-
1
-
-
32944464648
-
Pathogen recognition and innate immunity
-
Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783-801.
-
(2006)
Cell
, vol.124
, pp. 783-801
-
-
Akira, S.1
Uematsu, S.2
Takeuchi, O.3
-
2
-
-
33748475531
-
Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors
-
Honda K, Takaoka A, Taniguchi T (2006) Type I interferon [corrected] gene induction by the interferon regulatory factor family of transcription factors. Immunity 25:349-360.
-
(2006)
Immunity
, vol.25
, pp. 349-360
-
-
Honda, K.1
Takaoka, A.2
Taniguchi, T.3
-
3
-
-
48949094095
-
Structural mechanism of RNA recognition by the RIG-Ilike receptors
-
Yoneyama M, Fujita T (2008) Structural mechanism of RNA recognition by the RIG-Ilike receptors. Immunity 29:178-181.
-
(2008)
Immunity
, vol.29
, pp. 178-181
-
-
Yoneyama, M.1
Fujita, T.2
-
4
-
-
58049202272
-
Innate immunity to virus infection
-
Takeuchi O, Akira S (2009) Innate immunity to virus infection. Immunol Rev 227:75-86.
-
(2009)
Immunol Rev
, vol.227
, pp. 75-86
-
-
Takeuchi, O.1
Akira, S.2
-
5
-
-
46949097299
-
Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5
-
Kato H, et al. (2008) Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid-inducible gene-I and melanoma differentiation-associated gene 5. J Exp Med 205:1601-1610.
-
(2008)
J Exp Med
, vol.205
, pp. 1601-1610
-
-
Kato, H.1
-
6
-
-
68049089651
-
Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus
-
Schlee M, et al. (2009) Recognition of 5′ triphosphate by RIG-I helicase requires short blunt double-stranded RNA as contained in panhandle of negative-strand virus. Immunity 31:25-34.
-
(2009)
Immunity
, vol.31
, pp. 25-34
-
-
Schlee, M.1
-
7
-
-
67749133995
-
5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I
-
Schmidt A, et al. (2009) 5′-triphosphate RNA requires base-paired structures to activate antiviral signaling via RIG-I. Proc Natl Acad Sci USA 106:12067-12072.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 12067-12072
-
-
Schmidt, A.1
-
8
-
-
22544455673
-
Cell type-specific involvement of RIG-I in antiviral response
-
Kato H, et al. (2005) Cell type-specific involvement of RIG-I in antiviral response. Immunity 23:19-28.
-
(2005)
Immunity
, vol.23
, pp. 19-28
-
-
Kato, H.1
-
9
-
-
33646342149
-
Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses
-
Kato H, et al. (2006) Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441:101-105.
-
(2006)
Nature
, vol.441
, pp. 101-105
-
-
Kato, H.1
-
10
-
-
37849045856
-
Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1
-
Fredericksen BL, Keller BC, Fornek J, Katze MG, Gale M Jr (2008) Establishment and maintenance of the innate antiviral response to West Nile Virus involves both RIG-I and MDA5 signaling through IPS-1. J Virol 82:609-616.
-
(2008)
J Virol
, vol.82
, pp. 609-616
-
-
Fredericksen, B.L.1
Keller, B.C.2
Fornek, J.3
Katze, M.G.4
Gale Jr, M.5
-
11
-
-
37349052379
-
Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity
-
Loo YM, et al. (2008) Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol 82:335-345.
-
(2008)
J Virol
, vol.82
, pp. 335-345
-
-
Loo, Y.M.1
-
12
-
-
68049092912
-
RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway
-
Chiu YH, Macmillan JB, Chen ZJ (2009) RNA polymerase III detects cytosolic DNA and induces type I interferons through the RIG-I pathway. Cell 138:576-591.
-
(2009)
Cell
, vol.138
, pp. 576-591
-
-
Chiu, Y.H.1
Macmillan, J.B.2
Chen, Z.J.3
-
13
-
-
70349459734
-
RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate
-
Ablasser A, et al. (2009) RIG-I-dependent sensing of poly(dA:dT) through the induction of an RNA polymerase III-transcribed RNA intermediate. Nat Immunol 10: 1065-1072.
-
(2009)
Nat Immunol
, vol.10
, pp. 1065-1072
-
-
Ablasser, A.1
-
14
-
-
39649092731
-
Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses
-
Takahasi K, et al. (2008) Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol Cell 29:428-440.
-
(2008)
Mol Cell
, vol.29
, pp. 428-440
-
-
Takahasi, K.1
-
15
-
-
60749124538
-
Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA
-
Myong S, et al. (2009) Cytosolic viral sensor RIG-I is a 5′-triphosphate-dependent translocase on double-stranded RNA. Science 323:1070-1074.
-
(2009)
Science
, vol.323
, pp. 1070-1074
-
-
Myong, S.1
-
16
-
-
27144440523
-
IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction
-
Kawai T, et al. (2005) IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol 6:981-988.
-
(2005)
Nat Immunol
, vol.6
, pp. 981-988
-
-
Kawai, T.1
-
17
-
-
23844438864
-
Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity
-
Yoneyama M, et al. (2005) Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol 175:2851-2858.
-
(2005)
J Immunol
, vol.175
, pp. 2851-2858
-
-
Yoneyama, M.1
-
18
-
-
26844503987
-
The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I
-
Rothenfusser S, et al. (2005) The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 175:5260-5268.
-
(2005)
J Immunol
, vol.175
, pp. 5260-5268
-
-
Rothenfusser, S.1
-
19
-
-
33846307026
-
Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2
-
Saito T, et al. (2007) Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sci USA 104:582-587.
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, pp. 582-587
-
-
Saito, T.1
-
20
-
-
33845431988
-
RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2
-
Komuro A, Horvath CM (2006) RNA- and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 80:12332-12342.
-
(2006)
J Virol
, vol.80
, pp. 12332-12342
-
-
Komuro, A.1
Horvath, C.M.2
-
21
-
-
67650510680
-
Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I-like receptors
-
Takahasi K, et al. (2009) Solution structures of cytosolic RNA sensor MDA5 and LGP2 C-terminal domains: Identification of the RNA recognition loop in RIG-I-like receptors. J Biol Chem 284:17465-17474.
-
(2009)
J Biol Chem
, vol.284
, pp. 17465-17474
-
-
Takahasi, K.1
-
22
-
-
67649413594
-
The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA
-
Li X, et al. (2009) The RIG-I-like receptor LGP2 recognizes the termini of double-stranded RNA. J Biol Chem 284:13881-13891.
-
(2009)
J Biol Chem
, vol.284
, pp. 13881-13891
-
-
Li, X.1
-
23
-
-
64549126847
-
The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA
-
Pippig DA, et al. (2009) The regulatory domain of the RIG-I family ATPase LGP2 senses double-stranded RNA. Nucleic Acids Res 37:2014-2025.
-
(2009)
Nucleic Acids Res
, vol.37
, pp. 2014-2025
-
-
Pippig, D.A.1
-
24
-
-
34248168157
-
Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses
-
Venkataraman T, et al. (2007) Loss of DExD/H box RNA helicase LGP2 manifests disparate antiviral responses. J Immunol 178:6444-6455.
-
(2007)
J Immunol
, vol.178
, pp. 6444-6455
-
-
Venkataraman, T.1
-
25
-
-
3242813113
-
The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses
-
Yoneyama M, et al. (2004) The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 5:730-737.
-
(2004)
Nat Immunol
, vol.5
, pp. 730-737
-
-
Yoneyama, M.1
-
26
-
-
33749139723
-
Dead-box proteins: A family affair - active and passive players in RNP-remodeling
-
Linder P (2006) Dead-box proteins: A family affair - active and passive players in RNP-remodeling. Nucleic Acids Res 34:4168-4180.
-
(2006)
Nucleic Acids Res
, vol.34
, pp. 4168-4180
-
-
Linder, P.1
-
28
-
-
38649089789
-
The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I
-
Cui S, et al. (2008) The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol Cell 29:169-179.
-
(2008)
Mol Cell
, vol.29
, pp. 169-179
-
-
Cui, S.1
-
29
-
-
33750984771
-
RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates
-
Pichlmair A, et al. (2006) RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314:997-1001.
-
(2006)
Science
, vol.314
, pp. 997-1001
-
-
Pichlmair, A.1
-
30
-
-
0035817255
-
Transplanted long-term cultured pre-BI cells expressing calpastatin are resistant to B cell receptor-induced apoptosis
-
Ruiz-Vela A, et al. (2001) Transplanted long-term cultured pre-BI cells expressing calpastatin are resistant to B cell receptor-induced apoptosis. J Exp Med 194:247-254.
-
(2001)
J Exp Med
, vol.194
, pp. 247-254
-
-
Ruiz-Vela, A.1
|