메뉴 건너뛰기




Volumn 6, Issue 8, 2014, Pages 945-966

Sirtuin inhibitors as anticancer agents

Author keywords

[No Author keywords available]

Indexed keywords

ANTINEOPLASTIC AGENT; ARISTOFORIN; BENZAMIDE DERIVATIVE; CAMBINOL; INDOLE DERIVATIVE; NAPHTHALENE DERIVATIVE; NICOTINAMIDE DERIVATIVE; PHLOROGLUCINOL DERIVATIVE; SALERMIDE; SIRTINOL; SIRTUIN 1; SIRTUIN 2; SIRTUIN 3; SIRTUIN 4; SIRTUIN 5; SIRTUIN 6; SIRTUIN 7; SIRTUIN INHIBITOR; SPLITOMICIN DERIVATIVE; SURAMIN; TENOVIN DERIVATIVE; THIENO[3,2 D]PYRIMIDINE 6 CARBOXAMIDE; THIOACYLLYSINE DERIVATIVE; UNCLASSIFIED DRUG; ENZYME INHIBITOR; NAPHTHOL DERIVATIVE; NICOTINAMIDE; PROTEIN BINDING; REACTIVE OXYGEN METABOLITE; SIRTUIN;

EID: 84903315362     PISSN: 17568919     EISSN: 17568927     Source Type: Journal    
DOI: 10.4155/fmc.14.44     Document Type: Review
Times cited : (149)

References (150)
  • 1
    • 0034703217 scopus 로고    scopus 로고
    • Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
    • Lin SJ, Defossez PA, Guarente L. Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289(5487), 2126-2128 (2000).
    • (2000) Science , vol.289 , Issue.5487 , pp. 2126-2128
    • Lin, S.J.1    Defossez, P.A.2    Guarente, L.3
  • 2
    • 0034677535 scopus 로고    scopus 로고
    • Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase
    • DOI 10.1038/35001622
    • Imai SI, Armstrong CM, Kaeberlein M, Guarente L. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature 403(6771), 795-800 (2000). (Pubitemid 30111843)
    • (2000) Nature , vol.403 , Issue.6771 , pp. 795-800
    • Imai, S.-I.1    Armstrong, C.M.2    Kaeberlein, M.3    Guarente, L.4
  • 3
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • Haigis MC, Sinclair DA. Mammalian sirtuins: biological insights and disease relevance. Annu. Rev. Pathol. 5(1), 253-295 (2010).
    • (2010) Annu. Rev. Pathol. , vol.5 , Issue.1 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 4
    • 84874108083 scopus 로고    scopus 로고
    • Seven sirtuins for seven deadly diseases of aging
    • Morris BJ. Seven sirtuins for seven deadly diseases of aging. Free Radic. Biol. Med. 56(0), 133-171 (2013).
    • (2013) Free Radic. Biol. Med. , vol.56 , pp. 133-171
    • Morris, B.J.1
  • 5
    • 84898011296 scopus 로고    scopus 로고
    • Sorting out functions of sirtuins in cancer
    • doi:10.1038/onc.2013.120 Epub ahead of print
    • Roth M, Chen WY. Sorting out functions of sirtuins in cancer. Oncogene doi:10.1038/onc.2013.120 (2013) (Epub ahead of print).
    • (2013) Oncogene
    • Roth, M.1    Chen, W.Y.2
  • 6
    • 84887428122 scopus 로고    scopus 로고
    • The roles of SIRT1 in cancer
    • Lin Z, Fang D. The roles of SIRT1 in cancer. Genes Cancer 4(3-4), 97-104 (2013).
    • (2013) Genes Cancer , vol.4 , Issue.3-4 , pp. 97-104
    • Lin, Z.1    Fang, D.2
  • 7
    • 84867380741 scopus 로고    scopus 로고
    • Janus-faced role of SIRT1 in tumorigenesis
    • Song NY, Surh YJ. Janus-faced role of SIRT1 in tumorigenesis. Ann. NY Acad. Sci. 1271, 10-19 (2012).
    • (2012) Ann. NY Acad. Sci. , vol.1271 , pp. 10-19
    • Song, N.Y.1    Surh, Y.J.2
  • 8
    • 44849096876 scopus 로고    scopus 로고
    • The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
    • Firestein R, Blander G, Michan S et al. The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3(4), e2020 (2008).
    • (2008) PLoS ONE , vol.3 , Issue.4
    • Firestein, R.1    Blander, G.2    Michan, S.3
  • 9
    • 78650758398 scopus 로고    scopus 로고
    • Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer
    • Herranz D, Munoz-Martin M, Canamero M et al. Sirt1 improves healthy ageing and protects from metabolic syndrome-associated cancer. Nat. Commun. 1, 3 (2010).
    • (2010) Nat. Commun. , vol.1 , pp. 3
    • Herranz, D.1    Munoz-Martin, M.2    Canamero, M.3
  • 10
    • 53149137486 scopus 로고    scopus 로고
    • Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
    • Wang RH, Sengupta K, Li C et al. Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice. Cancer Cell 14(4), 312-323 (2008).
    • (2008) Cancer Cell , vol.14 , Issue.4 , pp. 312-323
    • Wang, R.H.1    Sengupta, K.2    Li, C.3
  • 11
    • 3242719545 scopus 로고    scopus 로고
    • Modulation of NF-κB-dependent transcription and cell survival by the SIRT1 deacetylase
    • DOI 10.1038/sj.emboj.7600244
    • Yeung F, Hoberg JE, Ramsey CS et al. Modulation of NFêB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 23, 2369-2380 (2004). (Pubitemid 38954844)
    • (2004) EMBO Journal , vol.23 , Issue.12 , pp. 2369-2380
    • Yeung, F.1    Hoberg, J.E.2    Ramsey, C.S.3    Keller, M.D.4    Jones, D.R.5    Frye, R.A.6    Mayo, M.W.7
  • 12
    • 77955499804 scopus 로고    scopus 로고
    • Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α
    • Lim J-H, Lee Y-M, Chun Y-S, Chen J, Kim J-E, Park J-W. Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1α. Mol. Cell 38(6), 864-878 (2010).
    • (2010) Mol. Cell , vol.38 , Issue.6 , pp. 864-878
    • Lim, J.-H.1    Lee, Y.-M.2    Chun, Y.-S.3    Chen, J.4    Kim, J.-E.5    Park, J.-W.6
  • 13
    • 53149144656 scopus 로고    scopus 로고
    • Interplay among BRCA1 SIRT1 and survivin during BRCA1-associated tumorigenesis
    • Wang R-H, Zheng Y, Kim H-S et al. Interplay among BRCA1, SIRT1, and survivin during BRCA1-associated tumorigenesis. Mol. Cell 32(1), 11-20 (2008).
    • (2008) Mol. Cell , vol.32 , Issue.1 , pp. 11-20
    • Wang, R.-H.1    Zheng, Y.2    Kim, H.-S.3
  • 14
    • 84883177488 scopus 로고    scopus 로고
    • SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency
    • Herranz D, Maraver A, Canamero M et al. SIRT1 promotes thyroid carcinogenesis driven by PTEN deficiency. Oncogene 32(34), 4052-4056 (2013).
    • (2013) Oncogene , vol.32 , Issue.34 , pp. 4052-4056
    • Herranz, D.1    Maraver, A.2    Canamero, M.3
  • 15
    • 84863116364 scopus 로고    scopus 로고
    • Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis
    • Yuan H, Wang Z, Li L et al. Activation of stress response gene SIRT1 by BCR-ABL promotes leukemogenesis. Blood 119(8), 1904-1914 (2012).
    • (2012) Blood , vol.119 , Issue.8 , pp. 1904-1914
    • Yuan, H.1    Wang, Z.2    Li, L.3
  • 16
    • 84879141103 scopus 로고    scopus 로고
    • Enterocytespecific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model
    • Leko V, Park GJ, Lao U, Simon JA, Bedalov A. Enterocytespecific inactivation of SIRT1 reduces tumor load in the APC(+/min) mouse model. PLoS ONE 8(6), e66283 (2013).
    • (2013) PLoS ONE , vol.8 , Issue.6
    • Leko, V.1    Park, G.J.2    Lao, U.3    Simon, J.A.4    Bedalov, A.5
  • 17
    • 79957968813 scopus 로고    scopus 로고
    • Medicinal chemistry of sirtuin inhibitors
    • Chen L. Medicinal chemistry of sirtuin inhibitors. Curr. Med. Chem. 18(13), 1936-1946 (2011).
    • (2011) Curr. Med. Chem. , vol.18 , Issue.13 , pp. 1936-1946
    • Chen, L.1
  • 18
    • 84873408603 scopus 로고    scopus 로고
    • SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells
    • Wang Z, Yuan H, Roth M, Stark JM, Bhatia R, Chen WY. SIRT1 deacetylase promotes acquisition of genetic mutations for drug resistance in CML cells. Oncogene 32(5), 589-598 (2013).
    • (2013) Oncogene , vol.32 , Issue.5 , pp. 589-598
    • Wang, Z.1    Yuan, H.2    Roth, M.3    Stark, J.M.4    Bhatia, R.5    Chen, W.Y.6
  • 19
    • 0035913911 scopus 로고    scopus 로고
    • Negative control of p53 by Sir2α promotes cell survival under stress
    • DOI 10.1016/S0092-8674(01)00524-4
    • Luo J, Nikolaev AY, Imai SI et al. Negative control of p53 by Sir2a promotes cell survival under stress. Cell 107(2), 137-148 (2001). (Pubitemid 33035941)
    • (2001) Cell , vol.107 , Issue.2 , pp. 137-148
    • Luo, J.1    Nikolaev, A.Y.2    Imai, S.-I.3    Chen, D.4    Su, F.5    Shiloh, A.6    Guarente, L.7    Gu, W.8
  • 20
    • 16344384026 scopus 로고    scopus 로고
    • Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation
    • DOI 10.1038/sj.emboj.7600570
    • Yang Y, Hou H, Haller EM, Nicosia SV, Bai W. Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation. EMBO J. 24(5), 1021-1032 (2005). (Pubitemid 40470150)
    • (2005) EMBO Journal , vol.24 , Issue.5 , pp. 1021-1032
    • Yang, Y.1    Hou, H.2    Haller, E.M.3    Nicosia, S.V.4    Bai, W.5
  • 21
    • 84858795617 scopus 로고    scopus 로고
    • Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation
    • Wang F, Chan CH, Chen K, Guan X, Lin HK, Tong Q. Deacetylation of FOXO3 by SIRT1 or SIRT2 leads to Skp2-mediated FOXO3 ubiquitination and degradation. Oncogene 31(12), 1546-1557 (2012).
    • (2012) Oncogene , vol.31 , Issue.12 , pp. 1546-1557
    • Wang, F.1    Chan, C.H.2    Chen, K.3    Guan, X.4    Lin, H.K.5    Tong, Q.6
  • 23
    • 84879701384 scopus 로고    scopus 로고
    • SIRT1-mediated FoxO1 deacetylation is essential for multidrug resistanceassociated protein 2 expression in tamoxifen-resistant breast cancer cells
    • Choi HK, Cho KB, Phuong NT et al. SIRT1-mediated FoxO1 deacetylation is essential for multidrug resistanceassociated protein 2 expression in tamoxifen-resistant breast cancer cells. Mol. Pharm. 10(7), 2517-2527 (2013).
    • (2013) Mol. Pharm. , vol.10 , Issue.7 , pp. 2517-2527
    • Choi, H.K.1    Cho, K.B.2    Phuong, N.T.3
  • 24
    • 84856384698 scopus 로고    scopus 로고
    • The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop
    • Menssen A, Hydbring P, Kapelle K et al. The c-MYC oncoprotein, the NAMPT enzyme, the SIRT1-inhibitor DBC1, and the SIRT1 deacetylase form a positive feedback loop. Proc. Natl Acad. Sci. USA 109(4), E187-E196 (2012).
    • (2012) Proc. Natl Acad. Sci. USA , vol.109 , Issue.4
    • Menssen, A.1    Hydbring, P.2    Kapelle, K.3
  • 25
    • 79959837062 scopus 로고    scopus 로고
    • SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability
    • Marshall GM, Liu PY, Gherardi S et al. SIRT1 promotes N-Myc oncogenesis through a positive feedback loop involving the effects of MKP3 and ERK on N-Myc protein stability. PLoS Genet. 7(6), e1002135 (2011).
    • (2011) PLoS Genet. , vol.7 , Issue.6
    • Marshall, G.M.1    Liu, P.Y.2    Gherardi, S.3
  • 26
    • 65349096174 scopus 로고    scopus 로고
    • A c-Myc-SIRT1 feedback loop regulates cell growth and transformation
    • Yuan J, Minter-Dykhouse K, Lou Z. A c-Myc-SIRT1 feedback loop regulates cell growth and transformation. J. Cell Biol. 185(2), 203-211 (2009).
    • (2009) J. Cell Biol. , vol.185 , Issue.2 , pp. 203-211
    • Yuan, J.1    Minter-Dykhouse, K.2    Lou, Z.3
  • 27
    • 77952714326 scopus 로고    scopus 로고
    • SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling
    • Holloway KR, Calhoun TN, Saxena M et al. SIRT1 regulates Dishevelled proteins and promotes transient and constitutive Wnt signaling. Proc. Natl Acad. Sci. USA 107(20), 9216-9221 (2010).
    • (2010) Proc. Natl Acad. Sci. USA , vol.107 , Issue.20 , pp. 9216-9221
    • Holloway, K.R.1    Calhoun, T.N.2    Saxena, M.3
  • 28
    • 84890448078 scopus 로고    scopus 로고
    • The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration
    • doi:10.1038/onc.2013.549 Epub ahead of print
    • Saxena M, Dykes SS, Malyarchuk S, Wang AE, Cardelli JA, Pruitt K. The sirtuins promote Dishevelled-1 scaffolding of TIAM1, Rac activation and cell migration. Oncogene doi:10.1038/onc.2013.549 (2013) (Epub ahead of print).
    • (2013) Oncogene
    • Saxena, M.1    Dykes, S.S.2    Malyarchuk, S.3    Wang, A.E.4    Cardelli, J.A.5    Pruitt, K.6
  • 29
    • 84874538962 scopus 로고    scopus 로고
    • SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression
    • Holloway KR, Barbieri A, Malyarchuk S et al. SIRT1 positively regulates breast cancer associated human aromatase (CYP19A1) expression. Mol. Endocrinol. 27(3), 480-490 (2013).
    • (2013) Mol. Endocrinol. , vol.27 , Issue.3 , pp. 480-490
    • Holloway, K.R.1    Barbieri, A.2    Malyarchuk, S.3
  • 30
    • 81255162523 scopus 로고    scopus 로고
    • Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands
    • O'Hagan HM, Wang W, Sen S et al. Oxidative damage targets complexes containing DNA methyltransferases, SIRT1, and polycomb members to promoter CpG Islands. Cancer Cell 20(5), 606-619 (2011).
    • (2011) Cancer Cell , vol.20 , Issue.5 , pp. 606-619
    • O'Hagan, H.M.1    Wang, W.2    Sen, S.3
  • 31
    • 79954467406 scopus 로고    scopus 로고
    • Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection
    • Bosch-Presegué L, Raurell-Vila H, Marazuela-Duque A et al. Stabilization of Suv39H1 by SirT1 is part of oxidative stress response and ensures genome protection. Mol. Cell 42(2), 210-223 (2011).
    • (2011) Mol. Cell , vol.42 , Issue.2 , pp. 210-223
    • Bosch-Presegué, L.1    Raurell-Vila, H.2    Marazuela-Duque, A.3
  • 33
    • 27544434763 scopus 로고    scopus 로고
    • Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses
    • DOI 10.1016/j.cell.2005.08.011, PII S0092867405008159
    • Chen WY, Wang DH, Yen RC, Luo J, Gu W, Baylin SB. Tumor suppressor HIC1 directly regulates SIRT1 to modulate p53-dependent DNA-damage responses. Cell 123(3), 437-448 (2005). (Pubitemid 41546674)
    • (2005) Cell , vol.123 , Issue.3 , pp. 437-448
    • Wen, Y.C.1    Wang, D.H.2    RayWhay, C.Y.3    Luo, J.4    Gu, W.5    Baylin, S.B.6
  • 34
    • 10844236451 scopus 로고    scopus 로고
    • Nutrient availability regulates SIRT1 through a forkhead-dependent pathway
    • DOI 10.1126/science.1101731
    • Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 306(5704), 2105-2108 (2004). (Pubitemid 40007664)
    • (2004) Science , vol.306 , Issue.5704 , pp. 2105-2108
    • Nemoto, S.1    Fergusson, M.M.2    Finkel, T.3
  • 35
    • 70849087385 scopus 로고    scopus 로고
    • MiR-34a as a prognostic marker of relapse in surgically resected nonsmall-cell lung cancer
    • Gallardo E, Navarro A, Vinolas N et al. miR-34a as a prognostic marker of relapse in surgically resected nonsmall-cell lung cancer. Carcinogenesis 30(11), 1903-1909 (2009).
    • (2009) Carcinogenesis , vol.30 , Issue.11 , pp. 1903-1909
    • Gallardo, E.1    Navarro, A.2    Vinolas, N.3
  • 37
    • 80054769188 scopus 로고    scopus 로고
    • SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity
    • Kim H-S, Vassilopoulos A, Wang R-H et al. SIRT2 maintains genome integrity and suppresses tumorigenesis through regulating APC/C activity. Cancer Cell 20(4), 487-499 (2011).
    • (2011) Cancer Cell , vol.20 , Issue.4 , pp. 487-499
    • Kim, H.-S.1    Vassilopoulos, A.2    Wang, R.-H.3
  • 38
    • 84875309392 scopus 로고    scopus 로고
    • The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
    • Serrano L, Martinez-Redondo P, Marazuela-Duque A et al. The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation. Genes Dev. 27(6), 639-653 (2013).
    • (2013) Genes Dev. , vol.27 , Issue.6 , pp. 639-653
    • Serrano, L.1    Martinez-Redondo, P.2    Marazuela-Duque, A.3
  • 39
    • 84882605310 scopus 로고    scopus 로고
    • Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth
    • Lin R, Tao R, Gao X et al. Acetylation stabilizes ATP-citrate lyase to promote lipid biosynthesis and tumor growth. Mol. Cell 51(4), 506-518 (2013).
    • (2013) Mol. Cell , vol.51 , Issue.4 , pp. 506-518
    • Lin, R.1    Tao, R.2    Gao, X.3
  • 40
    • 33646254136 scopus 로고    scopus 로고
    • Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes
    • Heltweg B, Gatbonton T, Schuler AD et al. Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes. Cancer Res. 66(8), 4368-4377 (2006).
    • (2006) Cancer Res. , vol.66 , Issue.8 , pp. 4368-4377
    • Heltweg, B.1    Gatbonton, T.2    Schuler, A.D.3
  • 41
    • 78650638268 scopus 로고    scopus 로고
    • SIRT2 downregulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis
    • Li Y, Matsumori H, Nakayama Y et al. SIRT2 downregulation in HeLa can induce p53 accumulation via p38 MAPK activation-dependent p300 decrease, eventually leading to apoptosis. Genes Cells 16(1), 34-45 (2011).
    • (2011) Genes Cells , vol.16 , Issue.1 , pp. 34-45
    • Li, Y.1    Matsumori, H.2    Nakayama, Y.3
  • 42
    • 84863103122 scopus 로고    scopus 로고
    • Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells
    • Liu G, Su L, Hao X et al. Salermide up-regulates death receptor 5 expression through the ATF4-ATF3-CHOP axis and leads to apoptosis in human cancer cells. J. Cell. Mol. Med. 16(7), 1618-1628 (2012).
    • (2012) J. Cell. Mol. Med. , vol.16 , Issue.7 , pp. 1618-1628
    • Liu, G.1    Su, L.2    Hao, X.3
  • 43
    • 84873736861 scopus 로고    scopus 로고
    • The histone deacetylase SIRT2 stabilizes Myc oncoproteins
    • Liu PY, Xu N, Malyukova A et al. The histone deacetylase SIRT2 stabilizes Myc oncoproteins. Cell Death Differ. 20(3), 503-514 (2013).
    • (2013) Cell Death Differ , vol.20 , Issue.3 , pp. 503-514
    • Liu, P.Y.1    Xu, N.2    Malyukova, A.3
  • 44
    • 84874542679 scopus 로고    scopus 로고
    • Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells
    • Sunami Y, Araki M, Hironaka Y et al. Inhibition of the NAD-dependent protein deacetylase SIRT2 induces granulocytic differentiation in human leukemia cells. PLoS ONE 8(2), e57633 (2013).
    • (2013) PLoS ONE , vol.8 , Issue.2
    • Sunami, Y.1    Araki, M.2    Hironaka, Y.3
  • 45
    • 84879081348 scopus 로고    scopus 로고
    • SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3beta/beta-catenin signaling
    • Chen J, Chan AW, To KF et al. SIRT2 overexpression in hepatocellular carcinoma mediates epithelial to mesenchymal transition by protein kinase B/glycogen synthase kinase-3beta/beta-catenin signaling. Hepatology 57(6), 2287-2298 (2013).
    • (2013) Hepatology , vol.57 , Issue.6 , pp. 2287-2298
    • Chen, J.1    Chan, A.W.2    To, K.F.3
  • 47
    • 84876473075 scopus 로고    scopus 로고
    • Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner
    • McCarthy AR, Sachweh MC, Higgins M et al. Tenovin-D3, a novel small-molecule inhibitor of sirtuin SirT2, increases p21 (CDKN1A) expression in a p53-independent manner. Mol. Cancer. Ther. 12(4), 352-360 (2013).
    • (2013) Mol. Cancer. Ther. , vol.12 , Issue.4 , pp. 352-360
    • McCarthy, A.R.1    Sachweh, M.C.2    Higgins, M.3
  • 48
    • 67650444786 scopus 로고    scopus 로고
    • Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity
    • Zhang Y, Au Q, Zhang M, Barber JR, Ng SC, Zhang B. Identification of a small molecule SIRT2 inhibitor with selective tumor cytotoxicity. Biochem. Biophys. Res. Commun. 386(4), 729-733 (2009).
    • (2009) Biochem. Biophys. Res. Commun. , vol.386 , Issue.4 , pp. 729-733
    • Zhang, Y.1    Au, Q.2    Zhang, M.3    Barber, J.R.4    Ng, S.C.5    Zhang, B.6
  • 49
    • 84883555139 scopus 로고    scopus 로고
    • HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS
    • Yang MH, Laurent G, Bause AS et al. HDAC6 and SIRT2 regulate the acetylation state and oncogenic activity of mutant K-RAS. Mol. Cancer Res. 11(9), 1072-1077 (2013).
    • (2013) Mol. Cancer Res. , vol.11 , Issue.9 , pp. 1072-1077
    • Yang, M.H.1    Laurent, G.2    Bause, A.S.3
  • 50
    • 34547397081 scopus 로고    scopus 로고
    • SIRT2 Regulates Adipocyte Differentiation through FoxO1 Acetylation/Deacetylation
    • DOI 10.1016/j.cmet.2007.07.003, PII S155041310700191X
    • Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 6(2), 105-114 (2007). (Pubitemid 47163621)
    • (2007) Cell Metabolism , vol.6 , Issue.2 , pp. 105-114
    • Jing, E.1    Gesta, S.2    Kahn, C.R.3
  • 51
    • 77954225200 scopus 로고    scopus 로고
    • Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity
    • Zhao Y, Yang J, Liao W et al. Cytosolic FoxO1 is essential for the induction of autophagy and tumour suppressor activity. Nat. Cell Biol. 12(7), 665-675 (2010).
    • (2010) Nat. Cell Biol. , vol.12 , Issue.7 , pp. 665-675
    • Zhao, Y.1    Yang, J.2    Liao, W.3
  • 52
    • 84896901019 scopus 로고    scopus 로고
    • Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin
    • Ramakrishnan G, Davaakhuu G, Kaplun L et al. Sirt2 deacetylase is a novel AKT binding partner critical for AKT activation by insulin. J. Biol. Chem. 289(9), 6054-6066 (2014).
    • (2014) J. Biol. Chem. , vol.289 , Issue.9 , pp. 6054-6066
    • Ramakrishnan, G.1    Davaakhuu, G.2    Kaplun, L.3
  • 53
    • 84876417170 scopus 로고    scopus 로고
    • Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer
    • Zhao D, Zou S-W, Liu Y et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 23(4), 464-476 (2013).
    • (2013) Cancer Cell , vol.23 , Issue.4 , pp. 464-476
    • Zhao, D.1    Zou, S.-W.2    Liu, Y.3
  • 54
    • 84893134871 scopus 로고    scopus 로고
    • Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells
    • Soung YH, Pruitt K, Chung J. Epigenetic silencing of ARRDC3 expression in basal-like breast cancer cells. Sci. Rep. 4, 3846 (2014).
    • Sci. Rep. , vol.4 , Issue.3846 , pp. 2014
    • Soung, Y.H.1    Pruitt, K.2    Chung, J.3
  • 55
    • 74049094817 scopus 로고    scopus 로고
    • SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
    • Kim HS, Patel K, Muldoon-Jacobs K et al. SIRT3 is a mitochondria- localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17(1), 41-52 (2010).
    • (2010) Cancer Cell , vol.17 , Issue.1 , pp. 41-52
    • Kim, H.S.1    Patel, K.2    Muldoon-Jacobs, K.3
  • 56
    • 79952501323 scopus 로고    scopus 로고
    • SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
    • Finley LW, Carracedo A, Lee J et al. SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization. Cancer Cell 19(3), 416-428 (2011).
    • (2011) Cancer Cell , vol.19 , Issue.3 , pp. 416-428
    • Finley, L.W.1    Carracedo, A.2    Lee, J.3
  • 57
    • 79959819034 scopus 로고    scopus 로고
    • SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production
    • Bell EL, Emerling BM, Ricoult SJ, Guarente L. SirT3 suppresses hypoxia inducible factor 1alpha and tumor growth by inhibiting mitochondrial ROS production. Oncogene 30(26), 2986-2996 (2011).
    • (2011) Oncogene , vol.30 , Issue.26 , pp. 2986-2996
    • Bell, E.L.1    Emerling, B.M.2    Ricoult, S.J.3    Guarente, L.4
  • 58
    • 77951176793 scopus 로고    scopus 로고
    • Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria
    • Shulga N, Wilson-Smith R, Pastorino JG. Sirtuin-3 deacetylation of cyclophilin D induces dissociation of hexokinase II from the mitochondria. J. Cell Sci. 123(Pt 6), 894-902 (2010).
    • (2010) J. Cell Sci. , vol.123 , Issue.PART 6 , pp. 894-902
    • Shulga, N.1    Wilson-Smith, R.2    Pastorino, J.G.3
  • 59
    • 79952266729 scopus 로고    scopus 로고
    • Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
    • Hafner AV, Dai J, Gomes AP et al. Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy. Aging (Albany NY), 2(12), 914-923 (2010).
    • (2010) Aging (Albany NY) , vol.2 , Issue.12 , pp. 914-923
    • Hafner, A.V.1    Dai, J.2    Gomes, A.P.3
  • 60
    • 70349208608 scopus 로고    scopus 로고
    • Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice
    • Sundaresan NR, Gupta M, Kim G, Rajamohan SB, Isbatan A, Gupta MP. Sirt3 blocks the cardiac hypertrophic response by augmenting Foxo3a-dependent antioxidant defense mechanisms in mice. J. Clin. Invest. 119(9), 2758-2771 (2009).
    • (2009) J. Clin. Invest. , vol.119 , Issue.9 , pp. 2758-2771
    • Sundaresan, N.R.1    Gupta, M.2    Kim, G.3    Rajamohan, S.B.4    Isbatan, A.5    Gupta, M.P.6
  • 61
    • 51449083112 scopus 로고    scopus 로고
    • SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression
    • Jacobs KM, Pennington JD, Bisht KS et al. SIRT3 interacts with the daf-16 homolog FOXO3a in the mitochondria, as well as increases FOXO3a dependent gene expression. Int. J. Biol. Sci. 4(5), 291-299 (2008).
    • (2008) Int. J. Biol. Sci. , vol.4 , Issue.5 , pp. 291-299
    • Jacobs, K.M.1    Pennington, J.D.2    Bisht, K.S.3
  • 62
    • 84879059766 scopus 로고    scopus 로고
    • SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage
    • Tseng AH, Shieh SS, Wang DL. SIRT3 deacetylates FOXO3 to protect mitochondria against oxidative damage. Free Radic. Biol. Med. 63, 222-234 (2013).
    • (2013) Free Radic. Biol. Med. , vol.63 , pp. 222-234
    • Tseng, A.H.1    Shieh, S.S.2    Wang, D.L.3
  • 63
    • 84863618431 scopus 로고    scopus 로고
    • Acetylation-dependent regulation of Skp2 function
    • Inuzuka H, Gao D, Finley LW et al. Acetylation-dependent regulation of Skp2 function. Cell 150(1), 179-193 (2012).
    • (2012) Cell , vol.150 , Issue.1 , pp. 179-193
    • Inuzuka, H.1    Gao, D.2    Finley, L.W.3
  • 64
    • 84871852995 scopus 로고    scopus 로고
    • SIRT3 functions in the nucleus in the control of stress-related gene expression
    • Iwahara T, Bonasio R, Narendra V, Reinberg D. SIRT3 functions in the nucleus in the control of stress-related gene expression. Mol. Cell. Biol. 32(24), 5022-5034 (2012).
    • (2012) Mol. Cell. Biol. , vol.32 , Issue.24 , pp. 5022-5034
    • Iwahara, T.1    Bonasio, R.2    Narendra, V.3    Reinberg, D.4
  • 65
    • 53549105529 scopus 로고    scopus 로고
    • SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70
    • Sundaresan NR, Samant SA, Pillai VB, Rajamohan SB, Gupta MP. SIRT3 is a stress-responsive deacetylase in cardiomyocytes that protects cells from stress-mediated cell death by deacetylation of Ku70. Mol. Cell Biol. 28(20), 6384-6401 (2008).
    • (2008) Mol. Cell Biol. , vol.28 , Issue.20 , pp. 6384-6401
    • Sundaresan, N.R.1    Samant, S.A.2    Pillai, V.B.3    Rajamohan, S.B.4    Gupta, M.P.5
  • 67
    • 84877720366 scopus 로고    scopus 로고
    • The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
    • Csibi A, Fendt SM, Li C et al. The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4. Cell 153(4), 840-854 (2013).
    • (2013) Cell , vol.153 , Issue.4 , pp. 840-854
    • Csibi, A.1    Fendt, S.M.2    Li, C.3
  • 68
    • 84876359638 scopus 로고    scopus 로고
    • SIRT4 has tumorsuppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
    • Jeong SM, Xiao C, Finley LW et al. SIRT4 has tumorsuppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism. Cancer Cell 23(4), 450-463 (2013).
    • (2013) Cancer Cell , vol.23 , Issue.4 , pp. 450-463
    • Jeong, S.M.1    Xiao, C.2    Finley, L.W.3
  • 69
    • 84885124677 scopus 로고    scopus 로고
    • Metabolic characterization of a Sirt5 deficient mouse model
    • Yu J, Sadhukhan S, Noriega LG et al. Metabolic characterization of a Sirt5 deficient mouse model. Sci. Rep. 3, 2806 (2013).
    • (2013) Sci. Rep. , vol.3 , pp. 2806
    • Yu, J.1    Sadhukhan, S.2    Noriega, L.G.3
  • 70
    • 65249087389 scopus 로고    scopus 로고
    • SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
    • Nakagawa T, Lomb DJ, Haigis MC, Guarente L. SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle. Cell 137(3), 560-570 (2009).
    • (2009) Cell , vol.137 , Issue.3 , pp. 560-570
    • Nakagawa, T.1    Lomb, D.J.2    Haigis, M.C.3    Guarente, L.4
  • 71
    • 81055122671 scopus 로고    scopus 로고
    • Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase
    • Du J, Zhou Y, Su X et al. Sirt5 is a NAD-dependent protein lysine demalonylase and desuccinylase. Science 334(6057), 806-809 (2011).
    • (2011) Science , vol.334 , Issue.6057 , pp. 806-809
    • Du, J.1    Zhou, Y.2    Su, X.3
  • 72
    • 83055173304 scopus 로고    scopus 로고
    • The first identification of lysine malonylation substrates and its regulatory enzyme
    • Peng C, Lu Z, Xie Z et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Mol. Cell. Proteomics 10(12), M111.012658 (2011).
    • (2011) Mol. Cell. Proteomics , vol.10 , Issue.12
    • Peng, C.1    Lu, Z.2    Xie, Z.3
  • 73
    • 84880791239 scopus 로고    scopus 로고
    • SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways
    • Park J, Chen Y, Tishkoff DX et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Mol. Cell 50(6), 919-930 (2013).
    • (2013) Mol. Cell , vol.50 , Issue.6 , pp. 919-930
    • Park, J.1    Chen, Y.2    Tishkoff, D.X.3
  • 75
    • 84870874690 scopus 로고    scopus 로고
    • The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism
    • Sebastian C, Zwaans BM, Silberman DM et al. The histone deacetylase SIRT6 is a tumor suppressor that controls cancer metabolism. Cell 151(6), 1185-1199 (2012).
    • (2012) Cell , vol.151 , Issue.6 , pp. 1185-1199
    • Sebastian, C.1    Zwaans, B.M.2    Silberman, D.M.3
  • 76
    • 84875881601 scopus 로고    scopus 로고
    • SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
    • Jiang H, Khan S, Wang Y et al. SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496(7443), 110-113 (2013).
    • (2013) Nature , vol.496 , Issue.7443 , pp. 110-113
    • Jiang, H.1    Khan, S.2    Wang, Y.3
  • 77
    • 84885913409 scopus 로고    scopus 로고
    • SIRT6 exhibits nucleosome-dependent deacetylase activity
    • Gil R, Barth S, Kanfi Y, Cohen HY. SIRT6 exhibits nucleosome-dependent deacetylase activity. Nucleic Acids Res. 41(18), 8537-8545 (2013).
    • (2013) Nucleic Acids Res. , vol.41 , Issue.18 , pp. 8537-8545
    • Gil, R.1    Barth, S.2    Kanfi, Y.3    Cohen, H.Y.4
  • 78
    • 84886686038 scopus 로고    scopus 로고
    • Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins
    • Feldman JL, Baeza J, Denu JM. Activation of the protein deacetylase SIRT6 by long-chain fatty acids and widespread deacylation by mammalian sirtuins. J. Biol. Chem. 288(43), 31350-31356 (2013).
    • (2013) J. Biol. Chem. , vol.288 , Issue.43 , pp. 31350-31356
    • Feldman, J.L.1    Baeza, J.2    Denu, J.M.3
  • 80
    • 84887172167 scopus 로고    scopus 로고
    • Repression of RNA polymerase i upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7
    • Chen S, Seiler J, Santiago-Reichelt M, Felbel K, Grummt I, Voit R. Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7. Mol. Cell 52(3), 303-313 (2013).
    • (2013) Mol. Cell , vol.52 , Issue.3 , pp. 303-313
    • Chen, S.1    Seiler, J.2    Santiago-Reichelt, M.3    Felbel, K.4    Grummt, I.5    Voit, R.6
  • 81
    • 26244436281 scopus 로고    scopus 로고
    • Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins
    • DOI 10.1091/mbc.E05-01-0033
    • Michishita E, Park JY, Burneskis JM, Barrett JC, Horikawa I. Evolutionarily conserved and nonconserved cellular localizations and functions of human SIRT proteins. Mol. Biol. Cell 16(10), 4623-4635 (2005). (Pubitemid 41416446)
    • (2005) Molecular Biology of the Cell , vol.16 , Issue.10 , pp. 4623-4635
    • Michishita, E.1    Park, J.Y.2    Burneskis, J.M.3    Barrett, J.C.4    Horikawa, I.5
  • 82
    • 33744466971 scopus 로고    scopus 로고
    • Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase i transcription
    • Ford E, Voit R, Liszt G, Magin C, Grummt I, Guarente L. Mammalian Sir2 homolog SIRT7 is an activator of RNA polymerase I transcription. Genes Dev. 20(9), 1075-1080 (2006).
    • (2006) Genes Dev. , vol.20 , Issue.9 , pp. 1075-1080
    • Ford, E.1    Voit, R.2    Liszt, G.3    Magin, C.4    Grummt, I.5    Guarente, L.6
  • 83
    • 84891761857 scopus 로고    scopus 로고
    • SIRT7 plays a role in ribosome biogenesis and protein synthesis
    • Tsai YC, Greco TM, Cristea IM. SIRT7 plays a role in ribosome biogenesis and protein synthesis. Mol. Cell. Proteomics 13(1), 73-83 (2013).
    • (2013) Mol. Cell. Proteomics , vol.13 , Issue.1 , pp. 73-83
    • Tsai, Y.C.1    Greco, T.M.2    Cristea, I.M.3
  • 84
    • 84863453769 scopus 로고    scopus 로고
    • SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
    • Barber MF, Michishita-Kioi E, Xi Y et al. SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation. Nature 487(7405), 114-118 (2012).
    • (2012) Nature , vol.487 , Issue.7405 , pp. 114-118
    • Barber, M.F.1    Michishita-Kioi, E.2    Xi, Y.3
  • 85
    • 84887613799 scopus 로고    scopus 로고
    • SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease
    • Shin J, He M, Liu Y et al. SIRT7 represses Myc activity to suppress ER stress and prevent fatty liver disease. Cell Rep. 5(3), 654-665 (2013).
    • (2013) Cell Rep. , vol.5 , Issue.3 , pp. 654-665
    • Shin, J.1    He, M.2    Liu, Y.3
  • 86
    • 84896739647 scopus 로고    scopus 로고
    • Small molecule SIRT1 activators for the treatment of aging and age-related diseases
    • Hubbard BP, Sinclair DA. Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146-154 (2014).
    • (2014) Trends Pharmacol. Sci. , vol.35 , pp. 146-154
    • Hubbard, B.P.1    Sinclair, D.A.2
  • 87
    • 0346435109 scopus 로고    scopus 로고
    • Mechanism of Nicotinamide Inhibition and Transglycosidation by Sir2 Histone/Protein Deacetylases
    • DOI 10.1074/jbc.M306552200
    • Jackson MD, Schmidt MT, Oppenheimer NJ, Denu JM. Mechanism of nicotinamide inhibition and transglycosidation by Sir2 histone/protein deacetylases. J. Biol. Chem., 278(51), 50985-50998 (2003). (Pubitemid 38020332)
    • (2003) Journal of Biological Chemistry , vol.278 , Issue.51 , pp. 50985-50998
    • Jackson, M.D.1    Schmidt, M.T.2    Oppenheimer, N.J.3    Denu, J.M.4
  • 88
    • 37349110743 scopus 로고    scopus 로고
    • Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide
    • DOI 10.1021/bi7013294
    • Smith BC, Denu JM. Mechanism-based inhibition of Sir2 deacetylases by thioacetyl-lysine peptide. Biochemistry 46(50), 14478-14486 (2007). (Pubitemid 350284562)
    • (2007) Biochemistry , vol.46 , Issue.50 , pp. 14478-14486
    • Smith, B.C.1    Denu, J.M.2
  • 89
    • 50849135494 scopus 로고    scopus 로고
    • Structural insights into intermediate steps in the Sir2 deacetylation reaction
    • Hawse WF, Hoff KG, Fatkins DG et al. Structural insights into intermediate steps in the Sir2 deacetylation reaction. Structure 16(9), 1368-1377 (2008).
    • (2008) Structure , vol.16 , Issue.9 , pp. 1368-1377
    • Hawse, W.F.1    Hoff, K.G.2    Fatkins, D.G.3
  • 90
    • 84880899962 scopus 로고    scopus 로고
    • A fluorogenic assay for screening Sirt6 modulators
    • Hu J, He B, Bhargava S, Lin H. A fluorogenic assay for screening Sirt6 modulators. Org. Biomol. Chem. 11(32), 5213-5216 (2013).
    • (2013) Org. Biomol. Chem. , vol.11 , Issue.32 , pp. 5213-5216
    • Hu, J.1    He, B.2    Bhargava, S.3    Lin, H.4
  • 92
    • 79959866409 scopus 로고    scopus 로고
    • Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network
    • Audrito V, Vaisitti T, Rossi D et al. Nicotinamide blocks proliferation and induces apoptosis of chronic lymphocytic leukemia cells through activation of the p53/miR-34a/SIRT1 tumor suppressor network. Cancer Res. 71(13), 4473-4483 (2011).
    • (2011) Cancer Res. , vol.71 , Issue.13 , pp. 4473-4483
    • Audrito, V.1    Vaisitti, T.2    Rossi, D.3
  • 93
    • 63649125404 scopus 로고    scopus 로고
    • Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition?
    • Jung-Hynes B, Nihal M, Zhong W, Ahmad N. Role of sirtuin histone deacetylase SIRT1 in prostate cancer. A target for prostate cancer management via its inhibition? J. Biol. Chem. 284(6), 3823-3832 (2009).
    • (2009) J. Biol. Chem. , vol.284 , Issue.6 , pp. 3823-3832
    • Jung-Hynes, B.1    Nihal, M.2    Zhong, W.3    Ahmad, N.4
  • 94
    • 84863091432 scopus 로고    scopus 로고
    • Design, syn thesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors
    • Suzuki T, Khan MN, Sawada H et al. Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors. J. Med. Chem. 55(12), 5760-5773 (2012).
    • (2012) J. Med. Chem. , vol.55 , Issue.12 , pp. 5760-5773
    • Suzuki, T.1    Khan, M.N.2    Sawada, H.3
  • 95
    • 79961053798 scopus 로고    scopus 로고
    • A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase
    • Taylor DM, Balabadra U, Xiang Z et al. A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase. ACS Chem. Biol. 6(6), 540-546 (2011).
    • (2011) ACS Chem. Biol. , vol.6 , Issue.6 , pp. 540-546
    • Taylor, D.M.1    Balabadra, U.2    Xiang, Z.3
  • 96
    • 69949096844 scopus 로고    scopus 로고
    • Study of 1, 4-dihydropyridine structural scaffold: Discovery of novel sirtuin activators and inhibitors
    • Mai A, Valente S, Meade S et al. Study of 1, 4-dihydropyridine structural scaffold: discovery of novel sirtuin activators and inhibitors. J. Med. Chem. 52(17), 5496-5504 (2009).
    • (2009) J. Med. Chem. , vol.52 , Issue.17 , pp. 5496-5504
    • Mai, A.1    Valente, S.2    Meade, S.3
  • 97
    • 84859863996 scopus 로고    scopus 로고
    • Novel acridinedione derivatives: Design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies
    • Alvala M, Bhatnagar S, Ravi A et al. Novel acridinedione derivatives: design, synthesis, SIRT1 enzyme and tumor cell growth inhibition studies. Bioorg. Med. Chem. Lett. 22(9), 3256-3260 (2012).
    • (2012) Bioorg. Med. Chem. Lett. , vol.22 , Issue.9 , pp. 3256-3260
    • Alvala, M.1    Bhatnagar, S.2    Ravi, A.3
  • 98
    • 79953799195 scopus 로고    scopus 로고
    • Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer
    • Alhazzazi TY, Kamarajan P, Joo N et al. Sirtuin-3 (SIRT3), a novel potential therapeutic target for oral cancer. Cancer 117(8), 1670-1678 (2011).
    • (2011) Cancer , vol.117 , Issue.8 , pp. 1670-1678
    • Alhazzazi, T.Y.1    Kamarajan, P.2    Joo, N.3
  • 99
    • 37549067781 scopus 로고    scopus 로고
    • Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
    • Smith BC, Denu JM. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J. Biol. Chem. 282(51), 37256-37265 (2007).
    • (2007) J. Biol. Chem. , vol.282 , Issue.51 , pp. 37256-37265
    • Smith, B.C.1    Denu, J.M.2
  • 100
    • 33746484522 scopus 로고    scopus 로고
    • ε-deacetylation
    • DOI 10.1016/j.bmcl.2006.04.075, PII S0960894X06005063
    • Fatkins DG, Monnot AD, Zheng W. Nepsilon-thioacetyllysine: a multi-facet functional probe for enzymatic protein lysine Nepsilon-deacetylation. Bioorg. Med. Chem. Lett. 16(14), 3651-3656 (2006). (Pubitemid 44137231)
    • (2006) Bioorganic and Medicinal Chemistry Letters , vol.16 , Issue.14 , pp. 3651-3656
    • Fatkins, D.G.1    Monnot, A.D.2    Zheng, W.3
  • 101
    • 64549094152 scopus 로고    scopus 로고
    • N(epsilon)-thioacetyl-lysine-containing tri-, tetra-, and pentapeptides as SIRT1 and SIRT2 inhibitors
    • Kiviranta PH, Suuronen T, Wallen EA et al. N(epsilon)-thioacetyl-lysine- containing tri-, tetra-, and pentapeptides as SIRT1 and SIRT2 inhibitors. J. Med. Chem. 52(7), 2153-2156 (2009).
    • (2009) J. Med. Chem. , vol.52 , Issue.7 , pp. 2153-2156
    • Kiviranta, P.H.1    Suuronen, T.2    Wallen, E.A.3
  • 102
  • 103
    • 77955419658 scopus 로고    scopus 로고
    • N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2
    • Huhtiniemi T, Suuronen T, Lahtela-Kakkonen M et al. N(epsilon)-Modified lysine containing inhibitors for SIRT1 and SIRT2. Bioorg. Med. Chem. 18(15), 5616-5625 (2010).
    • (2010) Bioorg. Med. Chem. , vol.18 , Issue.15 , pp. 5616-5625
    • Huhtiniemi, T.1    Suuronen, T.2    Lahtela-Kakkonen, M.3
  • 104
    • 71849111550 scopus 로고    scopus 로고
    • Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity
    • Chakrabarty SP, Ramapanicker R, Mishra R, Chandrasekaran S, Balaram H. Development and characterization of lysine based tripeptide analogues as inhibitors of Sir2 activity. Bioorg. Med. Chem. 17(23), 8060-8072 (2009).
    • (2009) Bioorg. Med. Chem. , vol.17 , Issue.23 , pp. 8060-8072
    • Chakrabarty, S.P.1    Ramapanicker, R.2    Mishra, R.3    Chandrasekaran, S.4    Balaram, H.5
  • 105
    • 79960916458 scopus 로고    scopus 로고
    • A mechanism-based potent sirtuin inhibitor containing Nepsilon-thiocarbamoyl-lysine (TuAcK)
    • Hirsch BM, Hao Y, Li X, Wesdemiotis C, Wang Z, Zheng W. A mechanism-based potent sirtuin inhibitor containing Nepsilon-thiocarbamoyl-lysine (TuAcK). Bioorg. Med. Chem. Lett. 21(16), 4753-4757 (2011).
    • (2011) Bioorg. Med. Chem. Lett. , vol.21 , Issue.16 , pp. 4753-4757
    • Hirsch, B.M.1    Hao, Y.2    Li, X.3    Wesdemiotis, C.4    Wang, Z.5    Zheng, W.6
  • 106
    • 73249132347 scopus 로고    scopus 로고
    • Substrate specificity of SIRT1-catalyzed lysine Nepsilon-deacetylation reaction probed with the side chain modified Nepsilonacetyl-lysine analogs
    • Jamonnak N, Hirsch BM, Pang Y, Zheng W. Substrate specificity of SIRT1-catalyzed lysine Nepsilon-deacetylation reaction probed with the side chain modified Nepsilonacetyl-lysine analogs. Bioorg. Chem. 38(1), 17-25 (2010).
    • (2010) Bioorg. Chem. , vol.38 , Issue.1 , pp. 17-25
    • Jamonnak, N.1    Hirsch, B.M.2    Pang, Y.3    Zheng, W.4
  • 107
    • 69949102163 scopus 로고    scopus 로고
    • Identification of a cell-active non-peptide sirtuin inhibitor containing N-thioacetyl lysine
    • Suzuki T, Asaba T, Imai E, Tsumoto H, Nakagawa H, Miyata N. Identification of a cell-active non-peptide sirtuin inhibitor containing N-thioacetyl lysine. Bioorg. Med. Chem. Lett. 19(19), 5670-5672 (2009).
    • (2009) Bioorg. Med. Chem. Lett. , vol.19 , Issue.19 , pp. 5670-5672
    • Suzuki, T.1    Asaba, T.2    Imai, E.3    Tsumoto, H.4    Nakagawa, H.5    Miyata, N.6
  • 108
    • 80053899130 scopus 로고    scopus 로고
    • Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2
    • Huhtiniemi T, Salo HS, Suuronen T et al. Structure-based design of pseudopeptidic inhibitors for SIRT1 and SIRT2. J. Med. Chem. 54(19), 6456-6468 (2011).
    • (2011) J. Med. Chem. , vol.54 , Issue.19 , pp. 6456-6468
    • Huhtiniemi, T.1    Salo, H.S.2    Suuronen, T.3
  • 109
    • 84884225041 scopus 로고    scopus 로고
    • Screen of pseudopeptidic inhibitors of human sirtuins 1-3: Two lead compounds with antiproliferative effects in cancer cells
    • Mellini P, Kokkola T, Suuronen T et al. Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells. J. Med. Chem. 56(17), 6681-6695 (2013).
    • (2013) J. Med. Chem. , vol.56 , Issue.17 , pp. 6681-6695
    • Mellini, P.1    Kokkola, T.2    Suuronen, T.3
  • 110
    • 84859239807 scopus 로고    scopus 로고
    • Discovery of macrocyclic peptides armed with a mechanism-based warhead: Isoformselective inhibition of human deacetylase SIRT2
    • Morimoto J, Hayashi Y, Suga H. Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoformselective inhibition of human deacetylase SIRT2. Angew. Chem. Int. Ed. Engl. 51(14), 3423-3427 (2012).
    • (2012) Angew. Chem. Int. Ed. Engl. , vol.51 , Issue.14 , pp. 3423-3427
    • Morimoto, J.1    Hayashi, Y.2    Suga, H.3
  • 111
    • 0035914304 scopus 로고    scopus 로고
    • Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
    • Grozinger CM, Chao ED, Blackwell HE, Moazed D, Schreiber SL. Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening. J. Biol. Chem. 276(42), 38837-38843 (2001).
    • (2001) J. Biol. Chem. , vol.276 , Issue.42 , pp. 38837-38843
    • Grozinger, C.M.1    Chao, E.D.2    Blackwell, H.E.3    Moazed, D.4    Schreiber, S.L.5
  • 112
    • 30544445468 scopus 로고    scopus 로고
    • Sirt1 inhibitor, Sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells
    • DOI 10.1038/sj.onc.1209049, PII 1209049
    • Ota H, Tokunaga E, Chang K et al. Sirt1 inhibitor, sirtinol, induces senescence-like growth arrest with attenuated Ras-MAPK signaling in human cancer cells. Oncogene 25(2), 176-185 (2006). (Pubitemid 43083679)
    • (2006) Oncogene , vol.25 , Issue.2 , pp. 176-185
    • Ota, H.1    Tokunaga, E.2    Chang, K.3    Hikasa, M.4    Iijima, K.5    Eto, M.6    Kozaki, K.7    Akishita, M.8    Ouchi, Y.9    Kaneki, M.10
  • 113
    • 77950835404 scopus 로고    scopus 로고
    • SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2
    • Peck B, Chen CY, Ho KK et al. SIRT inhibitors induce cell death and p53 acetylation through targeting both SIRT1 and SIRT2. Mol. Cancer Ther. 9(4), 844-855 (2010).
    • (2010) Mol. Cancer Ther. , vol.9 , Issue.4 , pp. 844-855
    • Peck, B.1    Chen, C.Y.2    Ho, K.K.3
  • 114
    • 47249154705 scopus 로고    scopus 로고
    • A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells
    • Kojima K, Ohhashi R, Fujita Y et al. A role for SIRT1 in cell growth and chemoresistance in prostate cancer PC3 and DU145 cells. Biochem. Biophys. Res. Commun. 373(3), 423-428 (2008).
    • (2008) Biochem. Biophys. Res. Commun. , vol.373 , Issue.3 , pp. 423-428
    • Kojima, K.1    Ohhashi, R.2    Fujita, Y.3
  • 115
    • 79952398625 scopus 로고    scopus 로고
    • The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells
    • Jin KL, Park JY, Noh EJ et al. The effect of combined treatment with cisplatin and histone deacetylase inhibitors on HeLa cells. J. Gynecol. Oncol. 21(4), 262-268 (2010).
    • (2010) J. Gynecol. Oncol. , vol.21 , Issue.4 , pp. 262-268
    • Jin, K.L.1    Park, J.Y.2    Noh, E.J.3
  • 116
    • 77957684701 scopus 로고    scopus 로고
    • Sachchidanand. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells
    • Kalle AM, Mallika A, Badiger J, Alinakhi, Talukdar P, Sachchidanand. Inhibition of SIRT1 by a small molecule induces apoptosis in breast cancer cells. Biochem. Biophys. Res. Commun. 401(1), 13-19 (2010).
    • (2010) Biochem. Biophys. Res. Commun. , vol.401 , Issue.1 , pp. 13-19
    • Kalle, A.M.1    Mallika, A.2    Badiger, J.3    Alinakhi Talukdar, P.4
  • 117
    • 60149091562 scopus 로고    scopus 로고
    • Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect
    • Lara E, Mai A, Calvanese V et al. Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect. Oncogene 28(6), 781-791 (2009).
    • (2009) Oncogene , vol.28 , Issue.6 , pp. 781-791
    • Lara, E.1    Mai, A.2    Calvanese, V.3
  • 118
    • 84871662210 scopus 로고    scopus 로고
    • Discovery of salermide-related sirtuin inhibitors: Binding mode studies and antiproliferative effects in cancer cells including cancer stem cells
    • Rotili D, Tarantino D, Nebbioso A et al. Discovery of salermide-related sirtuin inhibitors: binding mode studies and antiproliferative effects in cancer cells including cancer stem cells. J. Med. Chem. 55(24), 10937-10947 (2012).
    • (2012) J. Med. Chem. , vol.55 , Issue.24 , pp. 10937-10947
    • Rotili, D.1    Tarantino, D.2    Nebbioso, A.3
  • 119
    • 77249153712 scopus 로고    scopus 로고
    • Characterization of sirtuin inhibitors in nematodes expressing a muscular dystrophy protein reveals muscle cell and behavioral protection by specific sirtinol analogues
    • Pasco MY, Rotili D, Altucci L et al. Characterization of sirtuin inhibitors in nematodes expressing a muscular dystrophy protein reveals muscle cell and behavioral protection by specific sirtinol analogues. J. Med. Chem. 53(3), 1407-1411 (2010).
    • (2010) J. Med. Chem. , vol.53 , Issue.3 , pp. 1407-1411
    • Pasco, M.Y.1    Rotili, D.2    Altucci, L.3
  • 120
    • 65649111534 scopus 로고    scopus 로고
    • Novel cambinol analogs as sirtuin inhibitors: Synthesis, biological evaluation, and rationalization of activity
    • Medda F, Russell RJ, Higgins M et al. Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity. J. Med. Chem. 52(9), 2673-2682 (2009).
    • (2009) J. Med. Chem. , vol.52 , Issue.9 , pp. 2673-2682
    • Medda, F.1    Russell, R.J.2    Higgins, M.3
  • 121
    • 57549089690 scopus 로고    scopus 로고
    • Thiobarbiturates as sirtuin inhibitors: Virtual screening, freeenergy calculations, and biological testing
    • Uciechowska U, Schemies J, Neugebauer RC et al. Thiobarbiturates as sirtuin inhibitors: virtual screening, freeenergy calculations, and biological testing. Chem Med Chem 3(12), 1965-1976 (2008).
    • (2008) Chem Med Chem , vol.3 , Issue.12 , pp. 1965-1976
    • Uciechowska, U.1    Schemies, J.2    Neugebauer, R.C.3
  • 123
    • 20144372893 scopus 로고    scopus 로고
    • SIRT1 regulates HIV transcription via Tat deacetylation
    • Pagans S, Pedal A, North BJ et al. SIRT1 regulates HIV transcription via Tat deacetylation. PLoS Biol. 3(2), e41 (2005).
    • (2005) PLoS Biol. , vol.3 , Issue.2
    • Pagans, S.1    Pedal, A.2    North, B.J.3
  • 125
    • 84866849116 scopus 로고    scopus 로고
    • Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells
    • Rotili D, Tarantino D, Carafa V et al. Benzodeazaoxaflavins as sirtuin inhibitors with antiproliferative properties in cancer stem cells. J. Med. Chem. 55(18), 8193-8197 (2012).
    • (2012) J. Med. Chem. , vol.55 , Issue.18 , pp. 8193-8197
    • Rotili, D.1    Tarantino, D.2    Carafa, V.3
  • 126
    • 77951697156 scopus 로고    scopus 로고
    • Identification of tri-and tetracyclic pyrimidinediones as sirtuin inhibitors
    • Rotili D, Tarantino D, Carafa V et al. Identification of tri-and tetracyclic pyrimidinediones as sirtuin inhibitors. ChemMedChem 5(5), 674-677 (2010).
    • (2010) Chem Med Chem , vol.5 , Issue.5 , pp. 674-677
    • Rotili, D.1    Tarantino, D.2    Carafa, V.3
  • 128
    • 33645221885 scopus 로고    scopus 로고
    • Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage
    • Solomon JM, Pasupuleti R, Xu L et al. Inhibition of SIRT1 catalytic activity increases p53 acetylation but does not alter cell survival following DNA damage. Mol. Cell. Biol. 26(1), 28-38 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , Issue.1 , pp. 28-38
    • Solomon, J.M.1    Pasupuleti, R.2    Xu, L.3
  • 130
    • 84859381463 scopus 로고    scopus 로고
    • A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53
    • Zhang Q, Zeng SX, Zhang Y et al. A small molecule Inauhzin inhibits SIRT1 activity and suppresses tumour growth through activation of p53. EMBO Mol. Med. 4(4), 298-312 (2012).
    • (2012) EMBO Mol. Med. , vol.4 , Issue.4 , pp. 298-312
    • Zhang, Q.1    Zeng, S.X.2    Zhang, Y.3
  • 133
    • 77249130268 scopus 로고    scopus 로고
    • Novel 3-arylideneindolin-2-ones as inhibitors of NAD+-dependent histone deacetylases (sirtuins)
    • Huber K, Schemies J, Uciechowska U et al. Novel 3-arylideneindolin-2-ones as inhibitors of NAD+-dependent histone deacetylases (sirtuins). J. Med. Chem. 53(3), 1383-1386 (2010).
    • (2010) J. Med. Chem. , vol.53 , Issue.3 , pp. 1383-1386
    • Huber, K.1    Schemies, J.2    Uciechowska, U.3
  • 134
    • 84871017552 scopus 로고    scopus 로고
    • Inhibition of the human deacylase sirtuin 5 by the indole GW5074
    • Suenkel B, Fischer F, Steegborn C. Inhibition of the human deacylase sirtuin 5 by the indole GW5074. Bioorg. Med. Chem. Lett. 23(1), 143-146 (2013).
    • (2013) Bioorg. Med. Chem. Lett. , vol.23 , Issue.1 , pp. 143-146
    • Suenkel, B.1    Fischer, F.2    Steegborn, C.3
  • 135
    • 79960821550 scopus 로고    scopus 로고
    • Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells
    • Cea M, Soncini D, Fruscione F et al. Synergistic interactions between HDAC and sirtuin inhibitors in human leukemia cells. PLoS ONE 6(7), e22739 (2011).
    • (2011) PLoS ONE , vol.6 , Issue.7
    • Cea, M.1    Soncini, D.2    Fruscione, F.3
  • 137
    • 35548936745 scopus 로고    scopus 로고
    • Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins)
    • Trapp J, Meier R, Hongwiset D, Kassack MU, Sippl W, Jung M. Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins). Chem Med Chem 2(10), 1419-1431 (2007).
    • (2007) Chem Med Chem , vol.2 , Issue.10 , pp. 1419-1431
    • Trapp, J.1    Meier, R.2    Hongwiset, D.3    Kassack, M.U.4    Sippl, W.5    Jung, M.6
  • 139
    • 84857355902 scopus 로고    scopus 로고
    • Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins
    • McCarthy AR, Pirrie L, Hollick JJ et al. Synthesis and biological characterisation of sirtuin inhibitors based on the tenovins. Bioorg. Med. Chem. 20(5), 1779-1793 (2012).
    • (2012) Bioorg. Med. Chem. , vol.20 , Issue.5 , pp. 1779-1793
    • McCarthy, A.R.1    Pirrie, L.2    Hollick, J.J.3
  • 142
    • 84866426262 scopus 로고    scopus 로고
    • Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: Their evaluation as inhibitors of SIRT1
    • Manjulatha K, Srinivas S, Mulakayala N et al. Ethylenediamine diacetate (EDDA) mediated synthesis of aurones under ultrasound: their evaluation as inhibitors of SIRT1. Bioorg. Med. Chem. Lett. 22(19), 6160-6165 (2012).
    • (2012) Bioorg. Med. Chem. Lett. , vol.22 , Issue.19 , pp. 6160-6165
    • Manjulatha, K.1    Srinivas, S.2    Mulakayala, N.3
  • 143
    • 34548570794 scopus 로고    scopus 로고
    • Linking SIRT2 to Parkinson's disease
    • DOI 10.1021/cb700160d
    • Garske AL, Smith BC, Denu JM. Linking SIRT2 to Parkinson's disease. ACS Chem. Biol. 2(8), 529-532 (2007). (Pubitemid 350011322)
    • (2007) ACS Chemical Biology , vol.2 , Issue.8 , pp. 529-532
    • Garske, A.L.1    Smith, B.C.2    Denu, J.M.3
  • 144
    • 68049096181 scopus 로고    scopus 로고
    • Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula
    • Gutierrez M, Andrianasolo EH, Shin WK et al. Structural and synthetic investigations of tanikolide dimer, a SIRT2 selective inhibitor, and tanikolide seco-acid from the Madagascar marine cyanobacterium Lyngbya majuscula. J. Org. Chem. 74(15), 5267-5275 (2009).
    • (2009) J. Org. Chem. , vol.74 , Issue.15 , pp. 5267-5275
    • Gutierrez, M.1    Andrianasolo, E.H.2    Shin, W.K.3
  • 145
    • 84866897522 scopus 로고    scopus 로고
    • Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors
    • Friden-Saxin M, Seifert T, Landergren MR et al. Synthesis and evaluation of substituted chroman-4-one and chromone derivatives as sirtuin 2-selective inhibitors. J. Med. Chem. 55(16), 7104-7113 (2012).
    • (2012) J. Med. Chem. , vol.55 , Issue.16 , pp. 7104-7113
    • Friden-Saxin, M.1    Seifert, T.2    Landergren, M.R.3
  • 146
    • 84877714749 scopus 로고    scopus 로고
    • Discovery of Thieno[3, 2-d]pyrimidine-6-carboxamides as Potent Inhibitors of SIRT1, SIRT2, and SIRT3
    • Disch JS, Evindar G, Chiu CH et al. Discovery of Thieno[3, 2-d]pyrimidine-6-carboxamides as Potent Inhibitors of SIRT1, SIRT2, and SIRT3. J. Med. Chem. 56(9), 3666-3679 (2013).
    • (2013) J. Med. Chem. , vol.56 , Issue.9 , pp. 3666-3679
    • Disch, J.S.1    Evindar, G.2    Chiu, C.H.3
  • 147
    • 33846676987 scopus 로고    scopus 로고
    • Chemical Genetics: Where Genetics and Pharmacology Meet
    • DOI 10.1016/j.cell.2007.01.021, PII S0092867407001195
    • Knight ZA, Shokat KM. Chemical genetics: where genetics and pharmacology meet. Cell 128(3), 425-430 (2007). (Pubitemid 46198904)
    • (2007) Cell , vol.128 , Issue.3 , pp. 425-430
    • Knight, Z.A.1    Shokat, K.M.2
  • 148
    • 33846122993 scopus 로고    scopus 로고
    • Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug
    • DOI 10.1038/nbt1272, PII NBT1272
    • Marks PA, Breslow R. Dimethyl sulfoxide to vorinostat: development of this histone deacetylase inhibitor as an anticancer drug. Nat. Biotech. 25(1), 84-90 (2007). (Pubitemid 46087907)
    • (2007) Nature Biotechnology , vol.25 , Issue.1 , pp. 84-90
    • Marks, P.A.1    Breslow, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.