-
1
-
-
79956300649
-
Toll-like receptors and their crosstalk with other innate receptors in infection and immunity
-
Kawai T, Akira S. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34:637-50
-
(2011)
Immunity
, vol.34
, pp. 637-650
-
-
Kawai, T.1
Akira, S.2
-
3
-
-
18844457095
-
Mechanisms of type-I- and type-II-interferon-mediated signalling
-
Platanias LC. 2005. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5:375-86
-
(2005)
Nat. Rev. Immunol.
, vol.5
, pp. 375-386
-
-
Platanias, L.C.1
-
4
-
-
0035883151
-
NF-κB signaling pathways in mammalian and insect innate immunity
-
Silverman N, Maniatis T. 2001. NF-κB signaling pathways in mammalian and insect innate immunity. Genes Dev. 15:2321-42
-
(2001)
Genes Dev.
, vol.15
, pp. 2321-2342
-
-
Silverman, N.1
Maniatis, T.2
-
5
-
-
0038393016
-
IKK? and TBK1 are essential components of the IRF3 signaling pathway
-
Fitzgerald KA, McWhirter SM, Faia KL, Rowe DC, Latz E, et al. 2003. IKK? and TBK1 are essential components of the IRF3 signaling pathway. Nat. Immunol. 4:491-96
-
(2003)
Nat. Immunol.
, vol.4
, pp. 491-496
-
-
Fitzgerald, K.A.1
McWhirter, S.M.2
Faia, K.L.3
Rowe, D.C.4
Latz, E.5
-
6
-
-
0038363463
-
Triggering the interferon antiviral response through an IKK-related pathway
-
Sharma S, tenOever BR, Grandvaux N, Zhou G-P, Lin R, Hiscott J. 2003. Triggering the interferon antiviral response through an IKK-related pathway. Science 300:1148-51
-
(2003)
Science
, vol.300
, pp. 1148-1151
-
-
Sharma, S.1
Tenoever, B.R.2
Grandvaux, N.3
Zhou, G.-P.4
Lin, R.5
Hiscott, J.6
-
7
-
-
33748051738
-
IRFs: Master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors
-
Honda K, Taniguchi T. 2006. IRFs: master regulators of signalling by Toll-like receptors and cytosolic pattern-recognition receptors. Nat. Rev. Immunol. 6:644-58
-
(2006)
Nat. Rev. Immunol.
, vol.6
, pp. 644-658
-
-
Honda, K.1
Taniguchi, T.2
-
8
-
-
77951260924
-
The role of pattern-recognition receptors in innate immunity: Update on Tolllike receptors
-
Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate immunity: update on Tolllike receptors. Nat. Immunol. 11:373-84
-
(2010)
Nat. Immunol.
, vol.11
, pp. 373-384
-
-
Kawai, T.1
Akira, S.2
-
9
-
-
0035909372
-
Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3
-
Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. 2001. Recognition of double-stranded RNA and activation of NF-κB by Toll-like receptor 3. Nature 413:732-38
-
(2001)
Nature
, vol.413
, pp. 732-738
-
-
Alexopoulou, L.1
Holt, A.C.2
Medzhitov, R.3
Flavell, R.A.4
-
10
-
-
58149510024
-
A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity
-
Negishi H, Osawa T, Ogami K, Ouyang X, Sakagushi S, et al. 2008. A critical link between Toll-like receptor 3 and type II interferon signaling pathways in antiviral innate immunity. Proc. Natl. Acad. Sci. USA 105:20446-51
-
(2008)
Proc. Natl. Acad. Sci. USA
, vol.105
, pp. 20446-20451
-
-
Negishi, H.1
Osawa, T.2
Ogami, K.3
Ouyang, X.4
Sakagushi, S.5
-
11
-
-
32944464648
-
Pathogen recognition and innate immunity
-
Akira S, Uematsu S, Takeuchi O. 2006. Pathogen recognition and innate immunity. Cell 124:783-801
-
(2006)
Cell
, vol.124
, pp. 783-801
-
-
Akira, S.1
Uematsu, S.2
Takeuchi, O.3
-
12
-
-
1542317550
-
Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA
-
Diebold SS, Kaisho T, Hemmi H, Akira S, Reis e Sousa C. 2004. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science 303:1529-31
-
(2004)
Science
, vol.303
, pp. 1529-1531
-
-
Diebold, S.S.1
Kaisho, T.2
Hemmi, H.3
Akira, S.4
Reise Sousa, C.5
-
13
-
-
1542317578
-
Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8
-
Heil F, Hemmi H, Hochrein H, Ampenberger F, Kirschning C, et al. 2004. Species-specific recognition of single-stranded RNA via Toll-like receptor 7 and 8. Science 303:1526-29
-
(2004)
Science
, vol.303
, pp. 1526-1529
-
-
Heil, F.1
Hemmi, H.2
Hochrein, H.3
Ampenberger, F.4
Kirschning, C.5
-
14
-
-
0036008014
-
Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway
-
Hemmi H, Kaisho T, Takeuchi O, Sato S, Sanjo H, et al. 2002. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3:196-200
-
(2002)
Nat. Immunol.
, vol.3
, pp. 196-200
-
-
Hemmi, H.1
Kaisho, T.2
Takeuchi, O.3
Sato, S.4
Sanjo, H.5
-
15
-
-
0034619794
-
A Toll-like receptor recognizes bacterial DNA
-
Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, et al. 2000. A Toll-like receptor recognizes bacterial DNA. Nature 408:740-45
-
(2000)
Nature
, vol.408
, pp. 740-745
-
-
Hemmi, H.1
Takeuchi, O.2
Kawai, T.3
Kaisho, T.4
Sato, S.5
-
16
-
-
84877579519
-
Sequence specific detection of bacterial 23S ribosomal RNA by TLR13
-
Li X-D, Chen ZJ. 2012. Sequence specific detection of bacterial 23S ribosomal RNA by TLR13. eLife 1:300102
-
(2012)
ELife
, vol.1
, pp. 300102
-
-
Li, X.-D.1
Chen, Z.J.2
-
17
-
-
84865571191
-
Kr ?uger A, Ferstl R, Kaufmann A, Nees G, et al
-
Oldenburg M, Kr ?uger A, Ferstl R, Kaufmann A, Nees G, et al. 2012. TLR13 recognizes bacterial 23S rRNA devoid of erythromycin resistance-forming modification. Science 337:1111-15
-
2012. TLR13 Recognizes Bacterial 23S RRNA Devoid of Erythromycin Resistance-forming Modification. Science
, vol.337
, pp. 1111-1115
-
-
Oldenburg, M.1
-
19
-
-
0042307304
-
Viral infection switches nonplasmacytoid dendritic cells into high interferon producers
-
Diebold SS, Montoya M, Unger H, Alexopoulou L, Roy P, et al. 2003. Viral infection switches nonplasmacytoid dendritic cells into high interferon producers. Nature 424:324-28
-
(2003)
Nature
, vol.424
, pp. 324-328
-
-
Diebold, S.S.1
Montoya, M.2
Unger, H.3
Alexopoulou, L.4
Roy, P.5
-
20
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama M, KikuchiM, Natsukawa T, Shinobu N, Imaizumi T, et al. 2004. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5:730-37
-
(2004)
Nat. Immunol.
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
Kikuchi, M.2
Natsukawa, T.3
Shinobu, N.4
Imaizumi, T.5
-
21
-
-
23844438864
-
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
-
Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, et al. 2005. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J. Immunol. 175:2851-58
-
(2005)
J. Immunol.
, vol.175
, pp. 2851-2858
-
-
Yoneyama, M.1
Kikuchi, M.2
Matsumoto, K.3
Imaizumi, T.4
Miyagishi, M.5
-
22
-
-
84869845792
-
A structure-based model of RIG-I activation
-
Kolakofsky D, Kowalinski E, Cusack S. 2012. A structure-based model of RIG-I activation. RNA 18:2118-27
-
(2012)
RNA
, vol.18
, pp. 2118-2127
-
-
Kolakofsky, D.1
Kowalinski, E.2
Cusack, S.3
-
23
-
-
84875143223
-
DuplexRNAactivated ATPases (DRAs): Platforms forRNAsensing, signaling and processing
-
Luo D, Kohlway A, Pyle AM. 2013. DuplexRNAactivated ATPases (DRAs): platforms forRNAsensing, signaling and processing. RNA Biol. 10:111-20
-
(2013)
RNA Biol.
, vol.10
, pp. 111-120
-
-
Luo, D.1
Kohlway, A.2
Pyle, A.M.3
-
24
-
-
84862994793
-
Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response
-
Jiang X, Kinch LN, Brautigam CA, Chen X, Du F, et al. 2012. Ubiquitin-induced oligomerization of the RNA sensors RIG-I and MDA5 activates antiviral innate immune response. Immunity 36:959-73
-
(2012)
Immunity
, vol.36
, pp. 959-973
-
-
Jiang, X.1
Kinch, L.N.2
Brautigam, C.A.3
Chen, X.4
Du, F.5
-
25
-
-
75749089555
-
Recognition of viral nucleic acids in innate immunity
-
Yoneyama M, Fujita T. 2010. Recognition of viral nucleic acids in innate immunity. Rev. Med. Virol. 20:4-22
-
(2010)
Rev. Med. Virol.
, vol.20
, pp. 4-22
-
-
Yoneyama, M.1
Fujita, T.2
-
26
-
-
34248168157
-
Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses
-
Venkataraman T, Valdes M, Elsby R, Kakuta S, Caceres G, et al. 2007. Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J. Immunol. 178:6444-55
-
(2007)
J. Immunol.
, vol.178
, pp. 6444-6455
-
-
Venkataraman, T.1
Valdes, M.2
Elsby, R.3
Kakuta, S.4
Caceres, G.5
-
27
-
-
76549109497
-
LGP2 is a positive regulator of RIG-Iand MDA5-mediated antiviral responses
-
Satoh T, Kato H, Kumagai Y, Yoneyama M, Sato S, et al. 2010. LGP2 is a positive regulator of RIG-Iand MDA5-mediated antiviral responses. Proc. Natl. Acad. Sci. USA 107:1512-17
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 1512-1517
-
-
Satoh, T.1
Kato, H.2
Kumagai, Y.3
Yoneyama, M.4
Sato, S.5
-
28
-
-
33744791510
-
Essential role of MDA5 in type i IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus
-
Gitlin L, BarchetW, Gilfillan S, Cella M, Beutler B, et al. 2006. Essential role of MDA5 in type I IFN responses to polyriboinosinic: polyribocytidylic acid and encephalomyocarditis picornavirus. Proc. Natl. Acad. Sci. USA 103:8459-64
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 8459-8464
-
-
Gitlin, L.1
Barchet, W.2
Gilfillan, S.3
Cella, M.4
Beutler, B.5
-
29
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, et al. 2006. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-5
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
Takeuchi, O.2
Sato, S.3
Yoneyama, M.4
Yamamoto, M.5
-
30
-
-
37849045856
-
Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1
-
Fredericksen BL, Keller BC, Fornek J, KatzeMG, Gale M. 2008. Establishment and maintenance of the innate antiviral response to West Nile virus involves both RIG-I and MDA5 signaling through IPS-1. J. Virol. 82:609-16
-
(2008)
J. Virol.
, vol.82
, pp. 609-616
-
-
Fredericksen, B.L.1
Keller, B.C.2
Fornek, J.3
Katzemg Gale, M.4
-
31
-
-
37349052379
-
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity
-
Loo Y-M, Fornek J, CrochetN, Bajwa G, Perwitasari O, et al. 2008. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J. Virol. 82:335-45
-
(2008)
J. Virol.
, vol.82
, pp. 335-345
-
-
Loo, Y.-M.1
Fornek, J.2
Crochetn Bajwa, G.3
Perwitasari, O.4
-
32
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation- associated gene 5
-
Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, et al. 2008. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation- associated gene 5. J. Exp. Med. 205:1601-10
-
(2008)
J. Exp. Med.
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
Takeuchi, O.2
Mikamo-Satoh, E.3
Hirai, R.4
Kawai, T.5
-
33
-
-
33750976374
-
5-triphosphate RNA is the ligand for RIG-I
-
Hornung V, Ellegast J, Kim S, Brzozka K, Jung A, et al. 2006. 5-triphosphate RNA is the ligand for RIG-I. Science 314:994-97
-
(2006)
Science
, vol.314
, pp. 994-997
-
-
Hornung, V.1
Ellegast, J.2
Kim, S.3
Brzozka, K.4
Jung, A.5
-
34
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5-phosphates
-
Pichlmair A, Schulz O, Tan CP, Nslund TI, Liljestrm P, et al. 2006. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5-phosphates. Science 314:997-1001
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.P.3
Nslund, T.I.4
Liljestrm, P.5
-
35
-
-
68049089651
-
Recognition of 52 triphosphate byRIG-I helicase requires short blunt double-strandedRNAas contained in panhandle of negativestrand virus
-
Schlee M, Roth A, Hornung V, Hagmann CA,Wimmenauer V, et al. 2009. Recognition of 52 triphosphate byRIG-I helicase requires short blunt double-strandedRNAas contained in panhandle of negativestrand virus. Immunity 31:25-34
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
Roth, A.2
Hornung, V.3
Hagmann, C.A.4
Wimmenauer, V.5
-
36
-
-
67749133995
-
5-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A, Schwerd T, Hamm W, Hellmuth JC, Cui S, et al. 2009. 5-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc. Natl. Acad. Sci. USA 106:12067-72
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
Schwerd, T.2
Hamm, W.3
Hellmuth, J.C.4
Cui, S.5
-
37
-
-
34547960175
-
Small self-RNA generated by RNase L amplifies antiviral innate immunity
-
Malathi K, Dong B, Gale M, Silverman RH. 2007. Small self-RNA generated by RNase L amplifies antiviral innate immunity. Nature 448:816-19
-
(2007)
Nature
, vol.448
, pp. 816-819
-
-
Malathi, K.1
Dong, B.2
Gale, M.3
Silverman, R.H.4
-
38
-
-
78149324490
-
RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP
-
Malathi K, Saito T, Crochet N, Barton DJ, Gale M Jr, Silverman RH. 2010. RNase L releases a small RNA from HCV RNA that refolds into a potent PAMP. RNA 16:2108-19
-
(2010)
RNA
, vol.16
, pp. 2108-2119
-
-
Malathi, K.1
Saito, T.2
Crochet, N.3
Barton, D.J.4
Gale, Jr.M.5
Silverman, R.H.6
-
39
-
-
75749140581
-
RIG-I detects viral genomic RNA during negative-strand RNA virus infection
-
Rehwinkel J, Tan CP, Goubau D, Schulz O, Pichlmair A, et al. 2010. RIG-I detects viral genomic RNA during negative-strand RNA virus infection. Cell 140:397-408
-
(2010)
Cell
, vol.140
, pp. 397-408
-
-
Rehwinkel, J.1
Tan, C.P.2
Goubau, D.3
Schulz, O.4
Pichlmair, A.5
-
40
-
-
77957997708
-
Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing
-
Baum A, Sachidanandam R, Garc-Sastre A. 2010. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl. Acad. Sci. USA 107:16303-8
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 16303-16308
-
-
Baum, A.1
Sachidanandam, R.2
Garc-Sastre, A.3
-
41
-
-
84870476784
-
MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells
-
Feng Q, Hato SV, Langereis MA, Zoll J, Virgen-Slane R, et al. 2012. MDA5 detects the double-stranded RNA replicative form in picornavirus-infected cells. Cell Rep. 2:1187-96
-
(2012)
Cell Rep.
, vol.2
, pp. 1187-1196
-
-
Feng, Q.1
Hato, S.V.2
Langereis, M.A.3
Zoll, J.4
Virgen-Slane, R.5
-
42
-
-
70349728538
-
Activation of MDA5 requires higherorder RNA structures generated during virus infection
-
Pichlmair A, Schulz O, Tan C-P, Rehwinkel J, Kato H, et al. 2009. Activation of MDA5 requires higherorder RNA structures generated during virus infection. J. Virol. 83:10761-69
-
(2009)
J. Virol.
, vol.83
, pp. 10761-10769
-
-
Pichlmair, A.1
Schulz, O.2
Tan, C.-P.3
Rehwinkel, J.4
Kato, H.5
-
43
-
-
80054703126
-
Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA
-
Kowalinski E, Lunardi T, McCarthy AA, Louber J, Brunel J, et al. 2011. Structural basis for the activation of innate immune pattern-recognition receptor RIG-I by viral RNA. Cell 147:423-35
-
(2011)
Cell
, vol.147
, pp. 423-435
-
-
Kowalinski, E.1
Lunardi, T.2
McCarthy, A.A.3
Louber, J.4
Brunel, J.5
-
44
-
-
84862604699
-
Structural insights into RNA recognition and activation of RIGI- like receptors
-
Leung DW, Amarasinghe GK. 2012. Structural insights into RNA recognition and activation of RIGI- like receptors. Curr. Opin. Struct. Biol. 22:297-303
-
(2012)
Curr. Opin. Struct. Biol.
, vol.22
, pp. 297-303
-
-
Leung, D.W.1
Amarasinghe, G.K.2
-
45
-
-
81555204380
-
Structural basis of RNA recognition and activation by innate immune receptor RIG-I
-
Jiang F, Ramanathan A,MillerMT, Tang G-Q, Gale M, et al. 2011. Structural basis of RNA recognition and activation by innate immune receptor RIG-I. Nature 479:423-27
-
(2011)
Nature
, vol.479
, pp. 423-427
-
-
Jiang, F.1
Amillermt, R.2
Tang, G.-Q.3
Gale, M.4
-
46
-
-
80054685883
-
Structural insights into RNA recognition by RIG-I
-
Luo D, Ding SC, Vela A, Kohlway A, Lindenbach BD, Pyle AM. 2011. Structural insights into RNA recognition by RIG-I. Cell 147:409-22
-
(2011)
Cell
, vol.147
, pp. 409-422
-
-
Luo, D.1
Ding, S.C.2
Vela, A.3
Kohlway, A.4
Lindenbach, B.D.5
Pyle, A.M.6
-
47
-
-
80255141860
-
The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling
-
Civril F, Bennett M, MoldtM, Deimling T,Witte G, et al. 2011. The RIG-I ATPase domain structure reveals insights into ATP-dependent antiviral signalling. EMBO Rep. 12:1127-34
-
(2011)
EMBO Rep.
, vol.12
, pp. 1127-1134
-
-
Civril, F.1
Bennett, M.2
Moldt, M.3
Deimling, T.4
Witte, G.5
-
48
-
-
34247341367
-
TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity
-
Gack MU, Shin YC, Joo C-H, Urano T, Liang C, et al. 2007. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446:916-20
-
(2007)
Nature
, vol.446
, pp. 916-920
-
-
Gack, M.U.1
Shin, Y.C.2
Joo, C.-H.3
Urano, T.4
Liang, C.5
-
49
-
-
59449091450
-
Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-βinduction during the early phase of viral infection
-
Oshiumi H, Matsumoto M, Hatakeyama S, Seya T. 2009. Riplet/RNF135, a RING finger protein, ubiquitinates RIG-I to promote interferon-βinduction during the early phase of viral infection. J. Biol. Chem. 284:807-17
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 807-817
-
-
Oshiumi, H.1
Matsumoto, M.2
Hatakeyama, S.3
Seya, T.4
-
50
-
-
78650189572
-
The ubiquitin ligase riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection
-
Oshiumi H, Miyashita M, Inoue N, Okabe M, Matsumoto M, Seya T. 2010. The ubiquitin ligase riplet is essential for RIG-I-dependent innate immune responses to RNA virus infection. Cell Host Microbe 8:496-509
-
(2010)
Cell Host Microbe
, vol.8
, pp. 496-509
-
-
Oshiumi, H.1
Miyashita, M.2
Inoue, N.3
Okabe, M.4
Matsumoto, M.5
Seya, T.6
-
51
-
-
77951708374
-
Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity
-
Zeng W, Sun L, Jiang X, Chen X, Hou F, et al. 2010. Reconstitution of the RIG-I pathway reveals a signaling role of unanchored polyubiquitin chains in innate immunity. Cell 141:315-30
-
(2010)
Cell
, vol.141
, pp. 315-330
-
-
Zeng, W.1
Sun, L.2
Jiang, X.3
Chen, X.4
Hou, F.5
-
52
-
-
84862909216
-
Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition
-
Peisley A, Lin C, Wu B, Orme-Johnson M, Liu M, et al. 2011. Cooperative assembly and dynamic disassembly of MDA5 filaments for viral dsRNA recognition. Proc. Natl. Acad. Sci. USA 108:21010-15
-
(2011)
Proc. Natl. Acad. Sci. USA
, vol.108
, pp. 21010-21015
-
-
Peisley, A.1
Lin, C.2
Wu, B.3
Orme-Johnson, M.4
Liu, M.5
-
54
-
-
84859427527
-
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA
-
Berke IC, Modis Y. 2012. MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J. 31:1714-26
-
(2012)
EMBO J.
, vol.31
, pp. 1714-1726
-
-
Berke, I.C.1
Modis, Y.2
-
55
-
-
84872604349
-
Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5
-
Wu B, Peisley A, Richards C, Yao H, Zeng X, et al. 2013. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 152:276-89
-
(2013)
Cell
, vol.152
, pp. 276-289
-
-
Wu, B.1
Peisley, A.2
Richards, C.3
Yao, H.4
Zeng, X.5
-
56
-
-
24144461689
-
Identification and characterization ofMAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3
-
Seth RB, Sun L, Ea C-K, Chen ZJ. 2005. Identification and characterization ofMAVS, a mitochondrial antiviral signaling protein that activates NF-κB and IRF3. Cell 122:669-82
-
(2005)
Cell
, vol.122
, pp. 669-682
-
-
Seth, R.B.1
Sun, L.2
Ea, C.-K.3
Chen, Z.J.4
-
57
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-Iand Mda5-mediated type i interferon induction
-
Kawai T, Takahashi K, Sato S, Coban C, Kumar H, et al. 2005. IPS-1, an adaptor triggering RIG-Iand Mda5-mediated type I interferon induction. Nat. Immunol. 6:981-88
-
(2005)
Nat. Immunol.
, vol.6
, pp. 981-988
-
-
Kawai, T.1
Takahashi, K.2
Sato, S.3
Coban, C.4
Kumar, H.5
-
58
-
-
27144440476
-
Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus
-
Meylan E, Curran J, Hofmann K, Moradpour D, Binder M, et al. 2005. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437:1167-72
-
(2005)
Nature
, vol.437
, pp. 1167-1172
-
-
Meylan, E.1
Curran, J.2
Hofmann, K.3
Moradpour, D.4
Binder, M.5
-
59
-
-
24944538819
-
VISA is an adapter protein required for virus-triggered IFN-βsignaling
-
Xu L-G, Wang Y-Y, Han K-J, Li L-Y, Zhai Z, Shu H-B. 2005. VISA is an adapter protein required for virus-triggered IFN-βsignaling. Mol. Cell 19:727-40
-
(2005)
Mol. Cell
, vol.19
, pp. 727-740
-
-
Xu, L.-G.1
Wang, Y.-Y.2
Han, K.-J.3
Li, L.-Y.4
Zhai, Z.5
Shu, H.-B.6
-
60
-
-
33646592188
-
The specific and essential role of MAVS in antiviral innate immune responses
-
Sun Q, Sun L, Liu H-H, Chen X, Seth RB, et al. 2006. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 24:633-42
-
(2006)
Immunity
, vol.24
, pp. 633-642
-
-
Sun, Q.1
Sun, L.2
Liu, H.-H.3
Chen, X.4
Seth, R.B.5
-
61
-
-
33745814424
-
Essential role of IPS-1 in innate immune responses against RNA viruses
-
Kumar H, Kawai T, Kato H, Sato S, Takahashi K, et al. 2006. Essential role of IPS-1 in innate immune responses against RNA viruses. J. Exp. Med. 203:1795-803
-
(2006)
J. Exp. Med.
, vol.203
, pp. 1795-1803
-
-
Kumar, H.1
Kawai, T.2
Kato, H.3
Sato, S.4
Takahashi, K.5
-
62
-
-
79961133270
-
MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response
-
Hou F, Sun L, Zheng H, Skaug B, Jiang Q-X, Chen ZJ. 2011. MAVS forms functional prion-like aggregates to activate and propagate antiviral innate immune response. Cell 146:448-61
-
(2011)
Cell
, vol.146
, pp. 448-461
-
-
Hou, F.1
Sun, L.2
Zheng, H.3
Skaug, B.4
Jiang, Q.-X.5
Chen, Z.J.6
-
63
-
-
29144462494
-
Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity
-
Li X-D, Sun L, Seth RB, Pineda G, Chen ZJ. 2005. Hepatitis C virus protease NS3/4A cleaves mitochondrial antiviral signaling protein off the mitochondria to evade innate immunity. Proc. Natl. Acad. Sci. USA 102:17717-22
-
(2005)
Proc. Natl. Acad. Sci. USA
, vol.102
, pp. 17717-17722
-
-
Li, X.-D.1
Sun, L.2
Seth, R.B.3
Pineda, G.4
Chen, Z.J.5
-
64
-
-
75949098312
-
Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway
-
Castanier C, Garcin D, Vazquez A, Arnoult D. 2010. Mitochondrial dynamics regulate the RIG-I-like receptor antiviral pathway. EMBO Rep. 11:133-38
-
(2010)
EMBO Rep.
, vol.11
, pp. 133-138
-
-
Castanier, C.1
Garcin, D.2
Vazquez, A.3
Arnoult, D.4
-
65
-
-
77957666242
-
Virus-infection or 5-ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1
-
Onoguchi K, OnomotoK,Takamatsu S, Jogi M, Takemura A, et al. 2010. Virus-infection or 5-ppp-RNA activates antiviral signal through redistribution of IPS-1 mediated by MFN1. PLoS Pathog. 6:e1001012
-
(2010)
PLoS Pathog.
, vol.6
-
-
Onoguchi, K.1
Onomotoktakamatsu, S.2
Jogi, M.3
Takemura, A.4
-
66
-
-
70350468688
-
Mitofusin 2 inhibits mitochondrial antiviral signaling
-
Yasukawa K, Oshiumi H, Takeda M, IshiharaN, Yanagi Y, et al. 2009. Mitofusin 2 inhibits mitochondrial antiviral signaling. Sci. Signal. 2:ra47
-
(2009)
Sci. Signal.
, vol.2
-
-
Yasukawa, K.1
Oshiumi, H.2
Takeda, M.3
Ishiharan Yanagi, Y.4
-
67
-
-
79551716551
-
Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling
-
Koshiba T, Yasukawa K, Yanagi Y, Kawabata S-i. 2011. Mitochondrial membrane potential is required for MAVS-mediated antiviral signaling. Sci. Signal. 4:ra7
-
(2011)
Sci. Signal.
, vol.4
-
-
Koshiba, T.1
Yasukawa, K.2
Yanagi, Y.3
Kawabata, S.-I.4
-
68
-
-
33646034316
-
Activation of IKK by TNFαrequires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO
-
Ea C-K, Deng L, Xia Z-P, Pineda G, Chen ZJ. 2006. Activation of IKK by TNFαrequires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22:245-57
-
(2006)
Mol. Cell
, vol.22
, pp. 245-257
-
-
Ea, C.-K.1
Deng, L.2
Xia, Z.-P.3
Pineda, G.4
Chen, Z.J.5
-
69
-
-
33645703930
-
Sensing ofLys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation
-
WuC-J, ConzeDB, Li T, Srinivasula SM, Ashwell JD. 2006. Sensing ofLys 63-linked polyubiquitination by NEMO is a key event in NF-κB activation. Nat. Cell Biol. 8:398-406
-
(2006)
Nat. Cell Biol.
, vol.8
, pp. 398-406
-
-
Conzedb, W.1
Li, T.2
Srinivasula, S.M.3
Ashwell, J.D.4
-
70
-
-
70350004240
-
Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3
-
Zeng W, Xu M, Liu S, Sun L, Chen ZJ. 2009. Key role of Ubc5 and lysine-63 polyubiquitination in viral activation of IRF3. Mol. Cell 36:315-25
-
(2009)
Mol. Cell
, vol.36
, pp. 315-325
-
-
Zeng, W.1
Xu, M.2
Liu, S.3
Sun, L.4
Chen, Z.J.5
-
71
-
-
79960049196
-
A functional C-terminal TRAF3- binding site in MAVS participates in positive and negative regulation of the IFN antiviral response
-
Paz S, Vilasco M, Werden SJ, Arguello M, Joseph-Pillai D, et al. 2011. A functional C-terminal TRAF3- binding site in MAVS participates in positive and negative regulation of the IFN antiviral response. Cell Res. 21:895-910
-
(2011)
Cell Res.
, vol.21
, pp. 895-910
-
-
Paz, S.1
Vilasco, M.2
Werden, S.J.3
Arguello, M.4
Joseph-Pillai, D.5
-
72
-
-
33746479050
-
Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif
-
Saha SK, Pietras EM, He JQ, Kang JR, Liu S-Y, et al. 2006. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J. 25:3257-63
-
(2006)
EMBO J.
, vol.25
, pp. 3257-3263
-
-
Saha, S.K.1
Pietras, E.M.2
He, J.Q.3
Kang, J.R.4
Liu, S.-Y.5
-
73
-
-
77949427242
-
TRAF5is a downstream target ofMAVSin antiviral innate immune signaling
-
Tang ED,WangCY. 2010.TRAF5is a downstream target ofMAVSin antiviral innate immune signaling. PLoS ONE 5:e9172
-
(2010)
PLoS ONE
, vol.5
-
-
Edwangcy, T.1
-
74
-
-
80755126865
-
Mapping a dynamic innate immunity protein interaction network regulating type i interferon production
-
Li S, Wang L, Berman M, Kong Y-Y, Dorf ME. 2011. Mapping a dynamic innate immunity protein interaction network regulating type I interferon production. Immunity 35:426-40
-
(2011)
Immunity
, vol.35
, pp. 426-440
-
-
Li, S.1
Wang, L.2
Berman, M.3
Kong, Y.-Y.4
Dorf, M.E.5
-
75
-
-
77951247349
-
Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-β(IFN-β) and cellular antiviral response
-
Mao A-P, Li S, Zhong B, Li Y, Yan J, et al. 2010. Virus-triggered ubiquitination of TRAF3/6 by cIAP1/2 is essential for induction of interferon-β(IFN-β) and cellular antiviral response. J. Biol. Chem. 285:9470-76
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 9470-9476
-
-
Mao, A.-P.1
Li, S.2
Zhong, B.3
Li, Y.4
Yan, J.5
-
76
-
-
84882705934
-
MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades
-
Liu S, Chen J, Cai X, Wu J, Chen X, et al. 2013. MAVS recruits multiple ubiquitin E3 ligases to activate antiviral signaling cascades. eLife 2:e00785
-
(2013)
ELife
, vol.2
-
-
Liu, S.1
Chen, J.2
Cai, X.3
Wu, J.4
Chen, X.5
-
77
-
-
84855218318
-
Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I
-
Oshiumi H, MatsumotoM, Seya T. 2012. Ubiquitin-mediated modulation of the cytoplasmic viral RNA sensor RIG-I. J. Biochem. 151:5-11
-
(2012)
J. Biochem.
, vol.151
, pp. 5-11
-
-
Oshiumi, H.1
Matsumotom Seya, T.2
-
78
-
-
34250632829
-
Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125
-
Arimoto K-i, Takahashi H, Hishiki T, Konishi H, Fujita T, Shimotohno K. 2007. Negative regulation of the RIG-I signaling by the ubiquitin ligase RNF125. Proc. Natl. Acad. Sci. USA 104:7500-5
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 7500-7505
-
-
Arimoto, K.-I.1
Takahashi, H.2
Hishiki, T.3
Konishi, H.4
Fujita, T.5
Shimotohno, K.6
-
79
-
-
84873320976
-
Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation
-
Chen W, Han C, Xie B, Hu X, Yu Q, et al. 2013. Induction of Siglec-G by RNA viruses inhibits the innate immune response by promoting RIG-I degradation. Cell 152:467-78
-
(2013)
Cell
, vol.152
, pp. 467-478
-
-
Chen, W.1
Han, C.2
Xie, B.3
Hu, X.4
Yu, Q.5
-
80
-
-
51049106824
-
The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response
-
Friedman CS, O'Donnell MA, Legarda-Addison D, Ng A, Cardenas WB, et al. 2008. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9:930-36
-
(2008)
EMBO Rep.
, vol.9
, pp. 930-936
-
-
Friedman, C.S.1
O'Donnell, M.A.2
Legarda-Addison, D.3
Ng, A.4
Cardenas, W.B.5
-
81
-
-
84875789033
-
USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I
-
Wang L, Zhao W, Zhang M,Wang P, Zhao K, et al. 2013. USP4 positively regulates RIG-I-mediated antiviral response through deubiquitination and stabilization of RIG-I. J. Virol. 87:4507-15
-
(2013)
J. Virol.
, vol.87
, pp. 4507-4515
-
-
Wang, L.1
Zhao, W.2
Zhang Mwang, P.3
Zhao, K.4
-
82
-
-
77949422543
-
Phosphorylation-mediated negative regulation of RIG-I antiviral activity
-
Gack MU, Nistal-Villn E, Inn K-S, Garc-Sastre A, Jung JU. 2010. Phosphorylation-mediated negative regulation of RIG-I antiviral activity. J. Virol. 84:3220-29
-
(2010)
J. Virol.
, vol.84
, pp. 3220-3229
-
-
Gack, M.U.1
Nistal-Villn, E.2
Inn, K.-S.3
Garc-Sastre, A.4
Jung, J.U.5
-
83
-
-
77953743809
-
Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-βproduction
-
Nistal-Villn E, Gack MU, Martez-Delgado G, Maharaj NP, Inn K-S, et al. 2010. Negative role of RIG-I serine 8 phosphorylation in the regulation of interferon-βproduction. J. Biol. Chem. 285:20252-61
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 20252-20261
-
-
Nistal-Villn, E.1
Gack, M.U.2
Martez-Delgado, G.3
Maharaj, N.P.4
Inn, K.-S.5
-
84
-
-
84875542059
-
Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling
-
Wies E, Wang MK, Maharaj NP, Chen K, Zhou S, et al. 2013. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38:437-49
-
(2013)
Immunity
, vol.38
, pp. 437-449
-
-
Wies, E.1
Wang, M.K.2
Maharaj, N.P.3
Chen, K.4
Zhou, S.5
-
85
-
-
38349189787
-
Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation
-
Kim M-J, Hwang S-Y, Imaizumi T, Yoo J-Y. 2008. Negative feedback regulation of RIG-I-mediated antiviral signaling by interferon-induced ISG15 conjugation. J. Virol. 82:1474-83
-
(2008)
J. Virol.
, vol.82
, pp. 1474-1483
-
-
Kim, M.-J.1
Hwang, S.-Y.2
Imaizumi, T.3
Yoo, J.-Y.4
-
86
-
-
79953162495
-
SUMOylation of RIG-I positively regulates the type i interferon signaling
-
Mi Z, Fu J, Xiong Y, Tang H. 2010. SUMOylation of RIG-I positively regulates the type I interferon signaling. Protein Cell 1:275-83
-
(2010)
Protein Cell
, vol.1
, pp. 275-283
-
-
Mi, Z.1
Fu, J.2
Xiong, Y.3
Tang, H.4
-
87
-
-
84857352425
-
Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling
-
Bozym RA, Delorme-Axford E, Harris K, Morosky S, Ikizler M, et al. 2012. Focal adhesion kinase is a component of antiviral RIG-I-like receptor signaling. Cell Host Microbe 11:153-66
-
(2012)
Cell Host Microbe
, vol.11
, pp. 153-166
-
-
Bozym, R.A.1
Delorme-Axford, E.2
Harris, K.3
Morosky, S.4
Ikizler, M.5
-
88
-
-
78650310818
-
ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses
-
Hayakawa S, Shiratori S, Yamato H, Kameyama T, Kitatsuji C, et al. 2011. ZAPS is a potent stimulator of signaling mediated by the RNA helicase RIG-I during antiviral responses. Nat. Immunol. 12:37-44
-
(2011)
Nat. Immunol.
, vol.12
, pp. 37-44
-
-
Hayakawa, S.1
Shiratori, S.2
Yamato, H.3
Kameyama, T.4
Kitatsuji, C.5
-
89
-
-
79955075657
-
The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response
-
Kok K-H, Lui P-Y, Ng MHJ, Siu K-L, Au SWN, Jin D-Y. 2011. The double-stranded RNA-binding protein PACT functions as a cellular activator of RIG-I to facilitate innate antiviral response. Cell Host Microbe 9:299-309
-
(2011)
Cell Host Microbe
, vol.9
, pp. 299-309
-
-
Kok, K.-H.1
Lui, P.-Y.2
Ng, M.H.J.3
Siu, K.-L.4
Au, S.W.N.5
Jin, D.-Y.6
-
90
-
-
84875757342
-
RAVER1 is a coactivator of MDA5-mediated cellular antiviral response
-
Chen H, Li Y, Zhang J, Ran Y, Wei J, et al. 2013. RAVER1 is a coactivator of MDA5-mediated cellular antiviral response. J. Mol. Cell Biol. 5:111-19
-
(2013)
J. Mol. Cell Biol.
, vol.5
, pp. 111-119
-
-
Chen, H.1
Li, Y.2
Zhang, J.3
Ran, Y.4
Wei, J.5
-
91
-
-
84861181618
-
The mitochondrial targeting chaperone 14-3-3 regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity
-
Liu HM, Loo Y-M, Horner SM, Zornetzer GA, Katze MG, Gale M Jr. 2012. The mitochondrial targeting chaperone 14-3-3 regulates a RIG-I translocon that mediates membrane association and innate antiviral immunity. Cell Host Microbe 11:528-37
-
(2012)
Cell Host Microbe
, vol.11
, pp. 528-537
-
-
Liu, H.M.1
Loo, Y.-M.2
Horner, S.M.3
Zornetzer, G.A.4
Katze, M.G.5
Gale, Jr.M.6
-
92
-
-
84860328032
-
Ankrd17 positively regulates RIG-I-like receptor (RLR)-mediated immune signaling
-
Wang Y, Tong X, Li G, Li J, Deng M, Ye X. 2012. Ankrd17 positively regulates RIG-I-like receptor (RLR)-mediated immune signaling. Eur. J. Immunol. 42:1304-15
-
(2012)
Eur. J. Immunol.
, vol.42
, pp. 1304-1315
-
-
Wang, Y.1
Tong, X.2
Li, G.3
Li, J.4
Deng, M.5
Ye, X.6
-
93
-
-
60849084130
-
Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria
-
Xu L, Xiao N, Liu F, Ren H, Gu J. 2009. Inhibition of RIG-I and MDA5-dependent antiviral response by gC1qR at mitochondria. Proc. Natl. Acad. Sci. USA 106:1530-35
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 1530-1535
-
-
Xu, L.1
Xiao, N.2
Liu, F.3
Ren, H.4
Gu, J.5
-
94
-
-
0017176867
-
Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis
-
RobertsWK, Hovanessian ARA, Brown RE, Clemens MJ, Kerr IM. 1976. Interferon-mediated protein kinase and low-molecular-weight inhibitor of protein synthesis. Nature 264:477-80
-
(1976)
Nature
, vol.264
, pp. 477-480
-
-
Roberts, W.K.1
Hovanessian, A.R.A.2
Brown, R.E.3
Clemens, M.J.4
Kerr, I.M.5
-
95
-
-
0018801485
-
Structural requirements of double-stranded RNA for the activation of 2-,5-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells
-
MinksMA, West DK, Benvin S, Baglioni C. 1979. Structural requirements of double-stranded RNA for the activation of 2-,5-oligo(A) polymerase and protein kinase of interferon-treated HeLa cells. J. Biol. Chem. 254:10180-83
-
(1979)
J. Biol. Chem.
, vol.254
, pp. 10180-10183
-
-
Minksma West, D.K.1
Benvin, S.2
Baglioni, C.3
-
96
-
-
36348987303
-
Viral encounters with 2-,5-oligoadenylate synthetase and RNase L during the interferon antiviral response
-
Silverman RH. 2007. Viral encounters with 2-,5-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol. 81:12720-29
-
(2007)
J. Virol.
, vol.81
, pp. 12720-12729
-
-
Silverman, R.H.1
-
98
-
-
0033679958
-
Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection
-
Balachandran S, Roberts PC, Brown LE, Truong H, Pattnaik AK, et al. 2000. Essential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity 13:129-41
-
(2000)
Immunity
, vol.13
, pp. 129-141
-
-
Balachandran, S.1
Roberts, P.C.2
Brown, L.E.3
Truong, H.4
Pattnaik, A.K.5
-
99
-
-
0029590069
-
Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase
-
Yang YL, Reis LF, Pavlovic J, Aguzzi A, Schafer R, et al. 1995. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 14:6095-106
-
(1995)
EMBO J.
, vol.14
, pp. 6095-6106
-
-
Yang, Y.L.1
Reis, L.F.2
Pavlovic, J.3
Aguzzi, A.4
Schafer, R.5
-
100
-
-
30444450839
-
Recognition of cytosolic DNA activates an IRF3-dependent innate immune response
-
Stetson DB, Medzhitov R. 2006. Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 24:93-103
-
(2006)
Immunity
, vol.24
, pp. 93-103
-
-
Stetson, D.B.1
Medzhitov, R.2
-
101
-
-
29244471275
-
A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA
-
Ishii KJ, Coban C, KatoH, Takahashi K, Torii Y, et al. 2006. A Toll-like receptor-independent antiviral response induced by double-stranded B-form DNA. Nat. Immunol. 7:40-48
-
(2006)
Nat. Immunol.
, vol.7
, pp. 40-48
-
-
Ishii, K.J.1
Coban, C.2
Katoh Takahashi, K.3
Torii, Y.4
-
102
-
-
34547434301
-
Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells
-
Cheng G, Zhong J, Chung J, Chisari FV. 2007. Double-stranded DNA and double-stranded RNA induce a common antiviral signaling pathway in human cells. Proc. Natl. Acad. Sci. USA 104:9035-40
-
(2007)
Proc. Natl. Acad. Sci. USA
, vol.104
, pp. 9035-9040
-
-
Cheng, G.1
Zhong, J.2
Chung, J.3
Chisari, F.V.4
-
103
-
-
70449584559
-
A selective contribution of the RIG-I-like receptor pathway to type i interferon responses activated by cytosolic DNA
-
Choi MK, Wang Z, Ban T, Yanai H, Lu Y, et al. 2009. A selective contribution of the RIG-I-like receptor pathway to type I interferon responses activated by cytosolic DNA. Proc. Natl. Acad. Sci. USA 106(42):17870-75
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, Issue.42
, pp. 17870-17875
-
-
Choi, M.K.1
Wang, Z.2
Ban, T.3
Yanai, H.4
Lu, Y.5
-
104
-
-
68049092912
-
RNA polymerase III detects cytosolic DNA and induces type i interferons through the RIG-I pathway
-
Chiu Y-H, MacMillan JB, Chen ZJ. 2009. RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576-91
-
(2009)
Cell
, vol.138
, pp. 576-591
-
-
Chiu, Y.-H.1
Macmillan, J.B.2
Chen, Z.J.3
-
105
-
-
70349459734
-
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate
-
Ablasser A, Bauernfeind F, Hartmann G, Latz E, Fitzgerald KA, Hornung V. 2009. RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat. Immunol. 10:1065-72
-
(2009)
Nat. Immunol.
, vol.10
, pp. 1065-1072
-
-
Ablasser, A.1
Bauernfeind, F.2
Hartmann, G.3
Latz, E.4
Fitzgerald, K.A.5
Hornung, V.6
-
106
-
-
53349178089
-
STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling
-
Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674-78
-
(2008)
Nature
, vol.455
, pp. 674-678
-
-
Ishikawa, H.1
Barber, G.N.2
-
107
-
-
53349168904
-
The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation
-
Zhong B, Yang Y, Li S, Wang Y-Y, Li Y, et al. 2008. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity 29:538-50
-
(2008)
Immunity
, vol.29
, pp. 538-550
-
-
Zhong, B.1
Yang, Y.2
Li, S.3
Wang, Y.-Y.4
Li, Y.5
-
108
-
-
66649109939
-
ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization
-
Sun W, Li Y, Chen L, Chen H, You F, et al. 2009. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc. Natl. Acad. Sci. USA 106:8653-58
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 8653-8658
-
-
Sun, W.1
Li, Y.2
Chen, L.3
Chen, H.4
You, F.5
-
109
-
-
84863009492
-
Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding
-
Ouyang S, Song X, Wang Y, Ru H, ShawN, et al. 2012. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity 36:1073-86
-
(2012)
Immunity
, vol.36
, pp. 1073-1086
-
-
Ouyang, S.1
Song, X.2
Wang, Y.3
Ru, H.4
Shaw, N.5
-
110
-
-
84862996389
-
Cyclic di-GMP sensing via the innate immune signaling protein STING
-
Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, et al. 2012. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol. Cell 46:735-45
-
(2012)
Mol. Cell
, vol.46
, pp. 735-745
-
-
Yin, Q.1
Tian, Y.2
Kabaleeswaran, V.3
Jiang, X.4
Tu, D.5
-
111
-
-
70349943834
-
STING regulates intracellular DNA-mediated, type i interferondependent innate immunity
-
Ishikawa H,Ma Z, Barber GN. 2009. STING regulates intracellular DNA-mediated, type I interferondependent innate immunity. Nature 461:788-92
-
(2009)
Nature
, vol.461
, pp. 788-792
-
-
Ishikawa Hma, Z.1
Barber, G.N.2
-
112
-
-
79251506939
-
TheN-ethyl-N-nitrosoureainduced Goldenticket mousemutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides
-
Sauer J-D, Sotelo-TrohaK, von Moltke J, Monroe KM,Rae CS, et al. 2011. TheN-ethyl-N-nitrosoureainduced Goldenticket mousemutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect. Immun. 79:688-94
-
(2011)
Infect. Immun.
, vol.79
, pp. 688-694
-
-
Sauer, J.-D.1
Sotelo-Troha, K.2
Von Moltke, J.3
Monroe, K.M.4
Rae, C.S.5
-
113
-
-
73949083594
-
Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response
-
Saitoh T, Fujita N, Hayashi T, Takahara K, Satoh T, et al. 2009. Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc. Natl. Acad. Sci. USA 106:20842-46
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 20842-20846
-
-
Saitoh, T.1
Fujita, N.2
Hayashi, T.3
Takahara, K.4
Satoh, T.5
-
114
-
-
84857937262
-
STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway
-
Tanaka Y, Chen ZJ. 2012. STING specifies IRF3 phosphorylation by TBK1 in the cytosolic DNA signaling pathway. Sci. Signal. 5:ra20
-
(2012)
Sci. Signal.
, vol.5
-
-
Tanaka, Y.1
Chen, Z.J.2
-
115
-
-
84871218439
-
STING and the innate immune response to nucleic acids in the cytosol
-
Burdette DL, Vance RE. 2013. STING and the innate immune response to nucleic acids in the cytosol. Nat. Immunol. 14:19-26
-
(2013)
Nat. Immunol.
, vol.14
, pp. 19-26
-
-
Burdette, D.L.1
Vance, R.E.2
-
116
-
-
80054694130
-
Activation of STAT6 by STING is critical for antiviral innate immunity
-
Chen H, Sun H, You F, Sun W, Zhou X, et al. 2011. Activation of STAT6 by STING is critical for antiviral innate immunity. Cell 147:436-46
-
(2011)
Cell
, vol.147
, pp. 436-446
-
-
Chen, H.1
Sun, H.2
You, F.3
Sun, W.4
Zhou, X.5
-
117
-
-
35848951876
-
Roles of cyclic diguanylate in the regulation of bacterial pathogenesis
-
Tamayo R, Pratt JT, Camilli A. 2007. Roles of cyclic diguanylate in the regulation of bacterial pathogenesis. Annu. Rev. Microbiol. 61:131-48
-
(2007)
Annu. Rev. Microbiol.
, vol.61
, pp. 131-148
-
-
Tamayo, R.1
Pratt, J.T.2
Camilli, A.3
-
118
-
-
55749083885
-
Great times for small molecules: C-di-AMP, a second messenger candidate in Bacteria and Archaea
-
Romling U. 2008. Great times for small molecules: c-di-AMP, a second messenger candidate in Bacteria and Archaea. Sci. Signal. 1:pe39
-
(2008)
Sci. Signal.
, vol.1
-
-
Romling, U.1
-
119
-
-
84859754930
-
Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for v
-
Davies BW, Bogard RW, Young TS, Mekalanos JJ. 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358-70
-
(2012)
Cholerae Virulence. Cell
, vol.149
, pp. 358-370
-
-
Davies, B.W.1
Bogard, R.W.2
Young, T.S.3
Mekalanos, J.J.4
-
120
-
-
67651125824
-
A host type i interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP
-
McWhirter SM, Barbalat R, Monroe KM, Fontana MF, Hyodo M, et al. 2009. A host type I interferon response is induced by cytosolic sensing of the bacterial second messenger cyclic-di-GMP. J. Exp. Med. 206:1899-911
-
(2009)
J. Exp. Med.
, vol.206
, pp. 1899-1911
-
-
McWhirter, S.M.1
Barbalat, R.2
Monroe, K.M.3
Fontana, M.F.4
Hyodo, M.5
-
121
-
-
77954070545
-
C-di-AMP secreted by intracellular Listeria monocytogenes activates a host type i interferon response
-
Woodward JJ, Iavarone AT, Portnoy DA. 2010. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science 328:1703-5
-
(2010)
Science
, vol.328
, pp. 1703-1705
-
-
Woodward, J.J.1
Iavarone, A.T.2
Portnoy, D.A.3
-
122
-
-
80052662208
-
MPYS is required for IFN response factor 3 activation and type i IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP
-
Jin L, Hill KK, Filak H, Mogan J, Knowles H, et al. 2011. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J. Immunol. 187:2595-601
-
(2011)
J. Immunol.
, vol.187
, pp. 2595-2601
-
-
Jin, L.1
Hill, K.K.2
Filak, H.3
Mogan, J.4
Knowles, H.5
-
123
-
-
80054966913
-
STING is a direct innate immune sensor of cyclic di-GMP
-
Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, et al. 2011. STING is a direct innate immune sensor of cyclic di-GMP. Nature 478:515-18
-
(2011)
Nature
, vol.478
, pp. 515-518
-
-
Burdette, D.L.1
Monroe, K.M.2
Sotelo-Troha, K.3
Iwig, J.S.4
Eckert, B.5
-
124
-
-
84863722786
-
The structural basis for the sensing and binding of cyclic di-GMP by STING
-
Huang Y-H, LiuX-Y,DuX-X, Jiang Z-F, SuX-D. 2012. The structural basis for the sensing and binding of cyclic di-GMP by STING. Nat. Struct. Mol. Biol. 19:728-30
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 728-730
-
-
Huang, Y.-H.1
Liu, X.-Y.2
Du, X.-X.3
Jiang, Z.-F.4
Su, X.-D.5
-
125
-
-
84863717085
-
Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP
-
Shang G, Zhu D, Li N, Zhang J, Zhu C, et al. 2012. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat. Struct. Mol. Biol. 19:725-27
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 725-727
-
-
Shang, G.1
Zhu, D.2
Li, N.3
Zhang, J.4
Zhu, C.5
-
126
-
-
84863726252
-
Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system
-
Shu C, Yi G, Watts T, Kao CC, Li P. 2012. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat. Struct. Mol. Biol. 19:722-24
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 722-724
-
-
Shu, C.1
Yi, G.2
Watts, T.3
Kao, C.C.4
Li, P.5
-
127
-
-
84880508067
-
Cyclic GMP-AMP containingmixed phosphodiester linkages is an endogenous high-Affinity ligand for STING
-
Zhang X, Shi H,WuJ, Zhang X, Sun L, et al. 2013. Cyclic GMP-AMP containingmixed phosphodiester linkages is an endogenous high-Affinity ligand for STING. Mol. Cell 51:226-35
-
(2013)
Mol. Cell
, vol.51
, pp. 226-235
-
-
Zhang, X.1
Hwuj, S.2
Zhang, X.3
Sun, L.4
-
128
-
-
84873711885
-
Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type i interferon pathway
-
Sun L,Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786-91
-
(2013)
Science
, vol.339
, pp. 786-791
-
-
Sun Lwu, J.1
Du, F.2
Chen, X.3
Chen, Z.J.4
-
129
-
-
84873724533
-
Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA
-
Wu J, Sun L, Chen X, Du F, Shi H, et al. 2013. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science 339:826-30
-
(2013)
Science
, vol.339
, pp. 826-830
-
-
Wu, J.1
Sun, L.2
Chen, X.3
Du, F.4
Shi, H.5
-
130
-
-
84880426658
-
The cGAS-STING Pathway for DNA sensing
-
Xiao TS, Fitzgerald KA. 2013. The cGAS-STING Pathway for DNA sensing. Mol. Cell 51:135-39
-
(2013)
Mol. Cell
, vol.51
, pp. 135-139
-
-
Xiao, T.S.1
Fitzgerald, K.A.2
-
131
-
-
84882896267
-
Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses
-
Gao D, Wu J, Wu Y-T, Du F, Aroh C, et al. 2013. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science 341:903-6
-
(2013)
Science
, vol.341
, pp. 903-906
-
-
Gao, D.1
Wu, J.2
Wu, Y.-T.3
Du, F.4
Aroh, C.5
-
132
-
-
84884675857
-
Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects
-
Li X-D, Wu J, Gao D, Wang H, Sun L, Chen ZJ. 2013. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science 341:1390-94
-
(2013)
Science
, vol.341
, pp. 1390-1394
-
-
Li, X.-D.1
Wu, J.2
Gao, D.3
Wang, H.4
Sun, L.5
Chen, Z.J.6
-
133
-
-
84895904323
-
Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity
-
In press. doi: 10.1038/ nature12862
-
Schoggins JW, MacDuff DA, Imanaka N, Gainey MD, Shrestha B, et al. 2014. Pan-viral specificity of IFN-induced genes reveals new roles for cGAS in innate immunity. Nature. In press. doi: 10.1038/ nature12862
-
(2014)
Nature.
-
-
Schoggins, J.W.1
Macduff, D.A.2
Imanaka, N.3
Gainey, M.D.4
Shrestha, B.5
-
134
-
-
84890215093
-
The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells
-
Lahaye X, Satoh T, Gentili M, Cerboni S, Conrad C, et al. 2013. The capsids of HIV-1 and HIV-2 determine immune detection of the viral cDNA by the innate sensor cGAS in dendritic cells. Immunity 39:1132-42
-
(2013)
Immunity
, vol.39
, pp. 1132-1142
-
-
Lahaye, X.1
Satoh, T.2
Gentili, M.3
Cerboni, S.4
Conrad, C.5
-
135
-
-
84888054227
-
HIV-1 evades innate immune recognition through specific cofactor recruitment
-
Rasaiyaah J, Tan CP, Fletcher AJ, Price AJ, Blondeau C, et al. 2013. HIV-1 evades innate immune recognition through specific cofactor recruitment. Nature 503:402-5
-
(2013)
Nature
, vol.503
, pp. 402-405
-
-
Rasaiyaah, J.1
Tan, C.P.2
Fletcher, A.J.3
Price, A.J.4
Blondeau, C.5
-
136
-
-
84878309796
-
Cyclic [G(2-,5-)pA(3-,5-)p] is the metazoan second messenger produced by DNA-Activated cyclic GMP-AMP synthase
-
Gao P, AscanoM,Wu Y, Barchet W, Gaffney BL, et al. 2013. Cyclic [G(2-,5-)pA(3-,5-)p] is the metazoan second messenger produced by DNA-Activated cyclic GMP-AMP synthase. Cell 153:1094-107
-
(2013)
Cell
, vol.153
, pp. 1094-1107
-
-
Gao, P.1
Ascano, M.2
Wu, Y.3
Barchet, W.4
Gaffney, B.L.5
-
137
-
-
84878592773
-
Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity
-
Kranzusch PJ, Lee AS-Y, Berger JM, Doudna JA. 2013. Structure of human cGAS reveals a conserved family of second-messenger enzymes in innate immunity. Cell Rep. 3:1362-68
-
(2013)
Cell Rep.
, vol.3
, pp. 1362-1368
-
-
Kranzusch, P.J.1
As-Y, L.2
Berger, J.M.3
Doudna, J.A.4
-
138
-
-
84879408976
-
Structural mechanism of cytosolic DNA sensing by cGAS
-
Civril F, Deimling T, de Oliveira Mann CC, Ablasser A,Moldt M, et al. 2013. Structural mechanism of cytosolic DNA sensing by cGAS. Nature 498:332-37
-
(2013)
Nature
, vol.498
, pp. 332-337
-
-
Civril, F.1
Deimling, T.2
De Oliveira Mann, C.C.3
Ablasser Amoldt, M.4
-
139
-
-
84878572947
-
The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING
-
Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, et al. 2013. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 3:1355-61
-
(2013)
Cell Rep.
, vol.3
, pp. 1355-1361
-
-
Diner, E.J.1
Burdette, D.L.2
Wilson, S.C.3
Monroe, K.M.4
Kellenberger, C.A.5
-
140
-
-
84879385334
-
CGAS produces a 2-5-linked cyclic dinucleotide second messenger that activates STING
-
Ablasser A,Goldeck M, Cavlar T, Deimling T,Witte G, et al. 2013. cGAS produces a 2-5-linked cyclic dinucleotide second messenger that activates STING. Nature 498:380-84
-
(2013)
Nature
, vol.498
, pp. 380-384
-
-
Ablasser, A.1
Goldeck, M.2
Cavlar, T.3
Deimling, T.4
Witte, G.5
-
141
-
-
84888637695
-
Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP
-
Ablasser A, Schmid-Burgk JL, Hemmerling I, Horvath GL, Schmidt T, et al. 2013. Cell intrinsic immunity spreads to bystander cells via the intercellular transfer of cGAMP. Nature 503:530-34
-
(2013)
Nature
, vol.503
, pp. 530-534
-
-
Ablasser, A.1
Schmid-Burgk, J.L.2
Hemmerling, I.3
Horvath, G.L.4
Schmidt, T.5
-
142
-
-
84886789626
-
Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling
-
Konno H, Konno K, Barber GN. 2013. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell 155:688-98
-
(2013)
Cell
, vol.155
, pp. 688-698
-
-
Konno, H.1
Konno, K.2
Barber, G.N.3
-
143
-
-
79251587803
-
Phosphorylation ofULK1 (hATG1) by AMP-Activated protein kinase connects energy sensing to mitophagy
-
EganDF, Shackelford DB,Mihaylova MM, Gelino S, Kohnz RA, et al. 2011. Phosphorylation ofULK1 (hATG1) by AMP-Activated protein kinase connects energy sensing to mitophagy. Science 331:456-61
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
Shackelford, D.B.2
Mihaylova, M.M.3
Gelino, S.4
Kohnz, R.A.5
-
144
-
-
84856800302
-
Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: Cross talk, shortcuts, and feedbacks
-
Alers S, Loffler AS, Wesselborg S, Stork B. 2012. Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy: cross talk, shortcuts, and feedbacks. Mol. Cell. Biol. 32(1):2-11
-
(2012)
Mol. Cell. Biol. 32
, Issue.1
, pp. 2-11
-
-
Alers, S.1
Loffler, A.S.2
Wesselborg, S.3
Stork, B.4
-
145
-
-
84882815198
-
Structure-function analysis of STING activation by c[G(2-,5-)pA(3-,5-)p] and targeting by antiviral DMXAA
-
Gao P, Ascano M, Zillinger T, Wang W, Dai P, et al. 2013. Structure-function analysis of STING activation by c[G(2-,5-)pA(3-,5-)p] and targeting by antiviral DMXAA. Cell 154:748-62
-
(2013)
Cell
, vol.154
, pp. 748-762
-
-
Gao, P.1
Ascano, M.2
Zillinger, T.3
Wang, W.4
Dai, P.5
-
146
-
-
84878190840
-
Immune sensing of DNA
-
Paludan SR, Bowie AG. 2013. Immune sensing of DNA. Immunity 38:870-80
-
(2013)
Immunity
, vol.38
, pp. 870-880
-
-
Paludan, S.R.1
Bowie, A.G.2
-
147
-
-
34547143110
-
DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response
-
Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, et al. 2007. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 448:501-5
-
(2007)
Nature
, vol.448
, pp. 501-505
-
-
Takaoka, A.1
Wang, Z.2
Choi, M.K.3
Yanai, H.4
Negishi, H.5
-
148
-
-
38949093002
-
TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines
-
Ishii KJ, Kawagoe T, Koyama S, Matsui K, Kumar H, et al. 2008. TANK-binding kinase-1 delineates innate and adaptive immune responses to DNA vaccines. Nature 451:725-29
-
(2008)
Nature
, vol.451
, pp. 725-729
-
-
Ishii, K.J.1
Kawagoe, T.2
Koyama, S.3
Matsui, K.4
Kumar, H.5
-
149
-
-
77958140656
-
IFI16 is an innate immune sensor for intracellular DNA
-
Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, et al. 2010. IFI16 is an innate immune sensor for intracellular DNA. Nat. Immunol. 11:997-1004
-
(2010)
Nat. Immunol.
, vol.11
, pp. 997-1004
-
-
Unterholzner, L.1
Keating, S.E.2
Baran, M.3
Horan, K.A.4
Jensen, S.B.5
-
150
-
-
84868095535
-
Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein
-
OrzalliMH,DeLucaNA, KnipeDM. 2012. Nuclear IFI16 induction of IRF-3 signaling during herpesviral infection and degradation of IFI16 by the viral ICP0 protein. Proc. Natl. Acad. Sci. USA 109:E3008-17
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
-
-
Orzalli, M.H.1
Deluca, N.A.2
Knipe, D.M.3
-
151
-
-
79956061094
-
IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-Associated herpesvirus infection
-
Kerur N, VeettilMohanan V, Sharma-Walia N, Bottero V, Sadagopan S, et al. 2011. IFI16 acts as a nuclear pathogen sensor to induce the inflammasome in response to Kaposi sarcoma-Associated herpesvirus infection. Cell Host Microbe 9:363-75
-
(2011)
Cell Host Microbe
, vol.9
, pp. 363-375
-
-
Kerur, N.1
Veettil Mohanan, V.2
Sharma-Walia, N.3
Bottero, V.4
Sadagopan, S.5
-
152
-
-
84870275730
-
Extensive evolutionary and functional diversity among mammalian AIM2-like receptors
-
Brunette RL, Young JM, Whitley DG, Brodsky IE,Malik HS, StetsonDB. 2012. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J. Exp. Med. 209:1969-83
-
(2012)
J. Exp. Med.
, vol.209
, pp. 1969-1983
-
-
Brunette, R.L.1
Young, J.M.2
Whitley, D.G.3
Brodsky, I.E.4
Malik, H.S.5
Stetson, D.B.6
-
153
-
-
84876085954
-
STING recognition of cytoplasmic DNA instigates cellular defense
-
Abe T, Harashima A, Xia T, Konno H, Konno K, et al. 2013. STING recognition of cytoplasmic DNA instigates cellular defense. Mol. Cell 50:5-15
-
(2013)
Mol. Cell
, vol.50
, pp. 5-15
-
-
Abe, T.1
Harashima, A.2
Xia, T.3
Konno, H.4
Konno, K.5
-
154
-
-
80052969639
-
The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells
-
Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu Y-J. 2011. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat. Immunol. 12:959-65
-
(2011)
Nat. Immunol.
, vol.12
, pp. 959-965
-
-
Zhang, Z.1
Yuan, B.2
Bao, M.3
Lu, N.4
Kim, T.5
Liu, Y.-J.6
-
155
-
-
84869403247
-
The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type i interferon immune response
-
Parvatiyar K, Zhang Z, Teles RM, Ouyang S, Jiang Y, et al. 2012. The helicase DDX41 recognizes the bacterial secondary messengers cyclic di-GMP and cyclic di-AMP to activate a type I interferon immune response. Nat. Immunol. 13:1155-61
-
(2012)
Nat. Immunol.
, vol.13
, pp. 1155-1161
-
-
Parvatiyar, K.1
Zhang, Z.2
Teles, R.M.3
Ouyang, S.4
Jiang, Y.5
-
156
-
-
84872683702
-
The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA
-
Zhang Z, Bao M, Lu N, Weng L, Yuan B, Liu Y-J. 2013. The E3 ubiquitin ligase TRIM21 negatively regulates the innate immune response to intracellular double-stranded DNA. Nat. Immunol. 14:172-78
-
(2013)
Nat. Immunol.
, vol.14
, pp. 172-178
-
-
Zhang, Z.1
Bao, M.2
Lu, N.3
Weng, L.4
Yuan, B.5
Liu, Y.-J.6
-
157
-
-
84891702580
-
Adenovirus detection by the GAS/STING/TBK1DNAsensing cascade
-
LamE, Stein S, Falck-PedersenE. 2014. Adenovirus detection by the GAS/STING/TBK1DNAsensing cascade. J. Virol. 88:974-81
-
(2014)
J. Virol.
, vol.88
, pp. 974-981
-
-
Lam, E.1
Stein, S.2
Falck-Pedersen, E.3
-
158
-
-
84870724934
-
Cell-specific regulation of nucleic acid sensor cascades: A controlling interest in the antiviral response
-
Stein SC, Lam E, Falck-Pedersen E. 2012. Cell-specific regulation of nucleic acid sensor cascades: a controlling interest in the antiviral response. J. Virol. 86:13303-12
-
(2012)
J. Virol.
, vol.86
, pp. 13303-13312
-
-
Stein, S.C.1
Lam, E.2
Falck-Pedersen, E.3
-
159
-
-
84875224757
-
DNA-PK is a DNA sensor for IRF- 3-dependent innate immunity
-
Ferguson BJ, Mansur DS, Peters NE, Ren H, Smith GL. 2012. DNA-PK is a DNA sensor for IRF- 3-dependent innate immunity. eLife 1:e00047
-
(2012)
ELife
, vol.1
-
-
Ferguson, B.J.1
Mansur, D.S.2
Peters, N.E.3
Ren, H.4
Smith, G.L.5
-
160
-
-
79955004696
-
Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type i IFN
-
Zhang X, Brann TW, Zhou M, Yang J, Oguariri RM, et al. 2011. Cutting edge: Ku70 is a novel cytosolic DNA sensor that induces type III rather than type I IFN. J. Immunol. 186:4541-5
-
(2011)
J. Immunol.
, vol.186
, pp. 4541-4545
-
-
Zhang, X.1
Brann, T.W.2
Zhou, M.3
Yang, J.4
Oguariri, R.M.5
-
161
-
-
84874278336
-
DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type i interferon by regulating STING trafficking
-
Kondo T, Kobayashi J, Saitoh T, Maruyama K, Ishii KJ, et al. 2013. DNA damage sensor MRE11 recognizes cytosolic double-stranded DNA and induces type I interferon by regulating STING trafficking. Proc. Natl. Acad. Sci. USA 110:2969-74
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
, pp. 2969-2974
-
-
Kondo, T.1
Kobayashi, J.2
Saitoh, T.3
Maruyama, K.4
Ishii, K.J.5
-
162
-
-
40449097257
-
The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response
-
Muruve DA, Petrilli V, Zaiss AK, White LR, Clark SA, et al. 2008. The inflammasome recognizes cytosolic microbial and host DNA and triggers an innate immune response. Nature 452:103-7
-
(2008)
Nature
, vol.452
, pp. 103-107
-
-
Muruve, D.A.1
Petrilli, V.2
Zaiss, A.K.3
White, L.R.4
Clark, S.A.5
-
163
-
-
63649145255
-
AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA
-
Fernandes-Alnemri T, Yu J-W, Datta P, Wu J, Alnemri ES. 2009. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature 458:509-13
-
(2009)
Nature
, vol.458
, pp. 509-513
-
-
Fernandes-Alnemri, T.1
Yu, J.-W.2
Datta, P.3
Wu, J.4
Alnemri, E.S.5
-
164
-
-
63649133278
-
AIM2 recognizes cytosolic dsDNA and forms a caspase-1-Activating inflammasome with ASC
-
Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, et al. 2009. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-Activating inflammasome with ASC. Nature 458:514-18
-
(2009)
Nature
, vol.458
, pp. 514-518
-
-
Hornung, V.1
Ablasser, A.2
Charrel-Dennis, M.3
Bauernfeind, F.4
Horvath, G.5
-
165
-
-
60749136484
-
An orthogonal proteomicgenomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome
-
Burckstummer T, Baumann C, Bluml S, Dixit E, Durnberger G, et al. 2009. An orthogonal proteomicgenomic screen identifies AIM2 as a cytoplasmic DNA sensor for the inflammasome. Nat. Immunol. 10:266-72
-
(2009)
Nat. Immunol.
, vol.10
, pp. 266-272
-
-
Burckstummer, T.1
Baumann, C.2
Bluml, S.3
Dixit, E.4
Durnberger, G.5
-
166
-
-
60749104535
-
HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA
-
Roberts TL, Idris A, Dunn JA, Kelly GM, Burnton CM, et al. 2009. HIN-200 proteins regulate caspase activation in response to foreign cytoplasmic DNA. Science 323:1057-60
-
(2009)
Science
, vol.323
, pp. 1057-1060
-
-
Roberts, T.L.1
Idris, A.2
Dunn, J.A.3
Kelly, G.M.4
Burnton, C.M.5
-
167
-
-
77951263260
-
The AIM2 inflammasome is critical for innate immunity to Francisella tularensis
-
Fernandes-Alnemri T, Yu J-W, Juliana C, Solorzano L, Kang S, et al. 2010. The AIM2 inflammasome is critical for innate immunity to Francisella tularensis. Nat. Immunol. 11:385-93
-
(2010)
Nat. Immunol.
, vol.11
, pp. 385-393
-
-
Fernandes-Alnemri, T.1
Yu, J.-W.2
Juliana, C.3
Solorzano, L.4
Kang, S.5
-
168
-
-
77951269392
-
The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses
-
Rathinam VAK, Jiang Z, Waggoner SN, Sharma S, Cole LE, et al. 2010. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat. Immunol. 11:395-402
-
(2010)
Nat. Immunol.
, vol.11
, pp. 395-402
-
-
Rathinam, V.A.K.1
Jiang, Z.2
Waggoner, S.N.3
Sharma, S.4
Cole, L.E.5
-
169
-
-
77953116282
-
Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis
-
Jones JW, Kayagaki N, Broz P, Henry T, Newton K, et al. 2010. Absent in melanoma 2 is required for innate immune recognition of Francisella tularensis. Proc. Natl. Acad. Sci. USA 107:9771-76
-
(2010)
Proc. Natl. Acad. Sci. USA
, vol.107
, pp. 9771-9776
-
-
Jones, J.W.1
Kayagaki, N.2
Broz, P.3
Henry, T.4
Newton, K.5
-
170
-
-
33746581694
-
Mutations in the gene encoding the 3-5- DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus
-
Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, et al. 2006. Mutations in the gene encoding the 3-5- DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat. Genet. 38:917-20
-
(2006)
Nat. Genet.
, vol.38
, pp. 917-920
-
-
Crow, Y.J.1
Hayward, B.E.2
Parmar, R.3
Robins, P.4
Leitch, A.5
-
171
-
-
3242672339
-
Gene-targeted mice lacking the Trex1 (DNase III) 3-5- DNA exonuclease develop inflammatory myocarditis
-
Morita M, Stamp G, Robins P, Dulic A, Rosewell I, et al. 2004. Gene-targeted mice lacking the Trex1 (DNase III) 3-5- DNA exonuclease develop inflammatory myocarditis. Mol. Cell. Biol. 24:6719-27
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 6719-6727
-
-
Morita, M.1
Stamp, G.2
Robins, P.3
Dulic, A.4
Rosewell, I.5
-
172
-
-
49549100511
-
Trex1 prevents cell-intrinsic initiation of autoimmunity
-
Stetson DB, Ko JS, Heidmann T,Medzhitov R. 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587-98
-
(2008)
Cell
, vol.134
, pp. 587-598
-
-
Stetson, D.B.1
Ko, J.S.2
Heidmann, T.3
Medzhitov, R.4
-
173
-
-
36248988008
-
Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease
-
Yang Y-G, Lindahl T, Barnes DE. 2007. Trex1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 131:873-86
-
(2007)
Cell
, vol.131
, pp. 873-886
-
-
Yang, Y.-G.1
Lindahl, T.2
Barnes, D.E.3
-
174
-
-
84856301080
-
Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease
-
Gall A, Treuting P, Elkon KB, Loo Y-M, Gale M Jr, et al. 2012. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120-31
-
(2012)
Immunity
, vol.36
, pp. 120-131
-
-
Gall, A.1
Treuting, P.2
Elkon, K.B.3
Loo, Y.-M.4
Gale, Jr.M.5
-
175
-
-
77958114725
-
The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1
-
Yan N, Regalado-Magdos AD, Stiggelbout B, Lee-Kirsch MA, Lieberman J. 2010. The cytosolic exonuclease TREX1 inhibits the innate immune response to human immunodeficiency virus type 1. Nat. Immunol. 11:1005-13
-
(2010)
Nat. Immunol.
, vol.11
, pp. 1005-1013
-
-
Yan, N.1
Regalado-Magdos, A.D.2
Stiggelbout, B.3
Lee-Kirsch, M.A.4
Lieberman, J.5
-
176
-
-
12344290452
-
Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA
-
Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S. 2005. Lethal anemia caused by interferon-β produced in mouse embryos carrying undigested DNA. Nat. Immunol. 6:49-56
-
(2005)
Nat. Immunol.
, vol.6
, pp. 49-56
-
-
Yoshida, H.1
Okabe, Y.2
Kawane, K.3
Fukuyama, H.4
Nagata, S.5
-
177
-
-
33750465224
-
Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages
-
Kawane K, Ohtani M, Miwa K, Kizawa T, Kanbara Y, et al. 2006. Chronic polyarthritis caused by mammalian DNA that escapes from degradation in macrophages. Nature 443:998-1002
-
(2006)
Nature
, vol.443
, pp. 998-1002
-
-
Kawane, K.1
Ohtani, M.2
Miwa, K.3
Kizawa, T.4
Kanbara, Y.5
-
178
-
-
27944453599
-
Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation
-
Okabe Y, Kawane K, Akira S, Taniguchi T, Nagata S. 2005. Toll-like receptor-independent gene induction program activated by mammalian DNA escaped from apoptotic DNA degradation. J. Exp. Med. 202:1333-39
-
(2005)
J. Exp. Med.
, vol.202
, pp. 1333-1339
-
-
Okabe, Y.1
Kawane, K.2
Akira, S.3
Taniguchi, T.4
Nagata, S.5
-
180
-
-
84890235012
-
Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization
-
Li X, Shu C, Yi G, Chaton CT, Shelton CL, et al. 2013. Cyclic GMP-AMP synthase is activated by double-stranded DNA-induced oligomerization. Immunity 39(6):1019-31
-
(2013)
Immunity
, vol.39
, Issue.6
, pp. 1019-1031
-
-
Li, X.1
Shu, C.2
Yi, G.3
Chaton, C.T.4
Shelton, C.L.5
-
181
-
-
84893863593
-
The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop
-
In press.
-
Zhang X,Wu J, Du F, Xu H, Sun L, et al. 2014. The cytosolic DNA sensor cGAS forms an oligomeric complex with DNA and undergoes switch-like conformational changes in the activation loop. Cell Rep. In press. http://dx.doi.org/10.1016/j.celrep.2014.01.003
-
(2014)
Cell Rep.
-
-
Zhang Xwu, J.1
Du, F.2
Xu, H.3
Sun, L.4
|