-
-
75149148563
-
Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
-
DeBerardinis, R.J. et al. (2010) Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29, 313-24.
-
(2010)
Oncogene
, vol.29
, pp. 313-324
-
-
DeBerardinis, R.J.1
-
109
-
-
84856014884
-
Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
-
Metallo, C.M. et al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380-4.
-
(2012)
Nature
, vol.481
, pp. 380-384
-
-
Metallo, C.M.1
-
110
-
-
83755178091
-
Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α -ketoglutarate to citrate to support cell growth and viability
-
Wise, D.R. et al. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α -ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A., 108, 19611-6.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 19611-19616
-
-
Wise, D.R.1
-
111
-
-
37449034854
-
Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
-
DeBerardinis, R.J. et al. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A., 104, 19345-50.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 19345-19350
-
-
DeBerardinis, R.J.1
-
112
-
-
84879165160
-
Oxidative stress: The mitochondria-dependent and mitochondriaindependent pathways of apoptosis
-
Sinha, K. et al. (2013) Oxidative stress: The mitochondria-dependent and mitochondriaindependent pathways of apoptosis. Arch. Toxicol., 87, 1157-80.
-
(2013)
Arch. Toxicol.
, vol.87
, pp. 1157-1180
-
-
Sinha, K.1
-
113
-
-
0023886170
-
DNA damage and oxygen radical toxicity
-
Imlay, J. a et al. (1988) DNA damage and oxygen radical toxicity. Science, 240, 1302-9.
-
(1988)
Science
, vol.240
, pp. 1302-1309
-
-
Imlay, J.1
-
114
-
-
84870554511
-
Oxidative stress and cancer: An overview
-
Sosa, V. et al. (2013) Oxidative stress and cancer: An overview. Ageing Res. Rev., 12, 376-90.
-
(2013)
Ageing Res. Rev.
, vol.12
, pp. 376-390
-
-
Sosa, V.1
-
115
-
-
84856535275
-
Redox regulation of cell migration and adhesion
-
Hurd, T.R. et al. (2012) Redox regulation of cell migration and adhesion. Trends Cell Biol., 22, 107-15.
-
(2012)
Trends Cell Biol.
, vol.22
, pp. 107-115
-
-
Hurd, T.R.1
-
116
-
-
0036395928
-
Macrophage signaling and respiratory burst
-
Iles, K.E. et al. (2002) Macrophage signaling and respiratory burst. Immunol. Res., 26, 95-105.
-
(2002)
Immunol. Res.
, vol.26
, pp. 95-105
-
-
Iles, K.E.1
-
117
-
-
84868007565
-
Physiological roles of mitochondrial reactive oxygen species
-
Sena, L.A. et al. (2012) Physiological roles of mitochondrial reactive oxygen species. Mol. Cell, 48, 158-67.
-
(2012)
Mol. Cell
, vol.48
, pp. 158-167
-
-
Sena, L.A.1
-
118
-
-
33847349283
-
Reactive oxygen species: A breath of life or death? Clin
-
Fruehauf, J.P. et al. (2007) Reactive oxygen species: A breath of life or death? Clin. Cancer Res., 13, 789-94.
-
(2007)
Cancer Res.
, vol.13
, pp. 789-794
-
-
Fruehauf, J.P.1
-
119
-
-
84859833047
-
Reactive oxygen species: The achilles' heel of cancer cells? Antioxid
-
Cui, X. (2012) Reactive oxygen species: The achilles' heel of cancer cells? Antioxid. Redox Signal., 16, 1212-4.
-
(2012)
Redox Signal.
, vol.16
, pp. 1212-1214
-
-
Cui, X.1
-
120
-
-
77951279075
-
Reactive oxygen species in cancer
-
Liou, G.-Y. et al. (2010) Reactive oxygen species in cancer. Free Radic. Res., 44, 479-96.
-
(2010)
Free Radic. Res.
, vol.44
, pp. 479-496
-
-
Liou, G.-Y.1
-
121
-
-
17244367828
-
Reactive oxygen species in tumor progression
-
Storz, P. (2005) Reactive oxygen species in tumor progression. Front. Biosci., 10, 1881-96.
-
(2005)
Front. Biosci.
, vol.10
, pp. 1881-1896
-
-
Storz, P.1
-
122
-
-
77954562833
-
Metastasis: Cancer cell's escape from oxidative stress
-
Pani, G. et al. (2010) Metastasis: Cancer cell's escape from oxidative stress. Cancer Metastasis Rev., 29, 351-78.
-
(2010)
Cancer Metastasis Rev.
, vol.29
, pp. 351-378
-
-
Pani, G.1
-
123
-
-
77952737658
-
Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
-
Weinberg, F. et al. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U. S. A., 107, 8788-93.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 8788-8793
-
-
Weinberg, F.1
-
124
-
-
84879460307
-
Regulation of pancreatic cancer growth by superoxide
-
Du, J. et al. (2013) Regulation of pancreatic cancer growth by superoxide. Mol. Carcinog., 52, 555-67.
-
(2013)
Mol. Carcinog.
, vol.52
, pp. 555-567
-
-
Du, J.1
-
125
-
-
34548543291
-
DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells
-
Romanowska, M. et al. (2007) DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells. Free Radic. Biol. Med., 43, 1145-55.
-
(2007)
Free Radic. Biol. Med.
, vol.43
, pp. 1145-1155
-
-
Romanowska, M.1
-
126
-
-
84877135661
-
K-ras 4A and 4B mRNA levels correlate with superoxide in lung adenocarcinoma cells, while at the protein level, only mutant K-ras 4A protein correlates with superoxide
-
Calvert, R.J. et al. (2013) K-ras 4A and 4B mRNA levels correlate with superoxide in lung adenocarcinoma cells, while at the protein level, only mutant K-ras 4A protein correlates with superoxide. Lung Cancer, 80, 263-9.
-
(2013)
Lung Cancer
, vol.80
, pp. 263-269
-
-
Calvert, R.J.1
-
127
-
-
4544250814
-
Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells
-
Vaquero, E.C. et al. (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J. Biol. Chem., 279, 34643-54.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 34643-34654
-
-
Vaquero, E.C.1
-
128
-
-
51749088156
-
Redox regulation of cell survival
-
Trachootham, D. et al. (2008) Redox regulation of cell survival. Antioxid. Redox Signal., 10, 1343-74.
-
(2008)
Antioxid. Redox Signal.
, vol.10
, pp. 1343-1374
-
-
Trachootham, D.1
-
129
-
-
84873469216
-
The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene?
-
Shelton, P. et al. (2013) The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene? FASEB J., 27, 414-23.
-
(2013)
FASEB J.
, vol.27
, pp. 414-423
-
-
Shelton, P.1
-
130
-
-
63549121490
-
NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer
-
Hayes, J.D. et al. (2009) NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci., 34, 176-88.
-
(2009)
Trends Biochem. Sci.
, vol.34
, pp. 176-188
-
-
Hayes, J.D.1
-
131
-
-
79960060305
-
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
-
DeNicola, G.M. et al. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106-9.
-
(2011)
Nature
, vol.475
, pp. 106-109
-
-
DeNicola, G.M.1
-
132
-
-
79953889329
-
Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy
-
Lister, A. et al. (2011) Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Mol. Cancer, 10, 37.
-
(2011)
Mol. Cancer
, vol.10
, pp. 37
-
-
Lister, A.1
-
133
-
-
84883501150
-
HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
-
Semenza, G.L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest., 123, 3664-71.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 3664-3671
-
-
Semenza, G.L.1
-
134
-
-
77952673654
-
Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming
-
Zhao, F. et al. (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene, 29, 2962-72.
-
(2010)
Oncogene
, vol.29
, pp. 2962-2972
-
-
Zhao, F.1
-
135
-
-
55949123655
-
The interplay between MYC and HIF in the Warburg effect
-
Dang, C. V (2007) The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found. Symp. Proc., at < http://www.ncbi.nlm.nih.gov/pubmed/18811052> .
-
(2007)
Ernst Schering Found. Symp. Proc.
-
-
Dang, C.V.1
-
136
-
-
84865293335
-
MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer
-
Chaika, N. V et al. (2012) MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A., 109, 13787-92.
-
(2012)
Proc. Natl. Acad. Sci. U. S. A.
, vol.109
, pp. 13787-13792
-
-
Chaika, N.V.1
-
137
-
-
64949171489
-
siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and-dependent pathways under hypoxic conditions
-
Chen, C. et al. (2009) siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and-dependent pathways under hypoxic conditions. Anticancer Res., 29, 1367-72.
-
(2009)
Anticancer Res.
, vol.29
, pp. 1367-1372
-
-
Chen, C.1
-
138
-
-
0344608877
-
Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism
-
Chen, J. et al. (2003) Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol., 162, 1283-91.
-
(2003)
Am. J. Pathol.
, vol.162
, pp. 1283-1291
-
-
Chen, J.1
-
139
-
-
66149179367
-
Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity
-
Wilkinson, S. et al. (2009) Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev., 23, 1283-8.
-
(2009)
Genes Dev.
, vol.23
, pp. 1283-1288
-
-
Wilkinson, S.1
-
140
-
-
43649104579
-
Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
-
Zhang, H. et al. (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem., 283, 10892-903.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 10892-10903
-
-
Zhang, H.1
-
141
-
-
84862014301
-
Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment
-
Rausch, V. et al. (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J. Pathol., 227, 325-35.
-
(2012)
J. Pathol.
, vol.227
, pp. 325-335
-
-
Rausch, V.1
-
142
-
-
84875811505
-
Genetically engineered mouse models of pancreatic adenocarcinoma
-
Guerra, C. et al. (2013) Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol., 7, 232-47.
-
(2013)
Mol. Oncol.
, vol.7
, pp. 232-247
-
-
Guerra, C.1
-
143
-
-
78649711427
-
The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
-
Levine, A.J. et al. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340-4.
-
(2010)
Science
, vol.330
, pp. 1340-1344
-
-
Levine, A.J.1
-
144
-
-
0029922621
-
P53 Tumor Suppressor Gene: From the Basic Research Laboratory To the Clinic--an Abridged Historical Perspective
-
Harris, C.C. (1996) P53 Tumor Suppressor Gene: From the Basic Research Laboratory To the Clinic--an Abridged Historical Perspective. Carcinogenesis, 17, 1187-98.
-
(1996)
Carcinogenesis
, vol.17
, pp. 1187-1198
-
-
Harris, C.C.1
-
145
-
-
65549120715
-
Modes of p53 regulation
-
Kruse, J.-P. et al. (2009) Modes of p53 regulation. Cell, 137, 609-22.
-
(2009)
Cell
, vol.137
, pp. 609-622
-
-
Kruse, J.-P.1
-
146
-
-
0025876591
-
The p53 tumour suppressor gene
-
Levine, A. et al. (1991) The p53 tumour suppressor gene. Nature, 351, 453-456.
-
(1991)
Nature
, vol.351
, pp. 453-456
-
-
Levine, A.1
-
147
-
-
34547935761
-
Living with p53, dying of p53
-
Aylon, Y. et al. (2007) Living with p53, dying of p53. Cell, 130, 597-600.
-
(2007)
Cell
, vol.130
, pp. 597-600
-
-
Aylon, Y.1
-
148
-
-
0027743438
-
Pancreatic adenocarcinomas frequently show p53 gene mutations
-
Scarpa, a et al. (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am. J. Pathol., 142, 1534-43.
-
(1993)
Am. J. Pathol.
, vol.142
, pp. 1534-1543
-
-
Scarpa, A.1
-
149
-
-
84880571709
-
Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer
-
Oshima, M. et al. (2013) Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann. Surg., 258, 336-46.
-
(2013)
Ann. Surg.
, vol.258
, pp. 336-346
-
-
Oshima, M.1
-
150
-
-
84860112131
-
What we have learned about pancreatic cancer from mouse models
-
Pé rez-Mancera, P. a et al. (2012) What we have learned about pancreatic cancer from mouse models. Gastroenterology, 142, 1079-92.
-
(2012)
Gastroenterology
, vol.142
, pp. 1079-1092
-
-
Pé rez-Mancera P.a1
-
152
-
-
84863244013
-
The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy
-
Shen, L. et al. (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin. Cancer Res., 18, 1561-7.
-
(2012)
Clin. Cancer Res.
, vol.18
, pp. 1561-1567
-
-
Shen, L.1
-
153
-
-
80054883676
-
Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin
-
Illuzzi, J.L. et al. (2011) Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin. J. Mol. Neurosci., 45, 256-68.
-
(2011)
J. Mol. Neurosci.
, vol.45
, pp. 256-268
-
-
Illuzzi, J.L.1
-
154
-
-
84864292987
-
Nuclear factor-κ B, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect
-
Johnson, R.F. et al. (2012) Nuclear factor-κ B, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect. Trends Biochem. Sci., 37, 317-24.
-
(2012)
Trends Biochem. Sci.
, vol.37
, pp. 317-324
-
-
Johnson, R.F.1
-
155
-
-
84862977182
-
Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
-
Madan, E. et al. (2011) Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor. Oncotarget, 2, 948-957.
-
(2011)
Oncotarget
, vol.2
, pp. 948-957
-
-
Madan, E.1
-
156
-
-
33745149291
-
P53 Regulates Mitochondrial Respiration
-
Matoba, S. et al. (2006) P53 Regulates Mitochondrial Respiration. Science, 312, 1650-3.
-
(2006)
Science
, vol.312
, pp. 1650-1653
-
-
Matoba, S.1
-
157
-
-
77952227625
-
Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
-
Suzuki, S. et al. (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A., 107, 7461-6.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 7461-7466
-
-
Suzuki, S.1
-
158
-
-
77952212178
-
Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
-
Hu, W. et al. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U. S. A., 107, 7455-60.
-
(2010)
Proc. Natl. Acad. Sci. U. S. A.
, vol.107
, pp. 7455-7460
-
-
Hu, W.1
-
159
-
-
11244347171
-
Glycolytic enzymes can modulate cellular life span
-
Kondoh, H. et al. (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res., 65, 177-85.
-
(2005)
Cancer Res.
, vol.65
, pp. 177-185
-
-
Kondoh, H.1
-
160
-
-
1942506067
-
The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
-
Schwartzenberg-Bar-Yoseph, F. et al. (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 64, 2627-33.
-
(2004)
Cancer Res.
, vol.64
, pp. 2627-2633
-
-
Schwartzenberg-Bar-Yoseph, F.1
-
161
-
-
33745918951
-
TIGAR, a p53-inducible regulator of glycolysis and apoptosis
-
Bensaad, K. et al. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-20.
-
(2006)
Cell
, vol.126
, pp. 107-120
-
-
Bensaad, K.1
-
162
-
-
79952280229
-
p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
-
Jiang, P. et al. (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol., 13, 310-6.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 310-316
-
-
Jiang, P.1
-
163
-
-
84890432985
-
p53 status determines the role of autophagy in pancreatic tumour development
-
Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504, 296-300.
-
(2013)
Nature
, vol.504
, pp. 296-300
-
-
Rosenfeldt, M.T.1
-
164
-
-
12144287284
-
LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
-
Lizcano, J.M. et al. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J., 23, 833-43.
-
(2004)
EMBO J.
, vol.23
, pp. 833-843
-
-
Lizcano, J.M.1
-
165
-
-
0348108284
-
Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years
-
Lüttges, J. et al. (2004) Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years. Cancer, 100, 173-82.
-
(2004)
Cancer
, vol.100
, pp. 173-182
-
-
Lüttges, J.1
-
166
-
-
77955488036
-
LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest
-
Morton, J.P. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139, 586-97, 597.e1-6.
-
(2010)
Gastroenterology
, vol.139
-
-
Morton, J.P.1
-
167
-
-
0043127125
-
Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
-
Inoki, K. et al. (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev., 17, 1829-34.
-
(2003)
Genes Dev.
, vol.17
, pp. 1829-1834
-
-
Inoki, K.1
-
168
-
-
84873469666
-
Nutrient sensing, metabolism, and cell growth control
-
Yuan, H.-X. et al. (2013) Nutrient sensing, metabolism, and cell growth control. Mol. Cell, 49, 379-87.
-
(2013)
Mol. Cell
, vol.49
, pp. 379-387
-
-
Yuan, H.-X.1
-
169
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova, M.M. et al. (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol., 13, 1016-23.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
-
170
-
-
84863763440
-
AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
-
Jeon, S. et al. (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485, 661-665.
-
(2012)
Nature
, vol.485
, pp. 661-665
-
-
Jeon, S.1
-
171
-
-
84879777723
-
Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
-
Guo, J.Y. et al. (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev., 27, 1447-61.
-
(2013)
Genes Dev.
, vol.27
, pp. 1447-1461
-
-
Guo, J.Y.1
-
172
-
-
84885180245
-
The fat side of prostate cancer
-
Zadra, G. et al. (2013) The fat side of prostate cancer. Biochim. Biophys. Acta, 1831, 1518-32.
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 1518-1532
-
-
Zadra, G.1
-
173
-
-
80053039884
-
The metabolic features of normal pancreas and pancreatic adenocarcinoma: Preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T
-
Ma, X. et al. (2011) The metabolic features of normal pancreas and pancreatic adenocarcinoma: Preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T. J. Comput. Assist. Tomogr., 35, 539-43.
-
(2011)
J. Comput. Assist. Tomogr.
, vol.35
, pp. 539-543
-
-
Ma, X.1
-
174
-
-
84878980627
-
Metabolomic and transcriptomic profiling of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas
-
Yabushita, S. et al. (2013) Metabolomic and transcriptomic profiling of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Carcinogenesis, 34, 1251-9.
-
(2013)
Carcinogenesis
, vol.34
, pp. 1251-1259
-
-
Yabushita, S.1
-
175
-
-
84884570719
-
Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer
-
Zhang, G. et al. (2013) Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin. Cancer Res., 19, 4983-93.
-
(2013)
Clin. Cancer Res.
, vol.19
, pp. 4983-4993
-
-
Zhang, G.1
-
176
-
-
84871542969
-
Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice
-
Mohammed, A. et al. (2012) Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice. Neoplasia, 14, 1249-59.
-
(2012)
Neoplasia
, vol.14
, pp. 1249-1259
-
-
Mohammed, A.1
-
177
-
-
84888267890
-
A High-Fat Diet Activates Oncogenic Kras and COX2 to Induce Development of Pancreatic Ductal Adenocarcinoma in Mice
-
Philip, B. et al. (2013) A High-Fat Diet Activates Oncogenic Kras and COX2 to Induce Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology, 145, 1449-58.
-
(2013)
Gastroenterology
, vol.145
, pp. 1449-1458
-
-
Philip, B.1
-
178
-
-
67651102976
-
Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system
-
Wang, F. et al. (2009) Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system. Metabolism., 58, 1131-6.
-
(2009)
Metabolism.
, vol.58
, pp. 1131-1136
-
-
Wang, F.1
-
179
-
-
84873454105
-
Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress
-
Pierre, A.-S. et al. (2013) Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochim. Biophys. Acta, 1831, 759-68.
-
(2013)
Biochim. Biophys. Acta
, vol.1831
, pp. 759-768
-
-
Pierre, A.-S.1
-
180
-
-
84884596730
-
Diversification of NAD biological role: The importance of location
-
Di Stefano, M. et al. (2013) Diversification of NAD biological role: The importance of location. FEBS J., 280, 4711-28.
-
(2013)
FEBS J.
, vol.280
, pp. 4711-4728
-
-
Di Stefano, M.1
-
181
-
-
84867877340
-
The NAD metabolome--a key determinant of cancer cell biology
-
Chiarugi, A. et al. (2012) The NAD metabolome--a key determinant of cancer cell biology. Nat. Rev. Cancer, 12, 741-52.
-
(2012)
Nat. Rev. Cancer
, vol.12
, pp. 741-752
-
-
Chiarugi, A.1
-
182
-
-
62649156291
-
Nampt: Linking NAD biology, metabolism and cancer
-
Garten, A. et al. (2009) Nampt: Linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab., 20, 130-8.
-
(2009)
Trends Endocrinol. Metab.
, vol.20
, pp. 130-138
-
-
Garten, A.1
-
183
-
-
41449118098
-
NAD depletion by FK866 induces autophagy
-
Billington, R.A. et al. (2008) NAD depletion by FK866 induces autophagy. Autophagy, 4, 385-7.
-
(2008)
Autophagy
, vol.4
, pp. 385-387
-
-
Billington, R.A.1
-
184
-
-
84892175612
-
Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors
-
DOI: 10.1158/1078-0432.CCR-13-0150.
-
Chini, C.C.S. et al. (2013) Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors. Clin. Cancer Res., DOI: 10.1158/1078-0432.CCR-13-0150.
-
(2013)
Clin. Cancer Res.
-
-
Chini, C.C.S.1
-
185
-
-
77951887249
-
Safety and efficacy of NAD depleting cancer drugs: Results of a phase I clinical trial of CHS 828 and overview of published data
-
Von Heideman, A. et al. (2010) Safety and efficacy of NAD depleting cancer drugs: Results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother. Pharmacol., 65, 1165-72.
-
(2010)
Cancer Chemother. Pharmacol.
, vol.65
, pp. 1165-1172
-
-
Von Heideman, A.1
|