메뉴 건너뛰기




Volumn 35, Issue 7, 2014, Pages

The complex landscape of pancreatic cancer metabolism

Author keywords

Autophagy; Fatty acids; Glucose; Glutamine; Kras; Metabolism; Pancreatic cancer; PDA; ROS

Indexed keywords

FATTY ACID; GLUTAMINE; K RAS PROTEIN; LIPID; NICOTINAMIDE ADENINE DINUCLEOTIDE; REACTIVE OXYGEN METABOLITE; TUMOR PROTEIN;

EID: 84903960967     PISSN: 01433334     EISSN: 14602180     Source Type: Journal    
DOI: 10.1093/carcin/bgu097     Document Type: Review
Times cited : (105)

References (185)
  • 1
    • 84872967522 scopus 로고    scopus 로고
    • Cancer Statistics, 2013
    • Siegel, R. et al. (2013) Cancer Statistics, 2013. 63, 11-30.
    • (2013) , vol.63 , pp. 11-30
    • Siegel, R.1
  • 2
    • 17644421000 scopus 로고    scopus 로고
    • SEER Cancer Statistics Factsheets: Pancreas Cancer
    • National Cancer Institute. Bethesda, MD, [Online]. Available
    • SEER Cancer Statistics Factsheets: Pancreas Cancer. National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/statfacts/html/pancreas.html. [Online]. Available: Http://seer.cancer.gov/statfacts/html/pancreas.html.
  • 3
    • 77951755278 scopus 로고    scopus 로고
    • Pancreatic cancer
    • Hidalgo, M. (2010) Pancreatic cancer. N. Engl. J. Med., 362, 1605-17.
    • (2010) N. Engl. J. Med. , vol.362 , pp. 1605-1617
    • Hidalgo, M.1
  • 4
    • 80051700067 scopus 로고    scopus 로고
    • Pancreatic cancer
    • Vincent, A. et al. (2011) Pancreatic cancer. Lancet, 378, 607-20.
    • (2011) Lancet , vol.378 , pp. 607-620
    • Vincent, A.1
  • 5
    • 1642588228 scopus 로고    scopus 로고
    • Pancreatic cancer
    • Li, D. et al. (2004) Pancreatic cancer. Lancet, 363, 1049-57.
    • (2004) Lancet , vol.363 , pp. 1049-1057
    • Li, D.1
  • 6
    • 84855201311 scopus 로고    scopus 로고
    • StellaTUM: Current consensus and discussion on pancreatic stellate cell research
    • Erkan, M. et al. (2012) StellaTUM: Current consensus and discussion on pancreatic stellate cell research. Gut, 61, 172-8.
    • (2012) Gut , vol.61 , pp. 172-178
    • Erkan, M.1
  • 7
    • 34447260549 scopus 로고    scopus 로고
    • Stromal biology of pancreatic cancer
    • Chu, G.C. et al. (2007) Stromal biology of pancreatic cancer. J. Cell. Biochem., 101, 887-907.
    • (2007) J. Cell. Biochem. , vol.101 , pp. 887-907
    • Chu, G.C.1
  • 8
    • 0034333026 scopus 로고    scopus 로고
    • Pancreatic tumors show high levels of hypoxia
    • Koong, a C. et al. (2000) Pancreatic tumors show high levels of hypoxia. Int. J. Radiat. Oncol. Biol. Phys., 48, 919-22.
    • (2000) Int. J. Radiat. Oncol. Biol. Phys. , vol.48 , pp. 919-922
    • Koong, C.1
  • 9
    • 84874614138 scopus 로고    scopus 로고
    • Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma
    • Guillaumond, F. et al. (2013) Strengthened glycolysis under hypoxia supports tumor symbiosis and hexosamine biosynthesis in pancreatic adenocarcinoma. Proc. Natl. Acad. Sci. U. S. A., 110, 3919-24.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 3919-3924
    • Guillaumond, F.1
  • 10
    • 67149143399 scopus 로고    scopus 로고
    • Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer
    • Olive, K.P. et al. (2009) Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science, 324, 1457-61.
    • (2009) Science , vol.324 , pp. 1457-1461
    • Olive, K.P.1
  • 11
    • 84858602107 scopus 로고    scopus 로고
    • Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma
    • Provenzano, P.P. et al. (2012) Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell, 21, 418-29.
    • (2012) Cancer Cell , vol.21 , pp. 418-429
    • Provenzano, P.P.1
  • 12
    • 58049221106 scopus 로고    scopus 로고
    • Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer
    • Kimmelman, A.C. et al. (2008) Genomic alterations link Rho family of GTPases to the highly invasive phenotype of pancreas cancer. Proc. Natl. Acad. Sci. U. S. A., 105, 19372-7.
    • (2008) Proc. Natl. Acad. Sci. U. S. A. , vol.105 , pp. 19372-19377
    • Kimmelman, A.C.1
  • 13
    • 78049380554 scopus 로고    scopus 로고
    • The patterns and dynamics of genomic instability in metastatic pancreatic cancer
    • Campbell, P.J. et al. (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109-13.
    • (2010) Nature , vol.467 , pp. 1109-1113
    • Campbell, P.J.1
  • 14
    • 84862488620 scopus 로고    scopus 로고
    • Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response
    • Li, Y.-H. et al. (2012) Inhibition of non-homologous end joining repair impairs pancreatic cancer growth and enhances radiation response. PLoS One, 7, e39588.
    • (2012) PLoS One , vol.7
    • Li, Y.-H.1
  • 15
    • 84860321700 scopus 로고    scopus 로고
    • Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism
    • Ying, H. et al. (2012) Oncogenic Kras maintains pancreatic tumors through regulation of anabolic glucose metabolism. Cell, 149, 656-70.
    • (2012) Cell , vol.149 , pp. 656-670
    • Ying, H.1
  • 16
    • 84875894714 scopus 로고    scopus 로고
    • Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway
    • Son, J. et al. (2013) Glutamine supports pancreatic cancer growth through a KRASregulated metabolic pathway. Nature, 496, 101-5.
    • (2013) Nature , vol.496 , pp. 101-105
    • Son, J.1
  • 17
    • 84879766148 scopus 로고    scopus 로고
    • Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance
    • Lyssiotis, C. a et al. (2013) Pancreatic cancers rely on a novel glutamine metabolism pathway to maintain redox balance. Cell Cycle, 12, 1987-8.
    • (2013) Cell Cycle , vol.12 , pp. 1987-1988
    • Lyssiotis, C.1
  • 18
    • 84865080615 scopus 로고    scopus 로고
    • The pancreas cancer microenvironment
    • Feig, C. et al. (2012) The pancreas cancer microenvironment. Clin. Cancer Res., 18, 4266-76.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 4266-4276
    • Feig, C.1
  • 19
    • 79955828776 scopus 로고    scopus 로고
    • Stromal biology and therapy in pancreatic cancer
    • Neesse, A. et al. (2011) Stromal biology and therapy in pancreatic cancer. Gut, 60, 861-8.
    • (2011) Gut , vol.60 , pp. 861-868
    • Neesse, A.1
  • 20
    • 84866445523 scopus 로고    scopus 로고
    • Pancreatic stellate cells: A starring role in normal and diseased pancreas
    • Apte, M. V et al. (2012) Pancreatic stellate cells: A starring role in normal and diseased pancreas. Front. Physiol., 3, 344.
    • (2012) Front. Physiol. , vol.3 , pp. 344
    • Apte, M.V.1
  • 21
    • 84878334221 scopus 로고    scopus 로고
    • Pancreatic cancer: why is it so hard to treat? Therap
    • Oberstein, P.E. et al. (2013) Pancreatic cancer: why is it so hard to treat? Therap. Adv. Gastroenterol., 6, 321-37.
    • (2013) Adv. Gastroenterol. , vol.6 , pp. 321-337
    • Oberstein, P.E.1
  • 22
    • 84859408670 scopus 로고    scopus 로고
    • Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer
    • Milosevic, M. et al. (2012) Tumor hypoxia predicts biochemical failure following radiotherapy for clinically localized prostate cancer. Clin. Cancer Res., 18, 2108-14.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 2108-2114
    • Milosevic, M.1
  • 23
    • 77955510947 scopus 로고    scopus 로고
    • Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer
    • Heller, a et al. (2010) Immunogenicity of SEREX-identified antigens and disease outcome in pancreatic cancer. Cancer Immunol. Immunother., 59, 1389-400.
    • (2010) Cancer Immunol. Immunother. , vol.59 , pp. 1389-1400
    • Heller, A.1
  • 24
    • 84890287082 scopus 로고    scopus 로고
    • Overcoming immunosuppression as a new immunotherapeutic approach against pancreatic cancer
    • Bazhin, A. V et al. (2013) Overcoming immunosuppression as a new immunotherapeutic approach against pancreatic cancer. Oncoimmunology, 2, e25736.
    • (2013) Oncoimmunology , vol.2
    • Bazhin, A.V.1
  • 25
    • 84862150896 scopus 로고    scopus 로고
    • Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer
    • Bayne, L.J. et al. (2012) Tumor-derived granulocyte-macrophage colony-stimulating factor regulates myeloid inflammation and T cell immunity in pancreatic cancer. Cancer Cell, 21, 822-35.
    • (2012) Cancer Cell , vol.21 , pp. 822-835
    • Bayne, L.J.1
  • 26
    • 84862147254 scopus 로고    scopus 로고
    • Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia
    • Pylayeva-Gupta, Y. et al. (2012) Oncogenic Kras-induced GM-CSF production promotes the development of pancreatic neoplasia. Cancer Cell, 21, 836-47.
    • (2012) Cancer Cell , vol.21 , pp. 836-847
    • Pylayeva-Gupta, Y.1
  • 27
    • 35148814410 scopus 로고    scopus 로고
    • Dynamics of the immune reaction to pancreatic cancer from inception to invasion
    • Clark, C.E. et al. (2007) Dynamics of the immune reaction to pancreatic cancer from inception to invasion. Cancer Res., 67, 9518-27.
    • (2007) Cancer Res. , vol.67 , pp. 9518-9527
    • Clark, C.E.1
  • 28
    • 0024292722 scopus 로고
    • Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes
    • Almoguera, C. et al. (1988) Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell, 53, 549-54.
    • (1988) Cell , vol.53 , pp. 549-554
    • Almoguera, C.1
  • 29
    • 1142275321 scopus 로고    scopus 로고
    • Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients
    • Uemura, T. et al. (2004) Detection of K-ras mutations in the plasma DNA of pancreatic cancer patients. J. Gastroenterol., 39, 56-60.
    • (2004) J. Gastroenterol. , vol.39 , pp. 56-60
    • Uemura, T.1
  • 30
    • 80054856209 scopus 로고    scopus 로고
    • RAS oncogenes: Weaving a tumorigenic web
    • Pylayeva-Gupta, Y. et al. (2011) RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer, 11, 761-74.
    • (2011) Nat. Rev. Cancer , vol.11 , pp. 761-774
    • Pylayeva-Gupta, Y.1
  • 31
    • 13444274253 scopus 로고    scopus 로고
    • Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A metaanalysis
    • Löhr, M. et al. (2005) Frequency of K-ras mutations in pancreatic intraductal neoplasias associated with pancreatic ductal adenocarcinoma and chronic pancreatitis: A metaanalysis. Neoplasia, 7, 17-23.
    • (2005) Neoplasia , vol.7 , pp. 17-23
    • Löhr, M.1
  • 32
    • 1242340431 scopus 로고    scopus 로고
    • Oncogenic Ras and its role in tumor cell invasion and metastasis
    • Campbell, P.M. et al. (2004) Oncogenic Ras and its role in tumor cell invasion and metastasis. Semin. Cancer Biol., 14, 105-14.
    • (2004) Semin. Cancer Biol. , vol.14 , pp. 105-114
    • Campbell, P.M.1
  • 33
    • 78649474147 scopus 로고    scopus 로고
    • Ras history: The saga continues
    • Cox, A.D. et al. (2010) Ras history: The saga continues. Small GTPases, 1, 2-27.
    • (2010) Small GTPases , vol.1 , pp. 2-27
    • Cox, A.D.1
  • 34
    • 0346455774 scopus 로고    scopus 로고
    • Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma
    • Aguirre, A.J. et al. (2003) Activated Kras and Ink4a/Arf deficiency cooperate to produce metastatic pancreatic ductal adenocarcinoma. Genes Dev., 17, 3112-26.
    • (2003) Genes Dev. , vol.17 , pp. 3112-3126
    • Aguirre, A.J.1
  • 35
    • 19344362405 scopus 로고    scopus 로고
    • Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice
    • Hingorani, S.R. et al. (2005) Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell, 7, 469-83.
    • (2005) Cancer Cell , vol.7 , pp. 469-483
    • Hingorani, S.R.1
  • 36
    • 33751247898 scopus 로고    scopus 로고
    • Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression
    • Ijichi, H. et al. (2006) Aggressive pancreatic ductal adenocarcinoma in mice caused by pancreas-specific blockade of transforming growth factor-beta signaling in cooperation with active Kras expression. Genes Dev., 20, 3147-60.
    • (2006) Genes Dev. , vol.20 , pp. 3147-3160
    • Ijichi, H.1
  • 37
    • 33847419143 scopus 로고    scopus 로고
    • Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice
    • Guerra, C. et al. (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell, 11, 291-302.
    • (2007) Cancer Cell , vol.11 , pp. 291-302
    • Guerra, C.1
  • 38
    • 70350513347 scopus 로고    scopus 로고
    • Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras
    • Gidekel Friedlander, S.Y. et al. (2009) Context-dependent transformation of adult pancreatic cells by oncogenic K-Ras. Cancer Cell, 16, 379-89.
    • (2009) Cancer Cell , vol.16 , pp. 379-389
    • Gidekel Friedlander, S.Y.1
  • 39
    • 9144266295 scopus 로고    scopus 로고
    • Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse
    • Hingorani, S.R. et al. (2003) Preinvasive and invasive ductal pancreatic cancer and its early detection in the mouse. Cancer Cell, 4, 437-50.
    • (2003) Cancer Cell , vol.4 , pp. 437-450
    • Hingorani, S.R.1
  • 40
    • 0028268635 scopus 로고
    • K-ras and p53 gene mutations in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions
    • Pellegata, N.S. et al. (1994) K-ras and p53 gene mutations in pancreatic cancer: Ductal and nonductal tumors progress through different genetic lesions. Cancer Res., 54, 1556-60.
    • (1994) Cancer Res. , vol.54 , pp. 1556-1560
    • Pellegata, N.S.1
  • 41
    • 33646577163 scopus 로고    scopus 로고
    • Genetics and biology of pancreatic ductal adenocarcinoma
    • Hezel, A.F. et al. (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev., 20, 1218-49.
    • (2006) Genes Dev. , vol.20 , pp. 1218-1249
    • Hezel, A.F.1
  • 42
    • 77951115122 scopus 로고    scopus 로고
    • International network of cancer genome projects
    • Hudson, T.J. et al. (2010) International network of cancer genome projects. Nature, 464, 993-8.
    • (2010) Nature , vol.464 , pp. 993-998
    • Hudson, T.J.1
  • 43
    • 84881474788 scopus 로고    scopus 로고
    • Understanding pancreatic cancer genomes
    • DOI: 10.1007/s00534-013-0610-6
    • Cowley, M.J. et al. (2013) Understanding pancreatic cancer genomes. J. Hepatobiliary. Pancreat. Sci., DOI: 10.1007/s00534-013-0610-6.
    • (2013) J. Hepatobiliary. Pancreat. Sci.
    • Cowley, M.J.1
  • 44
    • 84869091997 scopus 로고    scopus 로고
    • Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes
    • Biankin, A. V et al. (2012) Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature, 491, 399-405.
    • (2012) Nature , vol.491 , pp. 399-405
    • Biankin, A.V.1
  • 45
    • 78049398107 scopus 로고    scopus 로고
    • Distant metastasis occurs late during the genetic evolution of pancreatic cancer
    • Yachida, S. et al. (2010) Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature, 467, 1114-7.
    • (2010) Nature , vol.467 , pp. 1114-1117
    • Yachida, S.1
  • 46
    • 66249108601 scopus 로고    scopus 로고
    • Understanding the Warburg effect: The metabolic requirements of cell proliferation
    • Vander Heiden, M.G. et al. (2009) Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science, 324, 1029-33.
    • (2009) Science , vol.324 , pp. 1029-1033
    • Vander Heiden, M.G.1
  • 47
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation
    • Lunt, S.Y. et al. (2011) Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu. Rev. Cell Dev. Biol., 27, 441-64.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 441-464
    • Lunt, S.Y.1
  • 48
    • 79952284127 scopus 로고    scopus 로고
    • Hallmarks of cancer: The next generation
    • Hanahan, D. et al. (2011) Hallmarks of cancer: The next generation. Cell, 144, 646-74.
    • (2011) Cell , vol.144 , pp. 646-674
    • Hanahan, D.1
  • 49
    • 80052242132 scopus 로고    scopus 로고
    • Targeting cancer metabolism: A therapeutic window opens
    • Vander Heiden, M.G. (2011) Targeting cancer metabolism: A therapeutic window opens. Nat. Rev. Drug Discov., 10, 671-84.
    • (2011) Nat. Rev. Drug Discov. , vol.10 , pp. 671-684
    • Vander Heiden, M.G.1
  • 50
    • 84858604270 scopus 로고    scopus 로고
    • Metabolic reprogramming: A cancer hallmark even warburg did not anticipate
    • Ward, P.S. et al. (2012) Metabolic reprogramming: A cancer hallmark even warburg did not anticipate. Cancer Cell, 21, 297-308.
    • (2012) Cancer Cell , vol.21 , pp. 297-308
    • Ward, P.S.1
  • 51
    • 84865103094 scopus 로고    scopus 로고
    • Conceptual framework for cutting the pancreatic cancer fuel supply
    • Le, A. et al. (2012) Conceptual framework for cutting the pancreatic cancer fuel supply. Clin. Cancer Res., 18, 4285-90.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 4285-4290
    • Le, A.1
  • 52
    • 84885357137 scopus 로고    scopus 로고
    • Exploiting the bad eating habits of Ras-driven cancers
    • White, E. (2013) Exploiting the bad eating habits of Ras-driven cancers. Genes Dev., 27, 2065-71.
    • (2013) Genes Dev. , vol.27 , pp. 2065-2071
    • White, E.1
  • 53
    • 37449024702 scopus 로고    scopus 로고
    • The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation
    • DeBerardinis, R.J. et al. (2008) The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 7, 11-20.
    • (2008) Cell Metab. , vol.7 , pp. 11-20
    • DeBerardinis, R.J.1
  • 54
    • 84883497454 scopus 로고    scopus 로고
    • Glutamine and cancer: Cell biology, physiology, and clinical opportunities
    • Hensley, C.T. et al. (2013) Glutamine and cancer: Cell biology, physiology, and clinical opportunities. J. Clin. Invest., 123, 3678-84.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3678-3684
    • Hensley, C.T.1
  • 55
    • 84890209181 scopus 로고    scopus 로고
    • Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia
    • Fan, J. et al. (2013) Glutamine-driven oxidative phosphorylation is a major ATP source in transformed mammalian cells in both normoxia and hypoxia. Mol. Syst. Biol., 9, 1-11.
    • (2013) Mol. Syst. Biol. , vol.9 , pp. 1-11
    • Fan, J.1
  • 56
    • 77956404377 scopus 로고    scopus 로고
    • Eaten alive: A history of macroautophagy
    • Yang, Z. et al. (2010) Eaten alive: A history of macroautophagy. Nat. Publ. Gr., 12, 814-822.
    • (2010) Nat. Publ. Gr. , vol.12 , pp. 814-822
    • Yang, Z.1
  • 57
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Levine, B. et al. (2008) Autophagy in the pathogenesis of disease. Cell, 132, 27-42.
    • (2008) Cell , vol.132 , pp. 27-42
    • Levine, B.1
  • 58
    • 78649338141 scopus 로고    scopus 로고
    • Autophagy and the integrated stress response
    • Kroemer, G. et al. (2010) Autophagy and the integrated stress response. Mol. Cell, 40, 280-93.
    • (2010) Mol. Cell , vol.40 , pp. 280-293
    • Kroemer, G.1
  • 59
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • Mizushima, N. et al. (2011) The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol., 27, 107-32.
    • (2011) Annu. Rev. Cell Dev. Biol. , vol.27 , pp. 107-132
    • Mizushima, N.1
  • 60
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • Boya, P. et al. (2013) Emerging regulation and functions of autophagy. Nat. Cell Biol., 15, 713-20.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 713-720
    • Boya, P.1
  • 61
    • 84863954409 scopus 로고    scopus 로고
    • Regulation and function of autophagy during cell survival and cell death
    • Das, G. et al. (2012) Regulation and function of autophagy during cell survival and cell death. Cold Spring Harb. Perspect. Biol., 4, 1-14.
    • (2012) Cold Spring Harb. Perspect. Biol. , vol.4 , pp. 1-14
    • Das, G.1
  • 62
    • 80655124407 scopus 로고    scopus 로고
    • A comprehensive glossary of autophagy-related molecules and processes (2nd edition)
    • Klionsky, D.J. et al. (2011) A comprehensive glossary of autophagy-related molecules and processes (2nd edition). Autophagy, 7, 1273-94.
    • (2011) Autophagy , vol.7 , pp. 1273-1294
    • Klionsky, D.J.1
  • 63
    • 77951214016 scopus 로고    scopus 로고
    • Mammalian autophagy: Core molecular machinery and signaling regulation
    • Yang, Z. et al. (2010) Mammalian autophagy: Core molecular machinery and signaling regulation. Curr. Opin. Cell Biol., 22, 124-31.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 124-131
    • Yang, Z.1
  • 64
    • 77951227871 scopus 로고    scopus 로고
    • TOR-dependent control of autophagy: Biting the hand that feeds
    • Neufeld, T.P. (2010) TOR-dependent control of autophagy: Biting the hand that feeds. Curr. Opin. Cell Biol., 22, 157-68.
    • (2010) Curr. Opin. Cell Biol. , vol.22 , pp. 157-168
    • Neufeld, T.P.1
  • 65
    • 84879047011 scopus 로고    scopus 로고
    • Cellular metabolic and autophagic pathways: Traffic control by redox signaling
    • Dodson, M. et al. (2013) Cellular metabolic and autophagic pathways: Traffic control by redox signaling. Free Radic. Biol. Med., 63, 207-21.
    • (2013) Free Radic. Biol. Med. , vol.63 , pp. 207-221
    • Dodson, M.1
  • 66
    • 79956220703 scopus 로고    scopus 로고
    • DNA damage and autophagy
    • Rodriguez-Rocha, H. et al. (2011) DNA damage and autophagy. Mutat. Res., 711, 158-66.
    • (2011) Mutat. Res. , vol.711 , pp. 158-166
    • Rodriguez-Rocha, H.1
  • 67
    • 80053634368 scopus 로고    scopus 로고
    • The dynamic nature of autophagy in cancer
    • Kimmelman, A.C. (2011) The dynamic nature of autophagy in cancer. Genes Dev., 25, 1999-2010.
    • (2011) Genes Dev. , vol.25 , pp. 1999-2010
    • Kimmelman, A.C.1
  • 68
    • 84861526009 scopus 로고    scopus 로고
    • Deconvoluting the context-dependent role for autophagy in cancer
    • White, E. (2012) Deconvoluting the context-dependent role for autophagy in cancer. Nat. Rev. Cancer, 12, 401-10.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 401-410
    • White, E.1
  • 69
    • 33745713171 scopus 로고    scopus 로고
    • Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis
    • Degenhardt, K. et al. (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 10, 51-64.
    • (2006) Cancer Cell , vol.10 , pp. 51-64
    • Degenhardt, K.1
  • 70
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz, J.D. et al. (2010) Autophagy and metabolism. Science, 330, 1344-8.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1
  • 71
    • 79951847989 scopus 로고    scopus 로고
    • Principles and current strategies for targeting autophagy for cancer treatment
    • Amaravadi, R.K. et al. (2011) Principles and current strategies for targeting autophagy for cancer treatment. Clin. Cancer Res., 17, 654-66.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 654-666
    • Amaravadi, R.K.1
  • 72
    • 84887437596 scopus 로고    scopus 로고
    • Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment
    • Sui, X. et al. (2013) Autophagy and chemotherapy resistance: A promising therapeutic target for cancer treatment. Cell Death Dis., 4, e838.
    • (2013) Cell Death Dis. , vol.4
    • Sui, X.1
  • 73
    • 54049151248 scopus 로고    scopus 로고
    • A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance
    • Samaddar, J.S. et al. (2008) A role for macroautophagy in protection against 4-hydroxytamoxifen-induced cell death and the development of antiestrogen resistance. Mol. Cancer Ther., 7, 2977-87.
    • (2008) Mol. Cancer Ther. , vol.7 , pp. 2977-2987
    • Samaddar, J.S.1
  • 74
    • 33846794896 scopus 로고    scopus 로고
    • Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma
    • Amaravadi, R.K. et al. (2007) Autophagy inhibition enhances therapy-induced apoptosis in a Myc-induced model of lymphoma. J. Clin. Invest., 117, 326-36.
    • (2007) J. Clin. Invest. , vol.117 , pp. 326-336
    • Amaravadi, R.K.1
  • 75
    • 84886789682 scopus 로고    scopus 로고
    • MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells
    • Wang, P. et al. (2013) MicroRNA 23b regulates autophagy associated with radioresistance of pancreatic cancer cells. Gastroenterology, 145, 1133-1143.e12.
    • (2013) Gastroenterology , vol.145
    • Wang, P.1
  • 76
    • 84864805916 scopus 로고    scopus 로고
    • Autophagy and cancer--issues we need to digest
    • Liu, E.Y. et al. (2012) Autophagy and cancer--issues we need to digest. J. Cell Sci., 125, 2349-58.
    • (2012) J. Cell Sci. , vol.125 , pp. 2349-2358
    • Liu, E.Y.1
  • 77
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Yang, S. et al. (2011) Pancreatic cancers require autophagy for tumor growth. Genes Dev., 25, 717-29.
    • (2011) Genes Dev. , vol.25 , pp. 717-729
    • Yang, S.1
  • 78
    • 84885609770 scopus 로고    scopus 로고
    • Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS G12D-driven lung tumors
    • Guo, J. et al. (2013) Autophagy is required for mitochondrial function, lipid metabolism, growth and fate of KRAS G12D-driven lung tumors. Autophagy, 9, 1636-1638.
    • (2013) Autophagy , vol.9 , pp. 1636-1638
    • Guo, J.1
  • 79
    • 79953856887 scopus 로고    scopus 로고
    • Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation
    • Kim, M.-J. et al. (2011) Involvement of autophagy in oncogenic K-Ras-induced malignant cell transformation. J. Biol. Chem., 286, 12924-32.
    • (2011) J. Biol. Chem. , vol.286 , pp. 12924-12932
    • Kim, M.-J.1
  • 80
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
    • Lock, R. et al. (2011) Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell, 22, 165-78.
    • (2011) Mol. Biol. Cell , vol.22 , pp. 165-178
    • Lock, R.1
  • 81
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Guo, J.Y. et al. (2011) Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev., 25, 460-70.
    • (2011) Genes Dev. , vol.25 , pp. 460-470
    • Guo, J.Y.1
  • 82
    • 79960401862 scopus 로고    scopus 로고
    • Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis
    • Wei, H. et al. (2011) Suppression of autophagy by FIP200 deletion inhibits mammary tumorigenesis. Genes Dev., 25, 1510-27.
    • (2011) Genes Dev. , vol.25 , pp. 1510-1527
    • Wei, H.1
  • 83
    • 79960720320 scopus 로고    scopus 로고
    • Molecular mechanism and physiological functions of clathrinmediated endocytosis
    • McMahon, H.T. et al. (2011) Molecular mechanism and physiological functions of clathrinmediated endocytosis. Nat. Rev. Mol. Cell Biol., 12, 517-33.
    • (2011) Nat. Rev. Mol. Cell Biol. , vol.12 , pp. 517-533
    • McMahon, H.T.1
  • 84
    • 0028790788 scopus 로고
    • Macropinocytosis
    • Swanson, J. et al. (1995) Macropinocytosis. Trends Cell Biol., 5, 424-428.
    • (1995) Trends Cell Biol. , vol.5 , pp. 424-428
    • Swanson, J.1
  • 85
    • 80855144226 scopus 로고    scopus 로고
    • Macropinocytosis: An endocytic pathway for internalising large gulps
    • Lim, J.P. et al. (2011) Macropinocytosis: An endocytic pathway for internalising large gulps. Immunol. Cell Biol., 89, 836-43.
    • (2011) Immunol. Cell Biol. , vol.89 , pp. 836-843
    • Lim, J.P.1
  • 86
    • 0022470480 scopus 로고
    • Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins
    • Bar-Sagi, D. et al. (1986) Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science, 233, 1061-8.
    • (1986) Science , vol.233 , pp. 1061-1068
    • Bar-Sagi, D.1
  • 87
    • 84878396462 scopus 로고    scopus 로고
    • Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells
    • Commisso, C. et al. (2013) Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature, 497, 633-7.
    • (2013) Nature , vol.497 , pp. 633-637
    • Commisso, C.1
  • 88
    • 84878464291 scopus 로고    scopus 로고
    • Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids
    • Kamphorst, J.J. et al. (2013) Hypoxic and Ras-transformed cells support growth by scavenging unsaturated fatty acids from lysophospholipids. Proc. Natl. Acad. Sci. U. S. A., 110, 8882-7.
    • (2013) Proc. Natl. Acad. Sci. U. S. A. , vol.110 , pp. 8882-8887
    • Kamphorst, J.J.1
  • 89
    • 0003717374 scopus 로고    scopus 로고
    • (5th edn) W.H. Freeman.
    • Berg, J.M. et al. (2002) Biochemistry, (5th edn) W.H. Freeman.
    • (2002) Biochemistry
    • Berg, J.M.1
  • 90
    • 84865169609 scopus 로고    scopus 로고
    • Metabolic pathway alterations that support cell proliferation
    • Vander Heiden, M.G. et al. (2011) Metabolic pathway alterations that support cell proliferation. Cold Spring Harb. Symp. Quant. Biol., 76, 325-34.
    • (2011) Cold Spring Harb. Symp. Quant. Biol. , vol.76 , pp. 325-334
    • Vander Heiden, M.G.1
  • 91
    • 84886741654 scopus 로고    scopus 로고
    • Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine
    • Von Hoff, D.D. et al. (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med., 369, 1691-703.
    • (2013) N. Engl. J. Med. , vol.369 , pp. 1691-1703
    • Von Hoff, D.D.1
  • 92
    • 70349331678 scopus 로고    scopus 로고
    • Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells
    • Yun, J. et al. (2009) Glucose deprivation contributes to the development of KRAS pathway mutations in tumor cells. Science, 325, 1555-9.
    • (2009) Science , vol.325 , pp. 1555-1559
    • Yun, J.1
  • 93
    • 80051866908 scopus 로고    scopus 로고
    • Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth
    • Gaglio, D. et al. (2011) Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth. Mol. Syst. Biol., 7, 523.
    • (2011) Mol. Syst. Biol. , vol.7 , pp. 523
    • Gaglio, D.1
  • 94
    • 0022364146 scopus 로고
    • Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes
    • Racker, E. et al. (1985) Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. Proc. Natl. Acad. Sci. U. S. A., 82, 3535-8.
    • (1985) Proc. Natl. Acad. Sci. U. S. A. , vol.82 , pp. 3535-3538
    • Racker, E.1
  • 95
    • 78149341677 scopus 로고    scopus 로고
    • Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes
    • Chun, S.Y. et al. (2010) Oncogenic KRAS modulates mitochondrial metabolism in human colon cancer cells by inducing HIF-1α and HIF-2α target genes. Mol. Cancer, 9, 293.
    • (2010) Mol. Cancer , vol.9 , pp. 293
    • Chun, S.Y.1
  • 96
    • 84876417170 scopus 로고    scopus 로고
    • Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer
    • Zhao, D. et al. (2013) Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell, 23, 464-76.
    • (2013) Cancer Cell , vol.23 , pp. 464-476
    • Zhao, D.1
  • 97
    • 84864803714 scopus 로고    scopus 로고
    • A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells
    • Icard, P. et al. (2012) A global view of the biochemical pathways involved in the regulation of the metabolism of cancer cells. Biochim. Biophys. Acta, 1826, 423-33.
    • (2012) Biochim. Biophys. Acta , vol.1826 , pp. 423-433
    • Icard, P.1
  • 98
    • 77956396629 scopus 로고    scopus 로고
    • O-GlcNAc signaling: A metabolic link between diabetes and cancer? Trends Biochem
    • Slawson, C. et al. (2010) O-GlcNAc signaling: A metabolic link between diabetes and cancer? Trends Biochem. Sci., 35, 547-55.
    • (2010) Sci. , vol.35 , pp. 547-555
    • Slawson, C.1
  • 99
    • 77949295164 scopus 로고    scopus 로고
    • The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine
    • Hanover, J.A. et al. (2010) The hexosamine signaling pathway: O-GlcNAc cycling in feast or famine. Biochim. Biophys. Acta, 1800, 80-95.
    • (2010) Biochim. Biophys. Acta , vol.1800 , pp. 80-95
    • Hanover, J.A.1
  • 100
    • 78651144681 scopus 로고
    • THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER
    • KORNFELD, S. et al. (1964) THE FEEDBACK CONTROL OF SUGAR NUCLEOTIDE BIOSYNTHESIS IN LIVER. Proc. Natl. Acad. Sci. U. S. A., 52, 371-9.
    • (1964) Proc. Natl. Acad. Sci. U. S. A. , vol.52 , pp. 371-379
    • Kornfeld, S.1
  • 101
    • 78650181190 scopus 로고    scopus 로고
    • The hexosamine biosynthetic pathway couples growth factorinduced glutamine uptake to glucose metabolism
    • Wellen, K.E. et al. (2010) The hexosamine biosynthetic pathway couples growth factorinduced glutamine uptake to glucose metabolism. Genes Dev., 24, 2784-99.
    • (2010) Genes Dev. , vol.24 , pp. 2784-2799
    • Wellen, K.E.1
  • 102
    • 79751525993 scopus 로고    scopus 로고
    • O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy
    • Mi, W. et al. (2011) O-GlcNAcylation is a novel regulator of lung and colon cancer malignancy. Biochim. Biophys. Acta, 1812, 514-9.
    • (2011) Biochim. Biophys. Acta , vol.1812 , pp. 514-519
    • Mi, W.1
  • 103
    • 21744431575 scopus 로고    scopus 로고
    • The sweet and sour of cancer: Glycans as novel therapeutic targets
    • Fuster, M.M. et al. (2005) The sweet and sour of cancer: Glycans as novel therapeutic targets. Nat. Rev. Cancer, 5, 526-42.
    • (2005) Nat. Rev. Cancer , vol.5 , pp. 526-542
    • Fuster, M.M.1
  • 104
    • 79251489778 scopus 로고    scopus 로고
    • Glycomics hits the big time
    • Hart, G.W. et al. (2010) Glycomics hits the big time. Cell, 143, 672-6.
    • (2010) Cell , vol.143 , pp. 672-676
    • Hart, G.W.1
  • 105
    • 84871720411 scopus 로고    scopus 로고
    • Selumetinib plus docetaxel for KRAS-mutant advanced non-smallcell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study
    • Jänne, P.A. et al. (2013) Selumetinib plus docetaxel for KRAS-mutant advanced non-smallcell lung cancer: A randomised, multicentre, placebo-controlled, phase 2 study. Lancet Oncol., 14, 38-47.
    • (2013) Lancet Oncol. , vol.14 , pp. 38-47
    • Jänne, P.A.1
  • 106
    • 2442757393 scopus 로고
    • Free Amino Acids of Cord Plasma As Compared With Maternal Plasma During Pregnancy
    • Ghadimi, H. et al. (1964) Free Amino Acids of Cord Plasma As Compared With Maternal Plasma During Pregnancy. Pediatrics, 33, 500-6.
    • (1964) Pediatrics , vol.33 , pp. 500-506
    • Ghadimi, H.1
  • 107
    • 77955281020 scopus 로고    scopus 로고
    • Glutamine addiction: A new therapeutic target in cancer
    • Wise, D.R. et al. (2010) Glutamine addiction: A new therapeutic target in cancer. Trends Biochem. Sci., 35, 427-33.
    • (2010) Trends Biochem. Sci. , vol.35 , pp. 427-433
    • Wise, D.R.1
  • 108
    • 75149148563 scopus 로고    scopus 로고
    • Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer
    • DeBerardinis, R.J. et al. (2010) Q's next: The diverse functions of glutamine in metabolism, cell biology and cancer. Oncogene, 29, 313-24.
    • (2010) Oncogene , vol.29 , pp. 313-324
    • DeBerardinis, R.J.1
  • 109
    • 84856014884 scopus 로고    scopus 로고
    • Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia
    • Metallo, C.M. et al. (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature, 481, 380-4.
    • (2012) Nature , vol.481 , pp. 380-384
    • Metallo, C.M.1
  • 110
    • 83755178091 scopus 로고    scopus 로고
    • Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α -ketoglutarate to citrate to support cell growth and viability
    • Wise, D.R. et al. (2011) Hypoxia promotes isocitrate dehydrogenase-dependent carboxylation of α -ketoglutarate to citrate to support cell growth and viability. Proc. Natl. Acad. Sci. U. S. A., 108, 19611-6.
    • (2011) Proc. Natl. Acad. Sci. U. S. A. , vol.108 , pp. 19611-19616
    • Wise, D.R.1
  • 111
    • 37449034854 scopus 로고    scopus 로고
    • Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis
    • DeBerardinis, R.J. et al. (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc. Natl. Acad. Sci. U. S. A., 104, 19345-50.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 19345-19350
    • DeBerardinis, R.J.1
  • 112
    • 84879165160 scopus 로고    scopus 로고
    • Oxidative stress: The mitochondria-dependent and mitochondriaindependent pathways of apoptosis
    • Sinha, K. et al. (2013) Oxidative stress: The mitochondria-dependent and mitochondriaindependent pathways of apoptosis. Arch. Toxicol., 87, 1157-80.
    • (2013) Arch. Toxicol. , vol.87 , pp. 1157-1180
    • Sinha, K.1
  • 113
    • 0023886170 scopus 로고
    • DNA damage and oxygen radical toxicity
    • Imlay, J. a et al. (1988) DNA damage and oxygen radical toxicity. Science, 240, 1302-9.
    • (1988) Science , vol.240 , pp. 1302-1309
    • Imlay, J.1
  • 114
    • 84870554511 scopus 로고    scopus 로고
    • Oxidative stress and cancer: An overview
    • Sosa, V. et al. (2013) Oxidative stress and cancer: An overview. Ageing Res. Rev., 12, 376-90.
    • (2013) Ageing Res. Rev. , vol.12 , pp. 376-390
    • Sosa, V.1
  • 115
    • 84856535275 scopus 로고    scopus 로고
    • Redox regulation of cell migration and adhesion
    • Hurd, T.R. et al. (2012) Redox regulation of cell migration and adhesion. Trends Cell Biol., 22, 107-15.
    • (2012) Trends Cell Biol. , vol.22 , pp. 107-115
    • Hurd, T.R.1
  • 116
    • 0036395928 scopus 로고    scopus 로고
    • Macrophage signaling and respiratory burst
    • Iles, K.E. et al. (2002) Macrophage signaling and respiratory burst. Immunol. Res., 26, 95-105.
    • (2002) Immunol. Res. , vol.26 , pp. 95-105
    • Iles, K.E.1
  • 117
    • 84868007565 scopus 로고    scopus 로고
    • Physiological roles of mitochondrial reactive oxygen species
    • Sena, L.A. et al. (2012) Physiological roles of mitochondrial reactive oxygen species. Mol. Cell, 48, 158-67.
    • (2012) Mol. Cell , vol.48 , pp. 158-167
    • Sena, L.A.1
  • 118
    • 33847349283 scopus 로고    scopus 로고
    • Reactive oxygen species: A breath of life or death? Clin
    • Fruehauf, J.P. et al. (2007) Reactive oxygen species: A breath of life or death? Clin. Cancer Res., 13, 789-94.
    • (2007) Cancer Res. , vol.13 , pp. 789-794
    • Fruehauf, J.P.1
  • 119
    • 84859833047 scopus 로고    scopus 로고
    • Reactive oxygen species: The achilles' heel of cancer cells? Antioxid
    • Cui, X. (2012) Reactive oxygen species: The achilles' heel of cancer cells? Antioxid. Redox Signal., 16, 1212-4.
    • (2012) Redox Signal. , vol.16 , pp. 1212-1214
    • Cui, X.1
  • 120
    • 77951279075 scopus 로고    scopus 로고
    • Reactive oxygen species in cancer
    • Liou, G.-Y. et al. (2010) Reactive oxygen species in cancer. Free Radic. Res., 44, 479-96.
    • (2010) Free Radic. Res. , vol.44 , pp. 479-496
    • Liou, G.-Y.1
  • 121
    • 17244367828 scopus 로고    scopus 로고
    • Reactive oxygen species in tumor progression
    • Storz, P. (2005) Reactive oxygen species in tumor progression. Front. Biosci., 10, 1881-96.
    • (2005) Front. Biosci. , vol.10 , pp. 1881-1896
    • Storz, P.1
  • 122
    • 77954562833 scopus 로고    scopus 로고
    • Metastasis: Cancer cell's escape from oxidative stress
    • Pani, G. et al. (2010) Metastasis: Cancer cell's escape from oxidative stress. Cancer Metastasis Rev., 29, 351-78.
    • (2010) Cancer Metastasis Rev. , vol.29 , pp. 351-378
    • Pani, G.1
  • 123
    • 77952737658 scopus 로고    scopus 로고
    • Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity
    • Weinberg, F. et al. (2010) Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity. Proc. Natl. Acad. Sci. U. S. A., 107, 8788-93.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 8788-8793
    • Weinberg, F.1
  • 124
    • 84879460307 scopus 로고    scopus 로고
    • Regulation of pancreatic cancer growth by superoxide
    • Du, J. et al. (2013) Regulation of pancreatic cancer growth by superoxide. Mol. Carcinog., 52, 555-67.
    • (2013) Mol. Carcinog. , vol.52 , pp. 555-567
    • Du, J.1
  • 125
    • 34548543291 scopus 로고    scopus 로고
    • DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells
    • Romanowska, M. et al. (2007) DNA damage, superoxide, and mutant K-ras in human lung adenocarcinoma cells. Free Radic. Biol. Med., 43, 1145-55.
    • (2007) Free Radic. Biol. Med. , vol.43 , pp. 1145-1155
    • Romanowska, M.1
  • 126
    • 84877135661 scopus 로고    scopus 로고
    • K-ras 4A and 4B mRNA levels correlate with superoxide in lung adenocarcinoma cells, while at the protein level, only mutant K-ras 4A protein correlates with superoxide
    • Calvert, R.J. et al. (2013) K-ras 4A and 4B mRNA levels correlate with superoxide in lung adenocarcinoma cells, while at the protein level, only mutant K-ras 4A protein correlates with superoxide. Lung Cancer, 80, 263-9.
    • (2013) Lung Cancer , vol.80 , pp. 263-269
    • Calvert, R.J.1
  • 127
    • 4544250814 scopus 로고    scopus 로고
    • Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells
    • Vaquero, E.C. et al. (2004) Reactive oxygen species produced by NAD(P)H oxidase inhibit apoptosis in pancreatic cancer cells. J. Biol. Chem., 279, 34643-54.
    • (2004) J. Biol. Chem. , vol.279 , pp. 34643-34654
    • Vaquero, E.C.1
  • 128
    • 51749088156 scopus 로고    scopus 로고
    • Redox regulation of cell survival
    • Trachootham, D. et al. (2008) Redox regulation of cell survival. Antioxid. Redox Signal., 10, 1343-74.
    • (2008) Antioxid. Redox Signal. , vol.10 , pp. 1343-1374
    • Trachootham, D.1
  • 129
    • 84873469216 scopus 로고    scopus 로고
    • The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene?
    • Shelton, P. et al. (2013) The transcription factor NF-E2-related factor 2 (Nrf2): A protooncogene? FASEB J., 27, 414-23.
    • (2013) FASEB J. , vol.27 , pp. 414-423
    • Shelton, P.1
  • 130
    • 63549121490 scopus 로고    scopus 로고
    • NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer
    • Hayes, J.D. et al. (2009) NRF2 and KEAP1 mutations: Permanent activation of an adaptive response in cancer. Trends Biochem. Sci., 34, 176-88.
    • (2009) Trends Biochem. Sci. , vol.34 , pp. 176-188
    • Hayes, J.D.1
  • 131
    • 79960060305 scopus 로고    scopus 로고
    • Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis
    • DeNicola, G.M. et al. (2011) Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature, 475, 106-9.
    • (2011) Nature , vol.475 , pp. 106-109
    • DeNicola, G.M.1
  • 132
    • 79953889329 scopus 로고    scopus 로고
    • Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy
    • Lister, A. et al. (2011) Nrf2 is overexpressed in pancreatic cancer: Implications for cell proliferation and therapy. Mol. Cancer, 10, 37.
    • (2011) Mol. Cancer , vol.10 , pp. 37
    • Lister, A.1
  • 133
    • 84883501150 scopus 로고    scopus 로고
    • HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations
    • Semenza, G.L. (2013) HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J. Clin. Invest., 123, 3664-71.
    • (2013) J. Clin. Invest. , vol.123 , pp. 3664-3671
    • Semenza, G.L.1
  • 134
    • 77952673654 scopus 로고    scopus 로고
    • Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming
    • Zhao, F. et al. (2010) Imatinib resistance associated with BCR-ABL upregulation is dependent on HIF-1alpha-induced metabolic reprograming. Oncogene, 29, 2962-72.
    • (2010) Oncogene , vol.29 , pp. 2962-2972
    • Zhao, F.1
  • 135
    • 55949123655 scopus 로고    scopus 로고
    • The interplay between MYC and HIF in the Warburg effect
    • Dang, C. V (2007) The interplay between MYC and HIF in the Warburg effect. Ernst Schering Found. Symp. Proc., at < http://www.ncbi.nlm.nih.gov/pubmed/18811052> .
    • (2007) Ernst Schering Found. Symp. Proc.
    • Dang, C.V.1
  • 136
    • 84865293335 scopus 로고    scopus 로고
    • MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer
    • Chaika, N. V et al. (2012) MUC1 mucin stabilizes and activates hypoxia-inducible factor 1 alpha to regulate metabolism in pancreatic cancer. Proc. Natl. Acad. Sci. U. S. A., 109, 13787-92.
    • (2012) Proc. Natl. Acad. Sci. U. S. A. , vol.109 , pp. 13787-13792
    • Chaika, N.V.1
  • 137
    • 64949171489 scopus 로고    scopus 로고
    • siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and-dependent pathways under hypoxic conditions
    • Chen, C. et al. (2009) siRNA targeting HIF-1alpha induces apoptosis of pancreatic cancer cells through NF-kappaB-independent and-dependent pathways under hypoxic conditions. Anticancer Res., 29, 1367-72.
    • (2009) Anticancer Res. , vol.29 , pp. 1367-1372
    • Chen, C.1
  • 138
    • 0344608877 scopus 로고    scopus 로고
    • Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism
    • Chen, J. et al. (2003) Dominant-negative hypoxia-inducible factor-1 alpha reduces tumorigenicity of pancreatic cancer cells through the suppression of glucose metabolism. Am. J. Pathol., 162, 1283-91.
    • (2003) Am. J. Pathol. , vol.162 , pp. 1283-1291
    • Chen, J.1
  • 139
    • 66149179367 scopus 로고    scopus 로고
    • Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity
    • Wilkinson, S. et al. (2009) Hypoxia-selective macroautophagy and cell survival signaled by autocrine PDGFR activity. Genes Dev., 23, 1283-8.
    • (2009) Genes Dev. , vol.23 , pp. 1283-1288
    • Wilkinson, S.1
  • 140
    • 43649104579 scopus 로고    scopus 로고
    • Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia
    • Zhang, H. et al. (2008) Mitochondrial autophagy is an HIF-1-dependent adaptive metabolic response to hypoxia. J. Biol. Chem., 283, 10892-903.
    • (2008) J. Biol. Chem. , vol.283 , pp. 10892-10903
    • Zhang, H.1
  • 141
    • 84862014301 scopus 로고    scopus 로고
    • Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment
    • Rausch, V. et al. (2012) Autophagy mediates survival of pancreatic tumour-initiating cells in a hypoxic microenvironment. J. Pathol., 227, 325-35.
    • (2012) J. Pathol. , vol.227 , pp. 325-335
    • Rausch, V.1
  • 142
    • 84875811505 scopus 로고    scopus 로고
    • Genetically engineered mouse models of pancreatic adenocarcinoma
    • Guerra, C. et al. (2013) Genetically engineered mouse models of pancreatic adenocarcinoma. Mol. Oncol., 7, 232-47.
    • (2013) Mol. Oncol. , vol.7 , pp. 232-247
    • Guerra, C.1
  • 143
    • 78649711427 scopus 로고    scopus 로고
    • The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes
    • Levine, A.J. et al. (2010) The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes. Science, 330, 1340-4.
    • (2010) Science , vol.330 , pp. 1340-1344
    • Levine, A.J.1
  • 144
    • 0029922621 scopus 로고    scopus 로고
    • P53 Tumor Suppressor Gene: From the Basic Research Laboratory To the Clinic--an Abridged Historical Perspective
    • Harris, C.C. (1996) P53 Tumor Suppressor Gene: From the Basic Research Laboratory To the Clinic--an Abridged Historical Perspective. Carcinogenesis, 17, 1187-98.
    • (1996) Carcinogenesis , vol.17 , pp. 1187-1198
    • Harris, C.C.1
  • 145
    • 65549120715 scopus 로고    scopus 로고
    • Modes of p53 regulation
    • Kruse, J.-P. et al. (2009) Modes of p53 regulation. Cell, 137, 609-22.
    • (2009) Cell , vol.137 , pp. 609-622
    • Kruse, J.-P.1
  • 146
    • 0025876591 scopus 로고
    • The p53 tumour suppressor gene
    • Levine, A. et al. (1991) The p53 tumour suppressor gene. Nature, 351, 453-456.
    • (1991) Nature , vol.351 , pp. 453-456
    • Levine, A.1
  • 147
    • 34547935761 scopus 로고    scopus 로고
    • Living with p53, dying of p53
    • Aylon, Y. et al. (2007) Living with p53, dying of p53. Cell, 130, 597-600.
    • (2007) Cell , vol.130 , pp. 597-600
    • Aylon, Y.1
  • 148
    • 0027743438 scopus 로고
    • Pancreatic adenocarcinomas frequently show p53 gene mutations
    • Scarpa, a et al. (1993) Pancreatic adenocarcinomas frequently show p53 gene mutations. Am. J. Pathol., 142, 1534-43.
    • (1993) Am. J. Pathol. , vol.142 , pp. 1534-1543
    • Scarpa, A.1
  • 149
    • 84880571709 scopus 로고    scopus 로고
    • Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer
    • Oshima, M. et al. (2013) Immunohistochemically detected expression of 3 major genes (CDKN2A/p16, TP53, and SMAD4/DPC4) strongly predicts survival in patients with resectable pancreatic cancer. Ann. Surg., 258, 336-46.
    • (2013) Ann. Surg. , vol.258 , pp. 336-346
    • Oshima, M.1
  • 150
    • 84860112131 scopus 로고    scopus 로고
    • What we have learned about pancreatic cancer from mouse models
    • Pé rez-Mancera, P. a et al. (2012) What we have learned about pancreatic cancer from mouse models. Gastroenterology, 142, 1079-92.
    • (2012) Gastroenterology , vol.142 , pp. 1079-1092
    • Pé rez-Mancera P.a1
  • 152
    • 84863244013 scopus 로고    scopus 로고
    • The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy
    • Shen, L. et al. (2012) The fundamental role of the p53 pathway in tumor metabolism and its implication in tumor therapy. Clin. Cancer Res., 18, 1561-7.
    • (2012) Clin. Cancer Res. , vol.18 , pp. 1561-1567
    • Shen, L.1
  • 153
    • 80054883676 scopus 로고    scopus 로고
    • Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin
    • Illuzzi, J.L. et al. (2011) Modifications of p53 and the DNA damage response in cells expressing mutant form of the protein huntingtin. J. Mol. Neurosci., 45, 256-68.
    • (2011) J. Mol. Neurosci. , vol.45 , pp. 256-268
    • Illuzzi, J.L.1
  • 154
    • 84864292987 scopus 로고    scopus 로고
    • Nuclear factor-κ B, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect
    • Johnson, R.F. et al. (2012) Nuclear factor-κ B, p53, and mitochondria: Regulation of cellular metabolism and the Warburg effect. Trends Biochem. Sci., 37, 317-24.
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 317-324
    • Johnson, R.F.1
  • 155
    • 84862977182 scopus 로고    scopus 로고
    • Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor
    • Madan, E. et al. (2011) Regulation of glucose metabolism by p53: Emerging new roles for the tumor suppressor. Oncotarget, 2, 948-957.
    • (2011) Oncotarget , vol.2 , pp. 948-957
    • Madan, E.1
  • 156
    • 33745149291 scopus 로고    scopus 로고
    • P53 Regulates Mitochondrial Respiration
    • Matoba, S. et al. (2006) P53 Regulates Mitochondrial Respiration. Science, 312, 1650-3.
    • (2006) Science , vol.312 , pp. 1650-1653
    • Matoba, S.1
  • 157
    • 77952227625 scopus 로고    scopus 로고
    • Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species
    • Suzuki, S. et al. (2010) Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species. Proc. Natl. Acad. Sci. U. S. A., 107, 7461-6.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 7461-7466
    • Suzuki, S.1
  • 158
    • 77952212178 scopus 로고    scopus 로고
    • Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function
    • Hu, W. et al. (2010) Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function. Proc. Natl. Acad. Sci. U. S. A., 107, 7455-60.
    • (2010) Proc. Natl. Acad. Sci. U. S. A. , vol.107 , pp. 7455-7460
    • Hu, W.1
  • 159
    • 11244347171 scopus 로고    scopus 로고
    • Glycolytic enzymes can modulate cellular life span
    • Kondoh, H. et al. (2005) Glycolytic enzymes can modulate cellular life span. Cancer Res., 65, 177-85.
    • (2005) Cancer Res. , vol.65 , pp. 177-185
    • Kondoh, H.1
  • 160
    • 1942506067 scopus 로고    scopus 로고
    • The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression
    • Schwartzenberg-Bar-Yoseph, F. et al. (2004) The tumor suppressor p53 down-regulates glucose transporters GLUT1 and GLUT4 gene expression. Cancer Res., 64, 2627-33.
    • (2004) Cancer Res. , vol.64 , pp. 2627-2633
    • Schwartzenberg-Bar-Yoseph, F.1
  • 161
    • 33745918951 scopus 로고    scopus 로고
    • TIGAR, a p53-inducible regulator of glycolysis and apoptosis
    • Bensaad, K. et al. (2006) TIGAR, a p53-inducible regulator of glycolysis and apoptosis. Cell, 126, 107-20.
    • (2006) Cell , vol.126 , pp. 107-120
    • Bensaad, K.1
  • 162
    • 79952280229 scopus 로고    scopus 로고
    • p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase
    • Jiang, P. et al. (2011) p53 regulates biosynthesis through direct inactivation of glucose-6-phosphate dehydrogenase. Nat. Cell Biol., 13, 310-6.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 310-316
    • Jiang, P.1
  • 163
    • 84890432985 scopus 로고    scopus 로고
    • p53 status determines the role of autophagy in pancreatic tumour development
    • Rosenfeldt, M.T. et al. (2013) p53 status determines the role of autophagy in pancreatic tumour development. Nature, 504, 296-300.
    • (2013) Nature , vol.504 , pp. 296-300
    • Rosenfeldt, M.T.1
  • 164
    • 12144287284 scopus 로고    scopus 로고
    • LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1
    • Lizcano, J.M. et al. (2004) LKB1 is a master kinase that activates 13 kinases of the AMPK subfamily, including MARK/PAR-1. EMBO J., 23, 833-43.
    • (2004) EMBO J. , vol.23 , pp. 833-843
    • Lizcano, J.M.1
  • 165
    • 0348108284 scopus 로고    scopus 로고
    • Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years
    • Lüttges, J. et al. (2004) Rare ductal adenocarcinoma of the pancreas in patients younger than age 40 years. Cancer, 100, 173-82.
    • (2004) Cancer , vol.100 , pp. 173-182
    • Lüttges, J.1
  • 166
    • 77955488036 scopus 로고    scopus 로고
    • LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest
    • Morton, J.P. et al. (2010) LKB1 haploinsufficiency cooperates with Kras to promote pancreatic cancer through suppression of p21-dependent growth arrest. Gastroenterology, 139, 586-97, 597.e1-6.
    • (2010) Gastroenterology , vol.139
    • Morton, J.P.1
  • 167
    • 0043127125 scopus 로고    scopus 로고
    • Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling
    • Inoki, K. et al. (2003) Rheb GTPase is a direct target of TSC2 GAP activity and regulates mTOR signaling. Genes Dev., 17, 1829-34.
    • (2003) Genes Dev. , vol.17 , pp. 1829-1834
    • Inoki, K.1
  • 168
    • 84873469666 scopus 로고    scopus 로고
    • Nutrient sensing, metabolism, and cell growth control
    • Yuan, H.-X. et al. (2013) Nutrient sensing, metabolism, and cell growth control. Mol. Cell, 49, 379-87.
    • (2013) Mol. Cell , vol.49 , pp. 379-387
    • Yuan, H.-X.1
  • 169
    • 80052511813 scopus 로고    scopus 로고
    • The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
    • Mihaylova, M.M. et al. (2011) The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol., 13, 1016-23.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1016-1023
    • Mihaylova, M.M.1
  • 170
    • 84863763440 scopus 로고    scopus 로고
    • AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress
    • Jeon, S. et al. (2012) AMPK regulates NADPH homeostasis to promote tumour cell survival during energy stress. Nature, 485, 661-665.
    • (2012) Nature , vol.485 , pp. 661-665
    • Jeon, S.1
  • 171
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Guo, J.Y. et al. (2013) Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev., 27, 1447-61.
    • (2013) Genes Dev. , vol.27 , pp. 1447-1461
    • Guo, J.Y.1
  • 172
    • 84885180245 scopus 로고    scopus 로고
    • The fat side of prostate cancer
    • Zadra, G. et al. (2013) The fat side of prostate cancer. Biochim. Biophys. Acta, 1831, 1518-32.
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 1518-1532
    • Zadra, G.1
  • 173
    • 80053039884 scopus 로고    scopus 로고
    • The metabolic features of normal pancreas and pancreatic adenocarcinoma: Preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T
    • Ma, X. et al. (2011) The metabolic features of normal pancreas and pancreatic adenocarcinoma: Preliminary result of in vivo proton magnetic resonance spectroscopy at 3.0 T. J. Comput. Assist. Tomogr., 35, 539-43.
    • (2011) J. Comput. Assist. Tomogr. , vol.35 , pp. 539-543
    • Ma, X.1
  • 174
    • 84878980627 scopus 로고    scopus 로고
    • Metabolomic and transcriptomic profiling of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas
    • Yabushita, S. et al. (2013) Metabolomic and transcriptomic profiling of human K-ras oncogene transgenic rats with pancreatic ductal adenocarcinomas. Carcinogenesis, 34, 1251-9.
    • (2013) Carcinogenesis , vol.34 , pp. 1251-1259
    • Yabushita, S.1
  • 175
    • 84884570719 scopus 로고    scopus 로고
    • Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer
    • Zhang, G. et al. (2013) Integration of metabolomics and transcriptomics revealed a fatty acid network exerting growth inhibitory effects in human pancreatic cancer. Clin. Cancer Res., 19, 4983-93.
    • (2013) Clin. Cancer Res. , vol.19 , pp. 4983-4993
    • Zhang, G.1
  • 176
    • 84871542969 scopus 로고    scopus 로고
    • Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice
    • Mohammed, A. et al. (2012) Endogenous n-3 polyunsaturated fatty acids delay progression of pancreatic ductal adenocarcinoma in Fat-1-p48(Cre/+)-LSL-Kras(G12D/+) mice. Neoplasia, 14, 1249-59.
    • (2012) Neoplasia , vol.14 , pp. 1249-1259
    • Mohammed, A.1
  • 177
    • 84888267890 scopus 로고    scopus 로고
    • A High-Fat Diet Activates Oncogenic Kras and COX2 to Induce Development of Pancreatic Ductal Adenocarcinoma in Mice
    • Philip, B. et al. (2013) A High-Fat Diet Activates Oncogenic Kras and COX2 to Induce Development of Pancreatic Ductal Adenocarcinoma in Mice. Gastroenterology, 145, 1449-58.
    • (2013) Gastroenterology , vol.145 , pp. 1449-1458
    • Philip, B.1
  • 178
    • 67651102976 scopus 로고    scopus 로고
    • Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system
    • Wang, F. et al. (2009) Increased lipid metabolism and cell turnover of MiaPaCa2 cells induced by high-fat diet in an orthotopic system. Metabolism., 58, 1131-6.
    • (2009) Metabolism. , vol.58 , pp. 1131-1136
    • Wang, F.1
  • 179
    • 84873454105 scopus 로고    scopus 로고
    • Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress
    • Pierre, A.-S. et al. (2013) Trans-10, cis-12 conjugated linoleic acid induced cell death in human colon cancer cells through reactive oxygen species-mediated ER stress. Biochim. Biophys. Acta, 1831, 759-68.
    • (2013) Biochim. Biophys. Acta , vol.1831 , pp. 759-768
    • Pierre, A.-S.1
  • 180
    • 84884596730 scopus 로고    scopus 로고
    • Diversification of NAD biological role: The importance of location
    • Di Stefano, M. et al. (2013) Diversification of NAD biological role: The importance of location. FEBS J., 280, 4711-28.
    • (2013) FEBS J. , vol.280 , pp. 4711-4728
    • Di Stefano, M.1
  • 181
    • 84867877340 scopus 로고    scopus 로고
    • The NAD metabolome--a key determinant of cancer cell biology
    • Chiarugi, A. et al. (2012) The NAD metabolome--a key determinant of cancer cell biology. Nat. Rev. Cancer, 12, 741-52.
    • (2012) Nat. Rev. Cancer , vol.12 , pp. 741-752
    • Chiarugi, A.1
  • 182
    • 62649156291 scopus 로고    scopus 로고
    • Nampt: Linking NAD biology, metabolism and cancer
    • Garten, A. et al. (2009) Nampt: Linking NAD biology, metabolism and cancer. Trends Endocrinol. Metab., 20, 130-8.
    • (2009) Trends Endocrinol. Metab. , vol.20 , pp. 130-138
    • Garten, A.1
  • 183
    • 41449118098 scopus 로고    scopus 로고
    • NAD depletion by FK866 induces autophagy
    • Billington, R.A. et al. (2008) NAD depletion by FK866 induces autophagy. Autophagy, 4, 385-7.
    • (2008) Autophagy , vol.4 , pp. 385-387
    • Billington, R.A.1
  • 184
    • 84892175612 scopus 로고    scopus 로고
    • Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors
    • DOI: 10.1158/1078-0432.CCR-13-0150.
    • Chini, C.C.S. et al. (2013) Targeting of NAD Metabolism in Pancreatic Cancer Cells: Potential Novel Therapy for Pancreatic Tumors. Clin. Cancer Res., DOI: 10.1158/1078-0432.CCR-13-0150.
    • (2013) Clin. Cancer Res.
    • Chini, C.C.S.1
  • 185
    • 77951887249 scopus 로고    scopus 로고
    • Safety and efficacy of NAD depleting cancer drugs: Results of a phase I clinical trial of CHS 828 and overview of published data
    • Von Heideman, A. et al. (2010) Safety and efficacy of NAD depleting cancer drugs: Results of a phase I clinical trial of CHS 828 and overview of published data. Cancer Chemother. Pharmacol., 65, 1165-72.
    • (2010) Cancer Chemother. Pharmacol. , vol.65 , pp. 1165-1172
    • Von Heideman, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.