메뉴 건너뛰기




Volumn 5, Issue , 2014, Pages 347-366

Biocatalysts for natural product biosynthesis

Author keywords

Domain swapping; Protein engineering; Total in vitro biosynthesis

Indexed keywords

BIOACTIVITY; BIOCHEMICAL ENGINEERING; BIOSYNTHESIS; GENES; KETONES; BIOCATALYSTS; BIOCHEMISTRY; METABOLISM; SYNTHESIS (CHEMICAL);

EID: 84902529309     PISSN: 19475438     EISSN: None     Source Type: Journal    
DOI: 10.1146/annurev-chembioeng-060713-040008     Document Type: Review
Times cited : (44)

References (117)
  • 1
    • 44249098800 scopus 로고    scopus 로고
    • Natural products to drugs: Natural product-derived compounds in clinical trials
    • Butler MS. 2008. Natural products to drugs: natural product-derived compounds in clinical trials. Nat. Prod. Rep. 25:475-516
    • (2008) Nat. Prod. Rep. , vol.25 , pp. 475-516
    • Butler, M.S.1
  • 2
    • 69249202590 scopus 로고    scopus 로고
    • The biosynthetic logic of polyketide diversity
    • Hertweck C. 2009. The biosynthetic logic of polyketide diversity. Angew. Chem. Int. Ed. 48:4688-716
    • (2009) Angew. Chem. Int. Ed. , vol.48 , pp. 4688-4716
    • Hertweck, C.1
  • 3
    • 67650436176 scopus 로고    scopus 로고
    • Drug discovery and natural products: End of an era or an endless frontier
    • Li JWH, Vederas JC. 2009. Drug discovery and natural products: End of an era or an endless frontier Science 325:161-65
    • (2009) Science , vol.325 , pp. 161-165
    • Li, J.W.H.1    Vederas, J.C.2
  • 4
    • 84858308226 scopus 로고    scopus 로고
    • Natural products as sources of new drugs over the 30 years from 1981 to 2010
    • Newman DJ, Cragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75:311-35
    • (2012) J. Nat. Prod. , vol.75 , pp. 311-335
    • Newman, D.J.1    Cragg, G.M.2
  • 5
    • 0037436563 scopus 로고    scopus 로고
    • Dispelling the myths: Biocatalysis in industrial synthesis
    • Schoemaker HE,MinkD, WubboltsMG.2003. Dispelling the myths: biocatalysis in industrial synthesis. Science 299:1694-97
    • (2003) Science , vol.299 , pp. 1694-1697
    • Schoemaker, H.E.1    Mink, D.2    Wubbolts, M.G.3
  • 6
    • 84876710917 scopus 로고    scopus 로고
    • On the development of new biocatalytic processes for practical pharmaceutical synthesis
    • Huisman GW, Collier SJ. 2013. On the development of new biocatalytic processes for practical pharmaceutical synthesis. Curr. Opin. Chem. Biol. 17:284-92
    • (2013) Curr. Opin. Chem. Biol. , vol.17 , pp. 284-292
    • Huisman, G.W.1    Collier, S.J.2
  • 8
    • 77954797329 scopus 로고    scopus 로고
    • Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture
    • Savile CK, Janey JM, Mundorff EC,Moore JC, Tam S, et al. 2010. Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305-9
    • (2010) Science , vol.329 , pp. 305-309
    • Savile, C.K.1    Janey, J.M.2    Mundorff, E.C.3    Moore, J.C.4    Tam, S.5
  • 9
    • 84857633496 scopus 로고    scopus 로고
    • Protein engineering towards natural product synthesis and diversification
    • Zabala AO, Cacho RA, Tang Y. 2012. Protein engineering towards natural product synthesis and diversification. J. Ind. Microbiol. Biotechnol. 39:227-41
    • (2012) J. Ind. Microbiol. Biotechnol. , vol.39 , pp. 227-241
    • Zabala, A.O.1    Cacho, R.A.2    Tang, Y.3
  • 10
    • 84891396350 scopus 로고    scopus 로고
    • Engineering the acyltransferase substrate specificity of assembly line polyketide synthases
    • DunnBJ,KhoslaC. 2013. Engineering the acyltransferase substrate specificity of assembly line polyketide synthases. J. R. Soc. Interface 10:20130297
    • (2013) J. R. Soc. Interface , vol.10 , pp. 20130297
    • Dunn, B.J.1    Khosla, C.2
  • 11
    • 33744512606 scopus 로고    scopus 로고
    • Directed evolution of enzymes and biosynthetic pathways
    • Johannes TW, Zhao HM. 2006. Directed evolution of enzymes and biosynthetic pathways. Curr. Opin. Microbiol. 9:261-67
    • (2006) Curr. Opin. Microbiol. , vol.9 , pp. 261-267
    • Johannes, T.W.1    Zhao, H.M.2
  • 12
    • 78649323531 scopus 로고    scopus 로고
    • Engineered polyketide biosynthesis and biocatalysis in Escherichia coli
    • Gao X, Wang P, Tang Y. 2010. Engineered polyketide biosynthesis and biocatalysis in Escherichia coli. Appl. Microbiol. Biotechnol. 88:1233-42
    • (2010) Appl. Microbiol. Biotechnol. , vol.88 , pp. 1233-1242
    • Gao, X.1    Wang, P.2    Tang, Y.3
  • 13
    • 34848843433 scopus 로고    scopus 로고
    • The type i fatty acid and polyketide synthases: A tale of two megasynthases
    • Smith S, Tsai SC. 2007. The type I fatty acid and polyketide synthases: a tale of two megasynthases. Nat. Prod. Rep. 24:1041-72
    • (2007) Nat. Prod. Rep. , vol.24 , pp. 1041-1072
    • Smith, S.1    Tsai, S.C.2
  • 14
    • 64049116611 scopus 로고    scopus 로고
    • Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways
    • Cronan JE, Thomas J. 2009. Bacterial fatty acid synthesis and its relationships with polyketide synthetic pathways. Method Enzymol. 459:395-433
    • (2009) Method Enzymol. , vol.459 , pp. 395-433
    • Cronan, J.E.1    Thomas, J.2
  • 15
    • 59349116977 scopus 로고    scopus 로고
    • Heterologous expression systems for polyketide synthases
    • Fujii I. 2009. Heterologous expression systems for polyketide synthases. Nat. Prod. Rep. 26:155-69
    • (2009) Nat. Prod. Rep. , vol.26 , pp. 155-169
    • Fujii, I.1
  • 16
    • 64049111007 scopus 로고    scopus 로고
    • Introduction to polyketide biosynthesis
    • Weissman KJ. 2009. Introduction to polyketide biosynthesis. Method Enzymol. 459:3-16
    • (2009) Method Enzymol. , vol.459 , pp. 3-16
    • Weissman, K.J.1
  • 17
    • 33748631825 scopus 로고    scopus 로고
    • Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: Logic, machinery, and mechanisms
    • Fischbach MA, Walsh CT. 2006. Assembly-line enzymology for polyketide and nonribosomal peptide antibiotics: logic, machinery, and mechanisms. Chem. Rev. 106:3468-96
    • (2006) Chem. Rev. , vol.106 , pp. 3468-3496
    • Fischbach, M.A.1    Walsh, C.T.2
  • 18
    • 0034957814 scopus 로고    scopus 로고
    • Type i polyketide biosynthesis in bacteria (part B)
    • Rawlings BJ. 2001. Type I polyketide biosynthesis in bacteria (part B). Nat. Prod. Rep. 18:231-81
    • (2001) Nat. Prod. Rep. , vol.18 , pp. 231-281
    • Rawlings, B.J.1
  • 19
    • 70350493673 scopus 로고    scopus 로고
    • Complete reconstitution of a highly reducing iterative polyketide synthase
    • Ma SM, Li JWH, Choi JW, Zhou H, Lee KKM, et al. 2009. Complete reconstitution of a highly reducing iterative polyketide synthase. Science 326:589-92
    • (2009) Science , vol.326 , pp. 589-592
    • Ma, S.M.1    Li, J.W.H.2    Choi, J.W.3    Zhou, H.4    Lee, K.K.M.5
  • 21
    • 78449290452 scopus 로고    scopus 로고
    • New insights into the formation of fungal aromatic polyketides
    • Crawford JM, Townsend CA. 2010. New insights into the formation of fungal aromatic polyketides. Nat. Rev. Microbiol. 8:879-89
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 879-889
    • Crawford, J.M.1    Townsend, C.A.2
  • 22
    • 77954652490 scopus 로고    scopus 로고
    • Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes
    • Campbell CD, Vederas JC. 2010. Biosynthesis of lovastatin and related metabolites formed by fungal iterative PKS enzymes. Biopolymers 93:755-63
    • (2010) Biopolymers , vol.93 , pp. 755-763
    • Campbell, C.D.1    Vederas, J.C.2
  • 23
    • 84869169169 scopus 로고    scopus 로고
    • Navigating the fungal polyketide chemical space: From genes to molecules
    • Chooi YH, Tang Y. 2012. Navigating the fungal polyketide chemical space: from genes to molecules. J. Org. Chem. 77:9933-53
    • (2012) J. Org. Chem. , vol.77 , pp. 9933-9953
    • Chooi, Y.H.1    Tang, Y.2
  • 24
    • 33846923183 scopus 로고    scopus 로고
    • Type II polyketide synthases: Gaining a deeper insight into enzymatic teamwork
    • Hertweck C, Luzhetskyy A, Rebets Y, Bechthold A. 2007. Type II polyketide synthases: gaining a deeper insight into enzymatic teamwork. Nat. Prod. Rep. 24:162-90
    • (2007) Nat. Prod. Rep. , vol.24 , pp. 162-190
    • Hertweck, C.1    Luzhetskyy, A.2    Rebets, Y.3    Bechthold, A.4
  • 25
    • 84859083398 scopus 로고    scopus 로고
    • Type III polyketide synthases in natural product biosynthesis
    • Yu DY, Xu FC, Zeng J, Zhan JX. 2012. Type III polyketide synthases in natural product biosynthesis. IUBMB Life 64:285-95
    • (2012) IUBMB Life , vol.64 , pp. 285-295
    • Yu, D.Y.1    Xu, F.C.2    Zeng, J.3    Zhan, J.X.4
  • 26
    • 79851505835 scopus 로고    scopus 로고
    • Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues
    • Mo S, KimDH, Lee JH, Park JW, BasnetDB, et al. 2011. Biosynthesis of the allylmalonyl-CoA extender unit for the FK506 polyketide synthase proceeds through a dedicated polyketide synthase and facilitates the mutasynthesis of analogues. J. Am. Chem. Soc. 133:976-85
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 976-985
    • Mo, S.1    Kim, D.H.2    Lee, J.H.3    Park, J.W.4    Basnet, D.B.5
  • 27
    • 20044397059 scopus 로고    scopus 로고
    • Structure-Activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor
    • Macherla VR,Mitchell SS, Manam RR, Reed KA, Chao T-H, et al. 2005. Structure-Activity relationship studies of salinosporamide A (NPI-0052), a novel marine derived proteasome inhibitor. J. Med. Chem. 48:3684-87
    • (2005) J. Med. Chem. , vol.48 , pp. 3684-3687
    • MacHerla, V.R.1    Mitchell, S.S.2    Manam, R.R.3    Reed, K.A.4    Chao, T.-H.5
  • 28
    • 0032532250 scopus 로고    scopus 로고
    • A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii
    • An JH, Kim YS. 1998. A gene cluster encoding malonyl-CoA decarboxylase (MatA), malonyl-CoA synthetase (MatB) and a putative dicarboxylate carrier protein (MatC) in Rhizobium trifolii. Eur. J. Biochem. 257:395-402
    • (1998) Eur. J. Biochem. , vol.257 , pp. 395-402
    • An, J.H.1    Kim, Y.S.2
  • 29
    • 0034801511 scopus 로고    scopus 로고
    • Remarkably broad substrate tolerance of malonyl-CoA synthetase, an enzyme capable of intracellular synthesis of polyketide precursors
    • Pohl NL, Hans M, Lee HY, Kim YS, Cane DE, Khosla C. 2001. Remarkably broad substrate tolerance of malonyl-CoA synthetase, an enzyme capable of intracellular synthesis of polyketide precursors. J. Am. Chem. Soc. 123:5822-23
    • (2001) J. Am. Chem. Soc. , vol.123 , pp. 5822-5823
    • Pohl, N.L.1    Hans, M.2    Lee, H.Y.3    Kim, Y.S.4    Cane, D.E.5    Khosla, C.6
  • 30
    • 79951841094 scopus 로고    scopus 로고
    • Enzymatic extender unit generation for in vitro polyketide synthase reactions: Structural and functional showcasing of Streptomyces coelicolor
    • Hughes AJ, Keatinge-Clay A. 2011. Enzymatic extender unit generation for in vitro polyketide synthase reactions: structural and functional showcasing of Streptomyces coelicolor Mat B. Chem. Biol. 18:165-76
    • (2011) Mat B. Chem. Biol. , vol.18 , pp. 165-176
    • Hughes, A.J.1    Keatinge-Clay, A.2
  • 31
    • 84883484875 scopus 로고    scopus 로고
    • Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways
    • Walker MC, Thuronyi BW, Charkoudian LK, Lowry B, Khosla C, Chang MC. 2013. Expanding the fluorine chemistry of living systems using engineered polyketide synthase pathways. Science 341:1089-94
    • (2013) Science , vol.341 , pp. 1089-1094
    • Walker, M.C.1    Thuronyi, B.W.2    Charkoudian, L.K.3    Lowry, B.4    Khosla, C.5    Chang, M.C.6
  • 32
    • 80053608537 scopus 로고    scopus 로고
    • Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation
    • Koryakina I, Williams GJ. 2011. Mutant malonyl-CoA synthetases with altered specificity for polyketide synthase extender unit generation. Chem Bio Chem 12:2289-93
    • (2011) Chem Bio Chem , vol.12 , pp. 2289-2293
    • Koryakina, I.1    Williams, G.J.2
  • 33
    • 0033079834 scopus 로고    scopus 로고
    • Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase
    • Gokhale RS, Hunziker D, Cane DE, Khosla C. 1999. Mechanism and specificity of the terminal thioesterase domain from the erythromycin polyketide synthase. Chem. Biol. 6:117-25
    • (1999) Chem. Biol. , vol.6 , pp. 117-125
    • Gokhale, R.S.1    Hunziker, D.2    Cane, D.E.3    Khosla, C.4
  • 34
    • 84872518753 scopus 로고    scopus 로고
    • Poly specific transacyltransferase machinery revealed via engineered Acyl-CoA synthetases
    • Koryakina I, McArthur J, Randall S, Draelos MM, Musiol EM, et al. 2012. Poly specific transacyltransferase machinery revealed via engineered Acyl-CoA synthetases. ACS Chem. Biol. 8:200-8
    • (2012) ACS Chem. Biol. , vol.8 , pp. 200-208
    • Koryakina, I.1    McArthur, J.2    Randall, S.3    Draelos, M.M.4    Musiol, E.M.5
  • 35
    • 83455210375 scopus 로고    scopus 로고
    • Beyond ethylmalonyl-CoA: The functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity
    • Wilson MC,Moore BS. 2012. Beyond ethylmalonyl-CoA: the functional role of crotonyl-CoA carboxylase/reductase homologs in expanding polyketide diversity. Nat. Prod. Rep. 29:72-86
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 72-86
    • Wilson, M.C.1    Moore, B.S.2
  • 36
    • 34547542453 scopus 로고    scopus 로고
    • Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: The ethylmalonyl-CoA pathway
    • Erb TJ, Berg IA, Brecht V,M̈ ullerM, Fuchs G, Alber BE. 2007. Synthesis of C5-dicarboxylic acids from C2-units involving crotonyl-CoA carboxylase/reductase: the ethylmalonyl-CoA pathway. Proc. Natl. Acad. Sci. USA 104:10631-36
    • (2007) Proc. Natl. Acad. Sci. USA , vol.104 , pp. 10631-10636
    • Erb, T.J.1    Berg, I.A.2    Brecht, V.3    M̈uller, M.4    Fuchs, G.5    Alber, B.E.6
  • 37
    • 67049132524 scopus 로고    scopus 로고
    • Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase
    • Erb TJ, Brecht V, Fuchs G, M̈ uller M, Alber BE. 2009. Carboxylation mechanism and stereochemistry of crotonyl-CoA carboxylase/reductase, a carboxylating enoyl-thioester reductase. Proc. Natl. Acad. Sci. USA 106:8871-76
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 8871-8876
    • Erb, T.J.1    Brecht, V.2    Fuchs, G.3    M̈uller, M.4    Alber, B.E.5
  • 38
    • 79953692091 scopus 로고    scopus 로고
    • Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors
    • Rachid S, Huo L,Herrmann J, Stadler M, K̈ opcke B, et al. 2011. Mining the cinnabaramide biosynthetic pathway to generate novel proteasome inhibitors. Chem Bio Chem 12:922-31
    • (2011) Chem Bio Chem , vol.12 , pp. 922-931
    • Rachid, S.1    Huo Lherrmann, J.2    Stadler, M.3    K̈opcke, B.4
  • 39
    • 83655163980 scopus 로고    scopus 로고
    • Unusual carbon fixation gives rise to diverse polyketide extender units
    • Quade N, Huo LJ, Rachid S, Heinz DW, M̈ uller R. 2012. Unusual carbon fixation gives rise to diverse polyketide extender units. Nat. Chem. Biol. 8:117-24
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 117-124
    • Quade, N.1    Huo, L.J.2    Rachid, S.3    Heinz, D.W.4    M̈uller, R.5
  • 40
    • 84879996598 scopus 로고    scopus 로고
    • Promiscuity of a modular polyketide synthase towards natural and non-natural extender units
    • Koryakina I, McArthur JB, Draelos MM, Williams GJ. 2013. Promiscuity of a modular polyketide synthase towards natural and non-natural extender units. Org. Biomol. Chem. 11:4449-58
    • (2013) Org. Biomol. Chem. , vol.11 , pp. 4449-4458
    • Koryakina, I.1    McArthur, J.B.2    Draelos, M.M.3    Williams, G.J.4
  • 41
    • 0032501971 scopus 로고    scopus 로고
    • Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases
    • Quadri LEN, Weinreb PH, Lei M, Nakano MM, Zuber P, Walsh CT. 1998. Characterization of Sfp, a Bacillus subtilis phosphopantetheinyl transferase for peptidyl carrier protein domains in peptide synthetases. Biochemistry 37:1585-95
    • (1998) Biochemistry , vol.37 , pp. 1585-1595
    • Quadri, L.E.N.1    Weinreb, P.H.2    Lei, M.3    Nakano, M.M.4    Zuber, P.5    Walsh, C.T.6
  • 42
    • 84878653692 scopus 로고    scopus 로고
    • Broad substrate specificity of the loading didomain of the lipomycin polyketide synthase
    • Yuzawa S, Eng CH, Katz L, Keasling JD. 2013. Broad substrate specificity of the loading didomain of the lipomycin polyketide synthase. Biochemistry 52:3791-93
    • (2013) Biochemistry , vol.52 , pp. 3791-3793
    • Yuzawa, S.1    Eng, C.H.2    Katz, L.3    Keasling, J.D.4
  • 43
    • 0036007875 scopus 로고    scopus 로고
    • Biosynthesis and attachment of novel bacterial polyketide synthase starter units
    • Moore BS, Hertweck C. 2002. Biosynthesis and attachment of novel bacterial polyketide synthase starter units. Nat. Prod. Rep. 19:70-99
    • (2002) Nat. Prod. Rep. , vol.19 , pp. 70-99
    • Moore, B.S.1    Hertweck, C.2
  • 44
    • 34248586053 scopus 로고    scopus 로고
    • Molecular analysis of the benastatin biosynthetic pathway and genetic engineering of altered fatty acid-polyketide hybrids
    • Xu Z, Schenk A, Hertweck C. 2007. Molecular analysis of the benastatin biosynthetic pathway and genetic engineering of altered fatty acid-polyketide hybrids. J. Am. Chem. Soc. 129:6022-30
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 6022-6030
    • Xu, Z.1    Schenk, A.2    Hertweck, C.3
  • 45
    • 61649116145 scopus 로고    scopus 로고
    • Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives
    • Xu Z, Mets̈a-Ketel̈aM,Hertweck C. 2009. Ketosynthase III as a gateway to engineering the biosynthesis of antitumoral benastatin derivatives. J. Biotechnol. 140:107-13
    • (2009) J. Biotechnol. , vol.140 , pp. 107-113
    • Xu, Z.1    Mets̈a-Ketel̈a, M.2    Hertweck, C.3
  • 46
    • 0036848668 scopus 로고    scopus 로고
    • Crystal structure of the priming β-ketosynthase from the R1128 polyketide biosynthetic pathway
    • Pan H, Tsai SC, Meadows ES, Miercke LJW, Keatinge-Clay AT, et al. 2002. Crystal structure of the priming β-ketosynthase from the R1128 polyketide biosynthetic pathway. Structure 10:1559-68
    • (2002) Structure , vol.10 , pp. 1559-1568
    • Pan, H.1    Tsai, S.C.2    Meadows, E.S.3    Miercke, L.J.W.4    Keatinge-Clay, A.T.5
  • 49
    • 72249105298 scopus 로고    scopus 로고
    • Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575
    • Pickens LB, KimW,Wang P, ZhouH,WatanabeK, et al. 2009. Biochemical analysis of the biosynthetic pathway of an anticancer tetracycline SF2575. J. Am. Chem. Soc. 131:17677-89
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 17677-17689
    • Pickens, L.B.1    Kim, W.2    Wang, P.3    Zhou, H.4    Watanabe, K.5
  • 50
    • 84871757755 scopus 로고    scopus 로고
    • The status of type i polyketide synthase ketoreductases
    • Zheng JT, Keatinge-Clay AT. 2013. The status of type I polyketide synthase ketoreductases. Med. Chem. Commun. 4:34-40
    • (2013) Med. Chem. Commun. , vol.4 , pp. 34-40
    • Zheng, J.T.1    Keatinge-Clay, A.T.2
  • 51
    • 39749093400 scopus 로고    scopus 로고
    • Synthesis of chiral pharmaceutical intermediates by biocatalysis
    • Patel RN. 2008. Synthesis of chiral pharmaceutical intermediates by biocatalysis. Coord. Chem. Rev. 252:659-701
    • (2008) Coord. Chem. Rev. , vol.252 , pp. 659-701
    • Patel, R.N.1
  • 52
    • 33646115667 scopus 로고    scopus 로고
    • High-throughput mutagenesis to evaluatemodels of stereochemical control in ketoreductase domains from the erythromycin polyketide synthase
    • O'Hare HM, Baerga-Ortiz A, Popovic B, Spencer JB, Leadlay PF. 2006. High-throughput mutagenesis to evaluatemodels of stereochemical control in ketoreductase domains from the erythromycin polyketide synthase. Chem. Biol. 13:287-96
    • (2006) Chem. Biol. , vol.13 , pp. 287-296
    • O'Hare, H.M.1    Baerga-Ortiz, A.2    Popovic, B.3    Spencer, J.B.4    Leadlay, P.F.5
  • 53
    • 36048958284 scopus 로고    scopus 로고
    • Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase
    • Castonguay R, He W, Chen AY, Khosla C, Cane DE. 2007. Stereospecificity of ketoreductase domains of the 6-deoxyerythronolide B synthase. J. Am. Chem. Soc. 129:13758-69
    • (2007) J. Am. Chem. Soc. , vol.129 , pp. 13758-13769
    • Castonguay, R.1    He, W.2    Chen, A.Y.3    Khosla, C.4    Cane, D.E.5
  • 54
    • 34547945950 scopus 로고    scopus 로고
    • A tylosin ketoreductase reveals how chirality is determined in polyketides
    • Keatinge-Clay AT. 2007. A tylosin ketoreductase reveals how chirality is determined in polyketides. Chem. Biol. 14:898-908
    • (2007) Chem. Biol. , vol.14 , pp. 898-908
    • Keatinge-Clay, A.T.1
  • 55
    • 77955477986 scopus 로고    scopus 로고
    • Structural and functional analysis of A-type ketoreductases from the amphotericin modular polyketide synthase
    • Zheng J, Taylor CA, Piasecki SK, Keatinge-Clay AT. 2010. Structural and functional analysis of A-type ketoreductases from the amphotericin modular polyketide synthase. Structure 18:913-22
    • (2010) Structure , vol.18 , pp. 913-922
    • Zheng, J.1    Taylor, C.A.2    Piasecki, S.K.3    Keatinge-Clay, A.T.4
  • 56
    • 33644905256 scopus 로고    scopus 로고
    • Broad substrate specificity of ketoreductases derived from modular polyketide synthases
    • Bali S, O'Hare HM, Weissman KJ. 2006. Broad substrate specificity of ketoreductases derived from modular polyketide synthases. Chem Bio Chem 7:478-84
    • (2006) Chem Bio Chem , vol.7 , pp. 478-484
    • Bali, S.1    O'Hare, H.M.2    Weissman, K.J.3
  • 57
    • 80055086082 scopus 로고    scopus 로고
    • Employingmodular polyketide synthase ketoreductases as biocatalysts in the preparative chemoenzymatic syntheses of diketide chiral building blocks
    • Piasecki SK, Taylor CA, Detelich JF, Liu J, Zheng J, et al. 2011. Employingmodular polyketide synthase ketoreductases as biocatalysts in the preparative chemoenzymatic syntheses of diketide chiral building blocks. Chem. Biol. 18:1331-40
    • (2011) Chem. Biol. , vol.18 , pp. 1331-1340
    • Piasecki, S.K.1    Taylor, C.A.2    Detelich, J.F.3    Liu, J.4    Zheng, J.5
  • 59
    • 56049125010 scopus 로고    scopus 로고
    • A polylinker approach to reductive loop swaps in modular polyketide synthases
    • Kellenberger L, Galloway IS, Sauter G, B̈ohm G, Hanefeld U, et al. 2008. A polylinker approach to reductive loop swaps in modular polyketide synthases. Chem Bio Chem 9:2740-49
    • (2008) Chem Bio Chem , vol.9 , pp. 2740-2749
    • Kellenberger, L.1    Galloway, I.S.2    Sauter, G.3    B̈ohm, G.4    Hanefeld, U.5
  • 60
    • 77954203515 scopus 로고    scopus 로고
    • Insights into bacterial 6-methylsalicylic acid synthase and its engineering to orsellinic acid synthase for spirotetronate generation
    • Ding W, Lei C, He QL, Zhang QL, Bi YR, Liu W. 2010. Insights into bacterial 6-methylsalicylic acid synthase and its engineering to orsellinic acid synthase for spirotetronate generation. Chem. Biol. 17:495-503
    • (2010) Chem. Biol. , vol.17 , pp. 495-503
    • Ding, W.1    Lei, C.2    He, Q.L.3    Zhang, Q.L.4    Bi, Y.R.5    Liu, W.6
  • 61
    • 77950127253 scopus 로고    scopus 로고
    • Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis
    • Olano C, Ḿendez C, Salas JA. 2010. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat. Prod. Rep. 27:571-616
    • (2010) Nat. Prod. Rep. , vol.27 , pp. 571-616
    • Olano, C.1    Ḿendez, C.2    Salas, J.A.3
  • 62
    • 0030875774 scopus 로고    scopus 로고
    • Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase
    • Jacobsen JR, Hutchinson CR, Cane DE, Khosla C. 1997. Precursor-directed biosynthesis of erythromycin analogs by an engineered polyketide synthase. Science 277:367-69
    • (1997) Science , vol.277 , pp. 367-369
    • Jacobsen, J.R.1    Hutchinson, C.R.2    Cane, D.E.3    Khosla, C.4
  • 63
    • 84870925950 scopus 로고    scopus 로고
    • Flavoenzymes: Versatile catalysts in biosynthetic pathways
    • Walsh CT, Wencewicz TA. 2013. Flavoenzymes: versatile catalysts in biosynthetic pathways. Nat. Prod. Rep. 30:175-200
    • (2013) Nat. Prod. Rep. , vol.30 , pp. 175-200
    • Walsh, C.T.1    Wencewicz, T.A.2
  • 64
    • 84868318849 scopus 로고    scopus 로고
    • Diversity of P450 enzymes in the biosynthesis of natural products
    • Podust LM, Sherman DH. 2012. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 29:1251-66
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 1251-1266
    • Podust, L.M.1    Sherman, D.H.2
  • 65
    • 84855990581 scopus 로고    scopus 로고
    • Angucyclines: Biosyn thesis, mode-of-Action, new natural products, and synthesis
    • Kharel MK, Pahari P, Shepherd MD, Tibrewal N, Nybo SE, et al. 2012. Angucyclines: biosynthesis, mode-of-Action, new natural products, and synthesis. Nat. Prod. Rep. 29:264-325
    • (2012) Nat. Prod. Rep. , vol.29 , pp. 264-325
    • Kharel, M.K.1    Pahari, P.2    Shepherd, M.D.3    Tibrewal, N.4    Nybo, S.E.5
  • 66
    • 33751092257 scopus 로고    scopus 로고
    • Biosynthesis of lovastatin analogs with a broadly specific acyltransferase
    • Xie X, Watanabe K,WojcickiWA, Wang CC, Tang Y. 2006. Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem. Biol. 13:1161-69
    • (2006) Chem. Biol. , vol.13 , pp. 1161-1169
    • Xie, X.1    Watanabe, K.2    Wojcicki, W.A.3    Wang, C.C.4    Tang, Y.5
  • 67
    • 34247474300 scopus 로고    scopus 로고
    • Efficient synthesis of simvastatin by use of whole-cell biocatalysis
    • Xie XK, Tang Y. 2007. Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl. Environ. Microbiol. 73:2054-60
    • (2007) Appl. Environ. Microbiol. , vol.73 , pp. 2054-2060
    • Xie, X.K.1    Tang, Y.2
  • 68
    • 71149114259 scopus 로고    scopus 로고
    • Directed evolution and structural characterization of a simvastatin synthase
    • Gao X, Xie X, Pashkov I, Sawaya MR, Laidman J, et al. 2009. Directed evolution and structural characterization of a simvastatin synthase. Chem. Biol. 16:1064-74
    • (2009) Chem. Biol. , vol.16 , pp. 1064-1074
    • Gao, X.1    Xie, X.2    Pashkov, I.3    Sawaya, M.R.4    Laidman, J.5
  • 69
    • 0030716357 scopus 로고    scopus 로고
    • Analysis of a commercially improved Penicillium chrysogenum strain series: Involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster
    • Newbert RW, Barton B, Greaves P, Harper J, Turner G. 1997. Analysis of a commercially improved Penicillium chrysogenum strain series: involvement of recombinogenic regions in amplification and deletion of the penicillin biosynthesis gene cluster. J. Ind. Microbiol. Biotechnol. 19:18-27
    • (1997) J. Ind. Microbiol. Biotechnol. , vol.19 , pp. 18-27
    • Newbert, R.W.1    Barton, B.2    Greaves, P.3    Harper, J.4    Turner, G.5
  • 72
    • 84868332788 scopus 로고    scopus 로고
    • Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillinNacyltransferase
    • Weber SS, Polli F, Boer R, Bovenberg RAL, Driessen AJM. 2012. Increased penicillin production in Penicillium chrysogenum production strains via balanced overexpression of isopenicillinNacyltransferase. Appl. Environ. Microbiol. 78:7107-13
    • (2012) Appl. Environ. Microbiol. , vol.78 , pp. 7107-7113
    • Weber, S.S.1    Polli, F.2    Boer, R.3    Bovenberg, R.A.L.4    Driessen, A.J.M.5
  • 73
    • 33646086963 scopus 로고    scopus 로고
    • Profiling a taxol pathway 10β-Acetyltransferase: Assessment of the specificity and the production of baccatin III by in vivo acetylation
    • Loncaric C, Merriweather E,Walker KD. 2006. Profiling a taxol pathway 10β-Acetyltransferase: assessment of the specificity and the production of baccatin III by in vivo acetylation. E. coli. Chem. Biol. 13:309-17
    • (2006) E. Coli. Chem. Biol. , vol.13 , pp. 309-317
    • Loncaric, C.1    Merriweather, E.2    Walker, K.D.3
  • 74
    • 58049202807 scopus 로고    scopus 로고
    • The taxol pathway 10-O-Acetyltransferase shows regioselective promiscuity with the oxetane hydroxyl of 4-deacetyltaxanes
    • Ondari ME,Walker KD. 2008. The taxol pathway 10-O-Acetyltransferase shows regioselective promiscuity with the oxetane hydroxyl of 4-deacetyltaxanes. J. Am. Chem. Soc. 130:17187-94
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 17187-17194
    • Ondari, M.E.1    Walker, K.D.2
  • 75
    • 79951815138 scopus 로고    scopus 로고
    • The chromomycin CmmA acetyltransferase: A membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin
    • Garća B, Gonźalez-Sab́n J, Meńendez N, Brãna AF, Nu ̃ nez LE, et al. 2011. The chromomycin CmmA acetyltransferase: a membrane-bound enzyme as a tool for increasing structural diversity of the antitumour mithramycin. Microbiol. Biotechnol. 4:226-38
    • (2011) Microbiol. Biotechnol. , vol.4 , pp. 226-238
    • Garća, B.1    Gonźalez-Sab́n, J.2    Meńendez, N.3    Brãna, A.F.4    Nũnez, L.E.5
  • 76
    • 3843111327 scopus 로고    scopus 로고
    • Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A3 by Streptomyces griseus ssp. Griseus
    • Meńendez N, Nur-e-Alam M, Bra ̃ na AF, Rohr J, Salas JA, Ḿendez C. 2004. Tailoring modification of deoxysugars during biosynthesis of the antitumour drug chromomycin A3 by Streptomyces griseus ssp. griseus. Mol. Microbiol. 53:903-15
    • (2004) Mol. Microbiol. , vol.53 , pp. 903-915
    • Meńendez, N.1    Nur-E-Alam, M.2    Brãna, A.F.3    Rohr, J.4    Salas, J.A.5    Ḿendez, C.6
  • 77
    • 0035501490 scopus 로고    scopus 로고
    • Altering the glycosylation pattern of bioactive compounds
    • Ḿendez C, Salas JA. 2001. Altering the glycosylation pattern of bioactive compounds. Trends Biotechnol. 19:449-56
    • (2001) Trends Biotechnol. , vol.19 , pp. 449-456
    • Ḿendez, C.1    Salas, J.A.2
  • 78
    • 0031127564 scopus 로고    scopus 로고
    • The role of carbohydrates in biologically active natural products
    • Weymouth-Wilson AC. 1997. The role of carbohydrates in biologically active natural products. Nat. Prod. Rep. 14:99-110
    • (1997) Nat. Prod. Rep. , vol.14 , pp. 99-110
    • Weymouth-Wilson, A.C.1
  • 80
    • 57549105096 scopus 로고    scopus 로고
    • Natural-product sugar biosynthesis and enzymatic glycodiversification
    • Thibodeaux CJ, Melançon CE, Liu H-W. 2008. Natural-product sugar biosynthesis and enzymatic glycodiversification. Angew. Chem. Int. Ed. 47:9814-59
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 9814-9859
    • Thibodeaux, C.J.1    Melançon, C.E.2    Liu, H.-W.3
  • 81
    • 34548685673 scopus 로고    scopus 로고
    • Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution
    • Williams GJ, Zhang C, Thorson JS. 2007. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution. Nat. Chem. Biol. 3:657-62
    • (2007) Nat. Chem. Biol. , vol.3 , pp. 657-662
    • Williams, G.J.1    Zhang, C.2    Thorson, J.S.3
  • 82
    • 40649092405 scopus 로고    scopus 로고
    • A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution
    • Williams GJ, Thorson JS. 2008. A high-throughput fluorescence-based glycosyltransferase screen and its application in directed evolution. Nat. Protoc. 3:357-62
    • (2008) Nat. Protoc. , vol.3 , pp. 357-362
    • Williams, G.J.1    Thorson, J.S.2
  • 83
    • 41949101106 scopus 로고    scopus 로고
    • Optimizing glycosyltransferase specificity via hot spot saturation mutagenesis presents a catalyst for novobiocin glycorandomization
    • Williams GJ, Goff RD, Zhang CS, Thorson JS. 2008. Optimizing glycosyltransferase specificity via "hot spot" saturation mutagenesis presents a catalyst for novobiocin glycorandomization. Chem. Biol. 15:393-401
    • (2008) Chem. Biol. , vol.15 , pp. 393-401
    • Williams, G.J.1    Goff, R.D.2    Zhang, C.S.3    Thorson, J.S.4
  • 84
    • 67349254960 scopus 로고    scopus 로고
    • Reconstitution of antibiotics glycosylation by domain exchanged chimeric glycosyltransferase
    • Park S-H, Park H-Y, Cho B-K, Yang Y-H, Sohng JK, et al. 2009. Reconstitution of antibiotics glycosylation by domain exchanged chimeric glycosyltransferase. J. Mol. Catal. B 60:29-35
    • (2009) J. Mol. Catal. B , vol.60 , pp. 29-35
    • Park, S.-H.1    Park, H.-Y.2    Cho, B.-K.3    Yang, Y.-H.4    Sohng, J.K.5
  • 86
    • 47049087906 scopus 로고    scopus 로고
    • A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: Domain swapping to introduce new activities
    • Cartwright AM, Lim E-K, Kleanthous C, Bowles DJ. 2008. A kinetic analysis of regiospecific glucosylation by two glycosyltransferases of Arabidopsis thaliana: domain swapping to introduce new activities. J. Biol. Chem. 283:15724-31
    • (2008) J. Biol. Chem. , vol.283 , pp. 15724-15731
    • Cartwright, A.M.1    Lim, E.-K.2    Kleanthous, C.3    Bowles, D.J.4
  • 88
    • 0037417869 scopus 로고    scopus 로고
    • Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases
    • Hu Y, Chen L, Ha S, Gross B, Falcone B, et al. 2003. Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. Proc. Natl. Acad. Sci. USA 100:845-49
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 845-849
    • Hu, Y.1    Chen, L.2    Ha, S.3    Gross, B.4    Falcone, B.5
  • 90
    • 33748302743 scopus 로고    scopus 로고
    • Exploiting the reversibility of natural product glycosyltransferase- catalyzed reactions
    • Zhang CS, Griffith BR, Fu Q, Albermann C, Fu X, et al. 2006. Exploiting the reversibility of natural product glycosyltransferase-catalyzed reactions. Science 313:1291-94
    • (2006) Science , vol.313 , pp. 1291-1294
    • Zhang, C.S.1    Griffith, B.R.2    Fu, Q.3    Albermann, C.4    Fu, X.5
  • 91
    • 80052968314 scopus 로고    scopus 로고
    • Using simple donors to drive the equilibria of glycosyltransferase- catalyzed reactions
    • GanttRW, Peltier-Pain P, Cournoyer WJ, Thorson JS. 2011. Using simple donors to drive the equilibria of glycosyltransferase-catalyzed reactions. Nat. Chem. Biol. 7:685-91
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 685-691
    • Gantt, R.W.1    Peltier-Pain, P.2    Cournoyer, W.J.3    Thorson, J.S.4
  • 92
    • 79251501973 scopus 로고    scopus 로고
    • Recombinant E. Coli prototype strains for in vivo glycorandomization
    • Williams GJ, Yang J, Zhang C, Thorson JS. 2010. Recombinant E. coli prototype strains for in vivo glycorandomization. ACS Chem. Biol. 6:95-100
    • (2010) ACS Chem. Biol. , vol.6 , pp. 95-100
    • Williams, G.J.1    Yang, J.2    Zhang, C.3    Thorson, J.S.4
  • 94
    • 84867364541 scopus 로고    scopus 로고
    • Natural product disaccharide engineering through tandem glycosyltransferase catalysis reversibility and neoglycosylation
    • Peltier-Pain P, Marchillo K, Zhou MQ, Andes DR, Thorson JS. 2012. Natural product disaccharide engineering through tandem glycosyltransferase catalysis reversibility and neoglycosylation. Org. Lett. 14:5086-89
    • (2012) Org. Lett. , vol.14 , pp. 5086-5089
    • Peltier-Pain, P.1    Marchillo, K.2    Zhou, M.Q.3    Andes, D.R.4    Thorson, J.S.5
  • 96
    • 84883122189 scopus 로고    scopus 로고
    • Characterizing amosamine biosynthesis in amicetin reveals AmiG as a reversible retaining glycosyltransferase
    • Chen R, Zhang H, Zhang G, Li S, Zhang G, et al. 2013. Characterizing amosamine biosynthesis in amicetin reveals AmiG as a reversible retaining glycosyltransferase. J. Am. Chem. Soc. 135:12152-55
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 12152-12155
    • Chen, R.1    Zhang, H.2    Zhang, G.3    Li, S.4    Zhang, G.5
  • 99
    • 33745963527 scopus 로고    scopus 로고
    • Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH
    • Yeh E, Cole LJ, Barr EW, Bollinger JM, Ballou DP, Walsh CT. 2006. Flavin redox chemistry precedes substrate chlorination during the reaction of the flavin-dependent halogenase RebH. Biochemistry 45:7904-12
    • (2006) Biochemistry , vol.45 , pp. 7904-7912
    • Yeh, E.1    Cole, L.J.2    Barr, E.W.3    Bollinger, J.M.4    Ballou, D.P.5    Walsh, C.T.6
  • 100
    • 82555168471 scopus 로고    scopus 로고
    • Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor
    • Glenn WS, Nims E, O'Connor SE. 2011. Reengineering a tryptophan halogenase to preferentially chlorinate a direct alkaloid precursor. J. Am. Chem. Soc. 133:19346-49
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 19346-19349
    • Glenn, W.S.1    Nims, E.2    O'Connor, S.E.3
  • 101
    • 84877258549 scopus 로고    scopus 로고
    • Regioselective arene halogenation using the FAD-dependent halogenase RebH
    • Payne JT, Andorfer MC, Lewis JC. 2013. Regioselective arene halogenation using the FAD-dependent halogenase RebH. Angew. Chem. Int. Ed. 52:5271-74
    • (2013) Angew. Chem. Int. Ed. , vol.52 , pp. 5271-5274
    • Payne, J.T.1    Andorfer, M.C.2    Lewis, J.C.3
  • 102
    • 78651445383 scopus 로고    scopus 로고
    • A novel fungal flavin-dependent halogenase for natural product biosynthesis
    • Zeng J, Zhan J. 2010. A novel fungal flavin-dependent halogenase for natural product biosynthesis. Chem Bio Chem 11:2119-23
    • (2010) Chem Bio Chem , vol.11 , pp. 2119-2123
    • Zeng, J.1    Zhan, J.2
  • 103
    • 84880606744 scopus 로고    scopus 로고
    • Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens
    • Zhu T, Cheng X, Liu Y,Deng Z, You D. 2013. Deciphering and engineering of the final step halogenase for improved chlortetracycline biosynthesis in industrial Streptomyces aureofaciens. Metab. Eng. 19:69-78
    • (2013) Metab. Eng. , vol.19 , pp. 69-78
    • Zhu, T.1    Cheng, X.2    Liu Ydeng, Z.3    You, D.4
  • 104
    • 1142310932 scopus 로고    scopus 로고
    • Crystal structure and mechanism of a bacterial fluorinating enzyme
    • Dong CJ, Huang FL, Deng H, Schaffrath C, Spencer JB, et al. 2004. Crystal structure and mechanism of a bacterial fluorinating enzyme. Nature 427:561-65
    • (2004) Nature , vol.427 , pp. 561-565
    • Dong, C.J.1    Huang, F.L.2    Deng, H.3    Schaffrath, C.4    Spencer, J.B.5
  • 105
    • 39149099787 scopus 로고    scopus 로고
    • Halogenation strategies in natural product biosynthesis
    • Neumann CS, Fujimori DG, Walsh CT. 2008. Halogenation strategies in natural product biosynthesis. Chem. Biol. 15:99-109
    • (2008) Chem. Biol. , vol.15 , pp. 99-109
    • Neumann, C.S.1    Fujimori, D.G.2    Walsh, C.T.3
  • 106
    • 37249024344 scopus 로고    scopus 로고
    • Discovery and characterization of a marine bacterial SAM-dependent chlorinase
    • Eustaquio AS, Pojer F, Noe JP, Moore BS. 2008. Discovery and characterization of a marine bacterial SAM-dependent chlorinase. Nat. Chem. Biol. 4:69-74
    • (2008) Nat. Chem. Biol. , vol.4 , pp. 69-74
    • Eustaquio, A.S.1    Pojer, F.2    Noe, J.P.3    Moore, B.S.4
  • 107
    • 45749125659 scopus 로고    scopus 로고
    • Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome
    • EustaquioAS, MooreBS. 2008. Mutasynthesis of fluorosalinosporamide, a potent and reversible inhibitor of the proteasome. Angew. Chem. Int. Ed. 47:3936-38
    • (2008) Angew. Chem. Int. Ed. , vol.47 , pp. 3936-3938
    • Eustaquio, A.S.1    Moore, B.S.2
  • 108
    • 79955963713 scopus 로고    scopus 로고
    • Natural products via enzymatic reactions
    • Piel J. 2010. Natural products via enzymatic reactions. Preface. Top. Curr. Chem. 297:ix-x
    • (2010) Preface. Top. Curr. Chem. , vol.297 , pp. 9-10
    • Piel, J.1
  • 109
    • 48249137414 scopus 로고    scopus 로고
    • Total biosyn thesis: In vitro reconstitution of polyketide and nonribosomal peptide pathways
    • Sattely ES, Fischbach MA, Walsh CT. 2008. Total biosynthesis: in vitro reconstitution of polyketide and nonribosomal peptide pathways. Nat. Prod. Rep. 25:757-93
    • (2008) Nat. Prod. Rep. , vol.25 , pp. 757-793
    • Sattely, E.S.1    Fischbach, M.A.2    Walsh, C.T.3
  • 110
    • 8144227951 scopus 로고    scopus 로고
    • EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions
    • Xiang L, Kalaitzis JA, Moore BS. 2004. EncM, a versatile enterocin biosynthetic enzyme involved in Favorskii oxidative rearrangement, aldol condensation, and heterocycle-forming reactions. Proc. Natl. Acad. Sci. USA 101:15609-14
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 15609-15614
    • Xiang, L.1    Kalaitzis, J.A.2    Moore, B.S.3
  • 113
    • 84856179567 scopus 로고    scopus 로고
    • Enzymatic total synthesis of defucogilvocarcin M and its implications for gilvocarcin biosynthesis
    • Pahari P, Kharel MK, Shepherd MD, van Lanen SG, Rohr J. 2012. Enzymatic total synthesis of defucogilvocarcin M and its implications for gilvocarcin biosynthesis. Angew. Chem. Int. Ed. 51:1216-20
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 1216-1220
    • Pahari, P.1    Kharel, M.K.2    Shepherd, M.D.3    Van Lanen, S.G.4    Rohr, J.5
  • 114
    • 84881058964 scopus 로고    scopus 로고
    • Biocatalytic synthesis of pikromycin, methymycin, neomethymycin, novamethymycin, and ketomethymycin
    • Hansen DA, Rath CM, Eisman EB, Narayan AR, Kittendorf JD, et al. 2013. Biocatalytic synthesis of pikromycin, methymycin, neomethymycin, novamethymycin, and ketomethymycin. J. Am. Chem. Soc. 135:11232-38
    • (2013) J. Am. Chem. Soc. , vol.135 , pp. 11232-11238
    • Hansen, D.A.1    Rath, C.M.2    Eisman, E.B.3    Narayan, A.R.4    Kittendorf, J.D.5
  • 115
    • 70350639418 scopus 로고    scopus 로고
    • Synthesis and biochemical analysis of complex chainelongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases
    • Mortison JD, Kittendorf JD, Sherman DH. 2009. Synthesis and biochemical analysis of complex chainelongation intermediates for interrogation of molecular specificity in the erythromycin and pikromycin polyketide synthases. J. Am. Chem. Soc. 131:15784-93
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 15784-15793
    • Mortison, J.D.1    Kittendorf, J.D.2    Sherman, D.H.3
  • 116
    • 79953727021 scopus 로고    scopus 로고
    • Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics
    • Zhang W, Ntai I, Bolla ML, Malcolmson SJ, Kahne D, et al. 2011. Nine enzymes are required for assembly of the pacidamycin group of peptidyl nucleoside antibiotics. J. Am. Chem. Soc. 133:5240-43
    • (2011) J. Am. Chem. Soc. , vol.133 , pp. 5240-5243
    • Zhang, W.1    Ntai, I.2    Bolla, M.L.3    Malcolmson, S.J.4    Kahne, D.5
  • 117
    • 84886495241 scopus 로고    scopus 로고
    • Complexity generation in fungal polyketide biosyn thesis: A spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin
    • Cacho RA, Chooi YH, ZhouH, Tang Y. 2013. Complexity generation in fungal polyketide biosynthesis: a spirocycle-forming P450 in the concise pathway to the antifungal drug griseofulvin. ACS Chem. Biol. 8:2322-30
    • (2013) ACS Chem. Biol. , vol.8 , pp. 2322-2330
    • Cacho, R.A.1    Chooi, Y.H.2    Zhou, H.3    Tang, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.