-
1
-
-
0025183708
-
Basic Local Alignment Search Tool
-
Altschul S, Gish W, Miller W, Myers E, Lipman D. Basic Local Alignment Search Tool. Journal Molecular Biology. 1990; 215: 403-410.
-
(1990)
Journal Molecular Biology
, vol.215
, pp. 403-410
-
-
Altschul, S.1
Gish, W.2
Miller, W.3
Myers, E.4
Lipman, D.5
-
2
-
-
0025272240
-
Rapid and sensitive sequence comparison with FASTP and FASTA
-
Pearson W. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1985; 183: 63-98.
-
(1985)
Methods Enzymol
, vol.183
, pp. 63-98
-
-
Pearson, W.1
-
3
-
-
0036308741
-
Enzyme Function Less Conserved than Anticipated
-
Rost B. Enzyme Function Less Conserved than Anticipated. Journal of Molecular Biology. 2002; 318(2): 595-608.
-
(2002)
Journal of Molecular Biology
, vol.318
, Issue.2
, pp. 595-608
-
-
Rost, B.1
-
4
-
-
74549221383
-
Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies
-
Schnoes A, Brown S, Dodevski I, Babbitt P. Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies. PLoS Computational Biology. 2009; 5(12): e1000605.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.12
-
-
Schnoes, A.1
Brown, S.2
Dodevski, I.3
Babbitt, P.4
-
5
-
-
14644389482
-
Percolation of annotation errors through hierarchically structured protein sequence databases
-
Gilks W, Audit B, Angelis D, Tsoka S, Ouzounis C. Percolation of annotation errors through hierarchically structured protein sequence databases. Mathematical Biosciences. 2005; 193(2): 223-234.
-
(2005)
Mathematical Biosciences
, vol.193
, Issue.2
, pp. 223-234
-
-
Gilks, W.1
Audit, B.2
Angelis, D.3
Tsoka, S.4
Ouzounis, C.5
-
6
-
-
34748833491
-
Exploring inconsistencies in genome-wide protein function annotations: A machine learning approach
-
Andorf C, Dobbs D, Honavar V. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach. BMC Bioinformatics. 2007; 8(1): 284.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 284
-
-
Andorf, C.1
Dobbs, D.2
Honavar, V.3
-
7
-
-
0034069495
-
Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
-
Ashburner M, Ball C, Blake J, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 2000; 25(1): 25-29.
-
(2000)
Nature Genetics
, vol.25
, Issue.1
, pp. 25-29
-
-
Ashburner, M.1
Ball, C.2
Blake, J.3
-
10
-
-
0346731042
-
Automatic prediction of protein function
-
Rost B, Liu J, Nair R, Wrzeszczynski K, Ofran Y. Automatic prediction of protein function. Cellular and Molecular Life Sciences. 2003; 60: 2637-2650.
-
(2003)
Cellular and Molecular Life Sciences
, vol.60
, pp. 2637-2650
-
-
Rost, B.1
Liu, J.2
Nair, R.3
Wrzeszczynski, K.4
Ofran, Y.5
-
11
-
-
60849128834
-
Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome
-
Galea C, High A, Obenauer J, et al. Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research. 2009; 8(1): 211-226.
-
(2009)
Journal of Proteome Research
, vol.8
, Issue.1
, pp. 211-226
-
-
Galea, C.1
High, A.2
Obenauer, J.3
-
12
-
-
70349705654
-
Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins
-
Mohan A, Uversky V, Radivojac P. Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins. PLoS Computational Biology. 2009; 5(9): e1000497.
-
(2009)
PLoS Computational Biology
, vol.5
, Issue.9
-
-
Mohan, A.1
Uversky, V.2
Radivojac, P.3
-
13
-
-
34548606295
-
Recent progress in protein subcellular location prediction
-
Chou K, Shen H. Recent progress in protein subcellular location prediction. Analytical Biochemistry. 2007; 370(1): 1-16.
-
(2007)
Analytical Biochemistry
, vol.370
, Issue.1
, pp. 1-16
-
-
Chou, K.1
Shen, H.2
-
14
-
-
0033963089
-
The ENZYME database in 2000
-
Bairoch A. The ENZYME database in 2000. Nucleic Acids Research. 2000; 28(1): 304-305.
-
(2000)
Nucleic Acids Research
, vol.28
, Issue.1
, pp. 304-305
-
-
Bairoch, A.1
-
15
-
-
9144257282
-
The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
-
Ruepp A, Zollner A, Maier D, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research. 2004; 32(18): 5539-5545.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.18
, pp. 5539-5545
-
-
Ruepp, A.1
Zollner, A.2
Maier, D.3
-
16
-
-
0034308142
-
Practical limits of function prediction. Proteins: Structure
-
Devos D, Valencia A. Practical limits of function prediction. Proteins: Structure, Function, and Bioinformatics. 2000; 41(1): 98-107.
-
(2000)
Function, and Bioinformatics
, vol.41
, Issue.1
, pp. 98-107
-
-
Devos, D.1
Valencia, A.2
-
17
-
-
0034677669
-
Assessing annotation transfer for genomics: Quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores
-
Wilson CA, Kreychman J, Gerstein M. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. Journal of Molecular Biology. 2000; 297(1): 233-249.
-
(2000)
Journal of Molecular Biology
, vol.297
, Issue.1
, pp. 233-249
-
-
Wilson, C.A.1
Kreychman, J.2
Gerstein, M.3
-
19
-
-
33750125547
-
Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity
-
Han L, Cui J, Lin H, et al. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics. 2006; 6(14): 4023-4037.
-
(2006)
Proteomics
, vol.6
, Issue.14
, pp. 4023-4037
-
-
Han, L.1
Cui, J.2
Lin, H.3
-
20
-
-
79959481526
-
Recent progress in predicting protein subsubcellular locations
-
Du P, Li T, Wang X. Recent progress in predicting protein subsubcellular locations. Expert Review of Proteomics. 2011; 8(3): 391-404.
-
(2011)
Expert Review of Proteomics
, vol.8
, Issue.3
, pp. 391-404
-
-
Du, P.1
Li, T.2
Wang, X.3
-
21
-
-
77957202889
-
A systematic study of genome context methods: Calibration, normalization and combination
-
Ferrer L, Dale J, Karp P. A systematic study of genome context methods: calibration, normalization and combination. BMC Bioinformatics. 2010; 11(1): 493.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 493
-
-
Ferrer, L.1
Dale, J.2
Karp, P.3
-
22
-
-
0033301555
-
Use of Contiguity on the Chromosome to Predict Functional Coupling
-
Overbeek R, Fonstein M, D'Souza M, Pusch GD, Maltsev N. Use of Contiguity on the Chromosome to Predict Functional Coupling. In Silico Biology. 1999; 1(2): 93-108.
-
(1999)
In Silico Biology
, vol.1
, Issue.2
, pp. 93-108
-
-
Overbeek, R.1
Fonstein, M.2
D'Souza, M.3
Pusch, G.D.4
Maltsev, N.5
-
23
-
-
0033523989
-
Protein interaction maps for complete genomes based on gene fusion events
-
Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction maps for complete genomes based on gene fusion events. Nature. 1999; 402(6757): 86-90.
-
(1999)
Nature
, vol.402
, Issue.6757
, pp. 86-90
-
-
Enright, A.J.1
Iliopoulos, I.2
Kyrpides, N.C.3
Ouzounis, C.A.4
-
24
-
-
0033551248
-
Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles
-
Pellegrini M, Marcotte EM, Thompson MJ, Eisenberg D, Yeates TO. Assigning protein functions by comparative genome analysis: Protein phylogenetic profiles. Proceedings of the National Academy of Sciences. 1999; 96(8): 4285-4288.
-
(1999)
Proceedings of the National Academy of Sciences
, vol.96
, Issue.8
, pp. 4285-4288
-
-
Pellegrini, M.1
Marcotte, E.M.2
Thompson, M.J.3
Eisenberg, D.4
Yeates, T.O.5
-
26
-
-
0037050026
-
Functional organization of the yeast proteome by systematic analysis of protein complexes
-
Gavin A, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002; 415(6868): 141-147.
-
(2002)
Nature
, vol.415
, Issue.6868
, pp. 141-147
-
-
Gavin, A.1
Bosche, M.2
Krause, R.3
-
27
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
Eisen MB, Spellman PT, Brown PO, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences. 1998; 95(25): 14863-14868.
-
(1998)
Proceedings of the National Academy of Sciences
, vol.95
, Issue.25
, pp. 14863-14868
-
-
Eisen, M.B.1
Spellman, P.T.2
Brown, P.O.3
Botstein, D.4
-
28
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007; 23(19): 2507-2517.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larranaga, P.3
-
36
-
-
0000014486
-
Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
-
Forgy E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics. 1965; 21: 768-780.
-
(1965)
Biometrics
, vol.21
, pp. 768-780
-
-
Forgy, E.1
-
37
-
-
0029051959
-
Novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space
-
Chou K. A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins: Structure, Function, and Bioinformatics. 1995; 21(4): 319-344.
-
(1995)
Proteins Structure, Function, and Bioinformatics
, vol.21
, Issue.4
, pp. 319-344
-
-
Chou, K.A.1
-
38
-
-
0035874091
-
Prediction of protein cellular attributes using pseudoamino acid composition
-
Chou K. Prediction of protein cellular attributes using pseudoamino acid composition. Proteins: Structure, Function, and Bioinformatics. 2001; 43(3): 246-255.
-
(2001)
Proteins: Structure, Function, and Bioinformatics
, vol.43
, Issue.3
, pp. 246-255
-
-
Chou, K.1
-
39
-
-
0004094721
-
-
Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press
-
Scholkopf B, Smola AJ. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. Cambridge, MA: MIT Press; 2002.
-
(2002)
Learning With Kernels: Support Vector Machines
-
-
Scholkopf, B.1
Smola, A.J.2
-
40
-
-
0036100170
-
Large-Scale Protein Annotation through Gene Ontology
-
Xie H, Wasserman A, Levine Z, Novik A, Grebinskiy V, Shoshan A, et al. Large-Scale Protein Annotation through Gene Ontology. Genome Research. 2002; 12(5): 785-794.
-
(2002)
Genome Research
, vol.12
, Issue.5
, pp. 785-794
-
-
Xie, H.1
Wasserman, A.2
Levine, Z.3
Novik, A.4
Grebinskiy, V.5
Shoshan, A.6
-
41
-
-
0242362191
-
Valencia A. Automatic annotation of protein function based on family identification. Proteins: Structure
-
Abascal F, Valencia A. Automatic annotation of protein function based on family identification. Proteins: Structure, Function, and Bioinformatics. 2003; 53(3): 683-692.
-
(2003)
Function, and Bioinformatics
, vol.53
, Issue.3
, pp. 683-692
-
-
Abascal, F.1
-
42
-
-
84862204079
-
ProtoNet 6.0: Organizing 10 million protein sequences in a compact hierarchical family tree
-
Rappoport N, Karsenty S, Stern A, Linial N, Linial M. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Research. 2012; 40: D313-D320.
-
(2012)
Nucleic Acids Research
, vol.40
-
-
Rappoport, N.1
Karsenty, S.2
Stern, A.3
Linial, N.4
Linial, M.5
-
43
-
-
0030801002
-
Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs
-
Altschul S, Madden T, Schaffer A, et al. Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs. Nucleic Acids Research. 1997; 25: 3389-3402.
-
(1997)
Nucleic Acids Research
, vol.25
, pp. 3389-3402
-
-
Altschul, S.1
Madden, T.2
Schaffer, A.3
-
44
-
-
0012293533
-
Homology Induction: The use of machine learning to improve sequence similarity searches
-
Karwath A, King R. Homology Induction: the use of machine learning to improve sequence similarity searches. BMC Bioinformatics. 2002; 3: 11.
-
(2002)
BMC Bioinformatics
, vol.3
, pp. 11
-
-
Karwath, A.1
King, R.2
-
45
-
-
0028429573
-
Inductive logic programming: Theory and methods
-
Muggleton S, De Raedt L. Inductive logic programming: Theory and methods. Journal of Logic Programming. 1994; 19/20: 629-679.
-
(1994)
Journal of Logic Programming
, vol.19
, Issue.20
, pp. 629-679
-
-
Muggleton, S.1
de Raedt, L.2
-
46
-
-
40749093745
-
SVM-HUSTLE-An iterative semi-supervised machine learning approach for pairwise protein remote homology detection
-
Shah AR, Oehmen CS, Webb-Robertson B. SVM-HUSTLE-An iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Bioinformatics. 2008; 24(6): 783-790.
-
(2008)
Bioinformatics
, vol.24
, Issue.6
, pp. 783-790
-
-
Shah, A.R.1
Oehmen, C.S.2
Webb-Robertson, B.3
-
47
-
-
77952309493
-
Physicochemical property distributions for accurate and rapid pairwise protein homology detection
-
Webb-Robertson BJ, Ratuiste K, Oehmen C. Physicochemical property distributions for accurate and rapid pairwise protein homology detection. BMC Bioinformatics. 2010; 11(1): 145.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 145
-
-
Webb-Robertson, B.J.1
Ratuiste, K.2
Oehmen, C.3
-
48
-
-
79958759599
-
Analysis of protein function and its prediction from amino acid sequence
-
Clark WT, Radivojac P. Analysis of protein function and its prediction from amino acid sequence. Proteins: Structure, Function, and Bioinformatics. 2011; 79(7): 2086-2096.
-
(2011)
Proteins: Structure Function, and Bioinformatics
, vol.79
, Issue.7
, pp. 2086-2096
-
-
Clark, W.T.1
Radivojac, P.2
-
49
-
-
77957945532
-
GOPred: GO Molecular Function Prediction by Combined Classifiers
-
Sara OS, Atalay V, Cetin-Atalay R. GOPred: GO Molecular Function Prediction by Combined Classifiers. PLoS ONE. 2010; 5(8): e12382.
-
(2010)
PLoS ONE
, vol.5
, Issue.8
-
-
Sara, O.S.1
Atalay, V.2
Cetin-Atalay, R.3
-
50
-
-
0038141205
-
Classification schemes for protein structure and function
-
Ouzounis CA, Coulson RMR, Enright AJ, Kunin V, Pereira-Leal JB. Classification schemes for protein structure and function. Nat Rev Genet. 2003; 4(7): 508-519.
-
(2003)
Nat Rev Genet
, vol.4
, Issue.7
, pp. 508-519
-
-
Ouzounis, C.A.1
Coulson, R.M.R.2
Enright, A.J.3
Kunin, V.4
Pereira-Leal, J.B.5
-
51
-
-
0000120520
-
ProDom: Automated clustering of homologous domains
-
Servant F, Bru C, Carrere S, et al. ProDom: Automated clustering of homologous domains. Briefings in Bioinformatics. 2002; 3(3): 246-251.
-
(2002)
Briefings In Bioinformatics
, vol.3
, Issue.3
, pp. 246-251
-
-
Servant, F.1
Bru, C.2
Carrere, S.3
-
52
-
-
26244437278
-
Protein Family Clustering for Structural Genomics
-
Yan Y, Moult J. Protein Family Clustering for Structural Genomics. Journal of Molecular Biology. 2005; 353(3): 744-759.
-
(2005)
Journal of Molecular Biology
, vol.353
, Issue.3
, pp. 744-759
-
-
Yan, Y.1
Moult, J.2
-
53
-
-
0036529479
-
An efficient algorithm for large-scale detection of protein families
-
Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research. 2002; 30(7): 1575-1584.
-
(2002)
Nucleic Acids Research
, vol.30
, Issue.7
, pp. 1575-1584
-
-
Enright, A.J.1
van Dongen, S.2
Ouzounis, C.A.3
-
54
-
-
0141519279
-
OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes
-
Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research. 2003; 13(9): 2178-2189.
-
(2003)
Genome Research
, vol.13
, Issue.9
, pp. 2178-2189
-
-
Li, L.1
Stoeckert, C.J.2
Roos, D.S.3
-
55
-
-
0033965852
-
ProtoMap: Automatic classification of protein sequences and hierarchy of protein families
-
Yona G, Linial N, Linial M. ProtoMap: automatic classification of protein sequences and hierarchy of protein families. Nucleic Acids Research. 2000; 28(1): 49-55.
-
(2000)
Nucleic Acids Research
, vol.28
, Issue.1
, pp. 49-55
-
-
Yona, G.1
Linial, N.2
Linial, M.3
-
56
-
-
84859778326
-
Highquality sequence clustering guided by network topology and multiple alignment likelihood
-
Miele V, Penel S, Daubin V, Picard F, Kahn D, Duret L. Highquality sequence clustering guided by network topology and multiple alignment likelihood. Bioinformatics. 2012; 28(8): 1078-1085.
-
(2012)
Bioinformatics
, vol.28
, Issue.8
, pp. 1078-1085
-
-
Miele, V.1
Penel, S.2
Daubin, V.3
Picard, F.4
Kahn, D.5
Duret, L.6
-
57
-
-
77950430912
-
SCPS: A fast implementation of a spectral method for detecting protein families on a genome-wide scale
-
Nepusz T, Sasidharan R, Paccanaro A. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale. BMC Bioinformatics. 2010; 11(1): 120.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 120
-
-
Nepusz, T.1
Sasidharan, R.2
Paccanaro, A.3
-
58
-
-
79551607374
-
Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution
-
Apeltsin L, Morris JH, Babbitt PC, Ferrin TE. Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution. Bioinformatics. 2011; 27(3): 326-333.
-
(2011)
Bioinformatics
, vol.27
, Issue.3
, pp. 326-333
-
-
Apeltsin, L.1
Morris, J.H.2
Babbitt, P.C.3
Ferrin, T.E.4
-
59
-
-
32644443138
-
Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes
-
Uchiyama I. Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes. Nucleic Acids Research. 2006; 34(2): 647-658.
-
(2006)
Nucleic Acids Research
, vol.34
, Issue.2
, pp. 647-658
-
-
Uchiyama, I.1
-
60
-
-
0035174881
-
CluSTr: A database of clusters of SWISS-PROT+TrEMBL proteins
-
Kriventseva EV, Fleischmann W, Zdobnov EM, Apweiler R. CluSTr: a database of clusters of SWISS-PROT+TrEMBL proteins. Nucleic Acids Research. 2001; 29(1): 33-36.
-
(2001)
Nucleic Acids Research
, vol.29
, Issue.1
, pp. 33-36
-
-
Kriventseva, E.V.1
Fleischmann, W.2
Zdobnov, E.M.3
Apweiler, R.4
-
61
-
-
0001899680
-
The metric space of proteinscomparative study of clustering algorithms
-
Sasson O, Linial N, Linial M. The metric space of proteinscomparative study of clustering algorithms. Bioinformatics. 2002; 18(suppl 1): S14-S21.
-
(2002)
Bioinformatics
, vol.18
, Issue.SUPPL. 1
-
-
Sasson, O.1
Linial, N.2
Linial, M.3
-
62
-
-
27644494405
-
Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks
-
Ma Q, Chirn GW, Cai R, Szustakowski J, Nirmala N. Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks. BMC Bioinformatics. 2005; 6(1): 242.
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.1
, pp. 242
-
-
Ma, Q.1
Chirn, G.W.2
Cai, R.3
Szustakowski, J.4
Nirmala, N.5
-
63
-
-
33748430331
-
Exploiting homogeneity in protein sequence clusters for construction of protein family hierarchies
-
Chen C, Chung W, Su C. Exploiting homogeneity in protein sequence clusters for construction of protein family hierarchies. Pattern Recognition. 2006; 39(12): 2356-2369.
-
(2006)
Pattern Recognition
, vol.39
, Issue.12
, pp. 2356-2369
-
-
Chen, C.1
Chung, W.2
Su, C.3
-
64
-
-
25444458854
-
Super paramagnetic clustering of protein sequences
-
Tetko I, Facius A, Ruepp A, Mewes HW. Super paramagnetic clustering of protein sequences. BMC Bioinformatics. 2005; 6(1): 82.
-
(2005)
BMC Bioinformatics
, vol.6
, Issue.1
, pp. 82
-
-
Tetko, I.1
Facius, A.2
Ruepp, A.3
Mewes, H.W.4
-
65
-
-
65549168659
-
Partitioning clustering algorithms for protein sequence data sets
-
Fayech S, Essoussi N, Limam M. Partitioning clustering algorithms for protein sequence data sets. BioData Mining. 2009; 2(1): 3.
-
(2009)
BioData Mining
, vol.2
, Issue.1
, pp. 3
-
-
Fayech, S.1
Essoussi, N.2
Limam, M.3
-
66
-
-
0031743421
-
Profile hidden Markov models
-
Eddy S. Profile hidden Markov models. Bioinformatics. 1998; 14: 755-763.
-
(1998)
Bioinformatics
, vol.14
, pp. 755-763
-
-
Eddy, S.1
-
67
-
-
0031715982
-
Protein structure alignment by incremental combinatorial extension (CE) of the optimal path
-
Shindyalov I, Bourne P. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering. 1998; 11(9): 739-747.
-
(1998)
Protein Engineering
, vol.11
, Issue.9
, pp. 739-747
-
-
Shindyalov, I.1
Bourne, P.2
-
68
-
-
0027440362
-
Protein Structure Comparison by Alignment of Distance Matrices
-
Holm L, Sander C. Protein Structure Comparison by Alignment of Distance Matrices. Journal of Molecular Biology. 1993; 233(1): 123-138.
-
(1993)
Journal of Molecular Biology
, vol.233
, Issue.1
, pp. 123-138
-
-
Holm, L.1
Sander, C.2
-
69
-
-
0028838717
-
Threading a database of protein cores
-
Madej T, Gibrat J, Bryant S. Threading a database of protein cores. Proteins. 1995; 23(3): 356-369.
-
(1995)
Proteins
, vol.23
, Issue.3
, pp. 356-369
-
-
Madej, T.1
Gibrat, J.2
Bryant, S.3
-
70
-
-
85187883933
-
Improving model construction of profile HMMs for remote homology detection through structural alignment
-
Bernardes J, Davila A, Costa V, Zaverucha G. Improving model construction of profile HMMs for remote homology detection through structural alignment. BMC Bioinformatics. 2007; 435: 1-12.
-
(2007)
BMC Bioinformatics
, vol.435
, pp. 1-12
-
-
Bernardes, J.1
Davila, A.2
Costa, V.3
Zaverucha, G.4
-
71
-
-
33646483032
-
The Abundance of Short Proteins in the Mammalian Proteome
-
Frith MC, Forrest AR, Nourbakhsh E, et al. The Abundance of Short Proteins in the Mammalian Proteome. PLoS Genetic. 2006; 2(4): e52.
-
(2006)
PLoS Genetic
, vol.2
, Issue.4
-
-
Frith, M.C.1
Forrest, A.R.2
Nourbakhsh, E.3
-
72
-
-
0029387830
-
Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition
-
Wu C, Berry M, Shivakumar S, McLarty J. Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition. Machine Learning. 1995; 21: 177-193.
-
(1995)
Machine Learning
, vol.21
, pp. 177-193
-
-
Wu, C.1
Berry, M.2
Shivakumar, S.3
McLarty, J.4
-
73
-
-
80052881580
-
Protein Classification with Extended-Sequence Coding by Sliding Window
-
De Souza Rodrigues T, Cardoso FC, Teixeira SMR, Oliveira SC, Braga AP. Protein Classification with Extended-Sequence Coding by Sliding Window. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2011; 8: 1721-1726.
-
(2011)
IEEE/ACM Transactions On Computational Biology and Bioinformatics
, vol.8
, pp. 1721-1726
-
-
De Souza Rodrigues, T.1
Cardoso, F.C.2
Teixeira, S.M.R.3
Oliveira, S.C.4
Braga, A.P.5
-
74
-
-
0035882573
-
PRED-CLASS: Cascading neural networks for generalized protein classification and genome-wide applications. Proteins: Structure
-
Pasquier C, Promponas VJ, Hamodrakas SJ. PRED-CLASS: Cascading neural networks for generalized protein classification and genome-wide applications. Proteins: Structure, Function, and Bioinformatics. 2001; 44(3): 361-369.
-
(2001)
Function, and Bioinformatics
, vol.44
, Issue.3
, pp. 361-369
-
-
Pasquier, C.1
Promponas, V.J.2
Hamodrakas, S.J.3
-
75
-
-
13444292042
-
Motif-Based Protein Sequence Classification Using Neural Networks
-
Blekas K, Fotiadis DI, Likas A. Motif-Based Protein Sequence Classification Using Neural Networks. Journal of Computational Biology. 2005; 12(1): 64-82.
-
(2005)
Journal of Computational Biology
, vol.12
, Issue.1
, pp. 64-82
-
-
Blekas, K.1
Fotiadis, D.I.2
Likas, A.3
-
76
-
-
0029933832
-
Motif Identification Neural Design For Rapid And Sensitive Protein Family Search
-
Hsi-Lien CW, Wu CH, lien Chen H, ju Lo C, Mclarty JW. Motif Identification Neural Design For Rapid And Sensitive Protein Family Search. CABIOS. 1996; 12: 109-118.
-
(1996)
CABIOS
, vol.12
, pp. 109-118
-
-
Hsi-Lien, C.W.1
Wu, C.H.2
Lien Chen, H.3
Ju Lo, C.4
McLarty, J.W.5
-
77
-
-
34547871261
-
Fast model-based protein homology detection without alignment
-
Hochreiter S, Heusel M, Obermayer K. Fast model-based protein homology detection without alignment. Bioinformatics. 2007; 23(14): 1728-1736.
-
(2007)
Bioinformatics
, vol.23
, Issue.14
, pp. 1728-1736
-
-
Hochreiter, S.1
Heusel, M.2
Obermayer, K.3
-
78
-
-
76849106090
-
Classification of rice seed storage proteins using neural networks
-
Marla S, Bharatiya D, Bala M, Singh V, Kumar A. Classification of rice seed storage proteins using neural networks. Journal of Plant Biochemistry and Biotechnology. 2010; 19(1): 123-126.
-
(2010)
Journal of Plant Biochemistry and Biotechnology
, vol.19
, Issue.1
, pp. 123-126
-
-
Marla, S.1
Bharatiya, D.2
Bala, M.3
Singh, V.4
Kumar, A.5
-
79
-
-
23844474057
-
Neural networks for protein classification
-
Weinert W, Lopes H. Neural networks for protein classification. Appl Bioinformatics. 2004; 3: 41-48.
-
(2004)
Appl Bioinformatics
, vol.3
, pp. 41-48
-
-
Weinert, W.1
Lopes, H.2
-
80
-
-
33750304849
-
Gene function classification using Bayesian models with hierarchy-based priors
-
Shahbaba B, Neal R. Gene function classification using Bayesian models with hierarchy-based priors. BMC Bioinformatics. 2006; 7(1): 448.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 448
-
-
Shahbaba, B.1
Neal, R.2
-
81
-
-
3042621436
-
Prediction of Saccharomyces cerevisiae protein functional class from functional domain composition
-
Cai Y, Doig AJ. Prediction of Saccharomyces cerevisiae protein functional class from functional domain composition. Bioinformatics. 2004; 20(8): 1292-1300.
-
(2004)
Bioinformatics
, vol.20
, Issue.8
, pp. 1292-1300
-
-
Cai, Y.1
Doig, A.J.2
-
82
-
-
13944255457
-
Protein classification based on text document classification techniques. Proteins
-
Cheng BYM, Carbonell JG, Klein-Seetharaman J. Protein classification based on text document classification techniques. Proteins: Structure, Function, and Bioinformatics. 2005; 58(4): 955-970.
-
(2005)
Structure, Function, and Bioinformatics
, vol.58
, Issue.4
, pp. 955-970
-
-
Cheng, B.Y.M.1
Carbonell, J.G.2
Klein-Seetharaman, J.3
-
83
-
-
1542714925
-
Mismatch String Kernels for Discriminative Protein Classification
-
Leslie C, Eskin E, Cohen A, Weston J, Noble W. Mismatch String Kernels for Discriminative Protein Classification. Bioinformatics. 2004; 20: 467-476.
-
(2004)
Bioinformatics
, vol.20
, pp. 467-476
-
-
Leslie, C.1
Eskin, E.2
Cohen, A.3
Weston, J.4
Noble, W.5
-
85
-
-
33748682730
-
Remote homology detection based on oligomer distances
-
Lingner T, Meinicke P. Remote homology detection based on oligomer distances. Bioinformatics. 2006; 22: 2224-2231.
-
(2006)
Bioinformatics
, vol.22
, pp. 2224-2231
-
-
Lingner, T.1
Meinicke, P.2
-
86
-
-
4944225083
-
Remote homology detection: A motif based approach
-
Ben-Hur A, Brutlag D. Remote homology detection: a motif based approach. Bioinformatics. 2003; 19(suppl 1): i26-i33.
-
(2003)
Bioinformatics
, vol.19
, Issue.SUPPL. 1
-
-
Ben-Hur, A.1
Brutlag, D.2
-
87
-
-
33846947543
-
Motif kernel generated by genetic programming improves remote homology and fold detection
-
Handstad T, Hestnes A, Saetrom P. Motif kernel generated by genetic programming improves remote homology and fold detection. BMC Bioinformatics. 2007; 8(1): 23.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 23
-
-
Handstad, T.1
Hestnes, A.2
Saetrom, P.3
-
88
-
-
0344033670
-
Efficient remote homology detection using local structure
-
Hou Y, Hsu W, Lee ML, Bystroff C. Efficient remote homology detection using local structure. Bioinformatics. 2003; 19(17): 2294-2301.
-
(2003)
Bioinformatics
, vol.19
, Issue.17
, pp. 2294-2301
-
-
Hou, Y.1
Hsu, W.2
Lee, M.L.3
Bystroff, C.4
-
89
-
-
6344261961
-
Remote homolog detection using local sequence-structure correlations. Proteins
-
Hou Y, Hsu W, Lee ML, Bystroff C. Remote homolog detection using local sequence-structure correlations. Proteins: Structure, Function, and Bioinformatics. 2004; 57(3): 518-530.
-
(2004)
Structure, Function, and Bioinformatics
, vol.57
, Issue.3
, pp. 518-530
-
-
Hou, Y.1
Hsu, W.2
Lee, M.L.3
Bystroff, C.4
-
91
-
-
0742287001
-
Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships
-
Liao L, Noble WS. Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships. Journal of Computational Biology. 2004; 10: 857-868.
-
(2004)
Journal of Computational Biology
, vol.10
, pp. 857-868
-
-
Liao, L.1
Noble, W.S.2
-
92
-
-
37249054511
-
When Less Is More: Improving Classification of Protein Families with a Minimal Set of Global Features
-
vol. 4645 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
-
Varshavsky R, Fromer M, Man A, Linial M. When Less Is More: Improving Classification of Protein Families with a Minimal Set of Global Features. In: Algorithms in Bioinformatics. vol. 4645 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg; 2007. p. 12-24.
-
(2007)
Algorithms In Bioinformatics
, pp. 12-24
-
-
Varshavsky, R.1
Fromer, M.2
Man, A.3
Linial, M.4
-
93
-
-
75149194967
-
The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments
-
Huixiao H, Qilong H, Roger P, et al. The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments. Journal of Computational Biology. 2009; 16(12): 1671-1688.
-
(2009)
Journal of Computational Biology
, vol.16
, Issue.12
, pp. 1671-1688
-
-
Huixiao, H.1
Qilong, H.2
Roger, P.3
-
94
-
-
33748437922
-
Classifying protein sequences using hydropathy blocks
-
Huang DS, Zhao XM, Huang GB, Cheung YM. Classifying protein sequences using hydropathy blocks. Pattern Recognition. 2006; 39(12): 2293-2300.
-
(2006)
Pattern Recognition
, vol.39
, Issue.12
, pp. 2293-2300
-
-
Huang, D.S.1
Zhao, X.M.2
Huang, G.B.3
Cheung, Y.M.4
-
95
-
-
79955564229
-
Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
-
Mohabatkar H, Beigi MM, Esmaeili A. Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine. Journal of Theoretical Biology. 2011; 281(1): 18-23.
-
(2011)
Journal of Theoretical Biology
, vol.281
, Issue.1
, pp. 18-23
-
-
Mohabatkar, H.1
Beigi, M.M.2
Esmaeili, A.3
-
96
-
-
34247112742
-
Simple alignment-free methods for protein classification: A case study from G-protein-coupled receptors
-
Strope PK, Moriyama EN. Simple alignment-free methods for protein classification: A case study from G-protein-coupled receptors. Genomics. 2007; 89(5): 602-612.
-
(2007)
Genomics
, vol.89
, Issue.5
, pp. 602-612
-
-
Strope, P.K.1
Moriyama, E.N.2
-
97
-
-
78650649704
-
Prediction of Enzyme Subfamily Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad Feature
-
Wang Y, Wang X, Yang Z, Deng N. Prediction of Enzyme Subfamily Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad Feature. Protein and Peptide Letters. 2010; 17(11): 1441-1449.
-
(2010)
Protein and Peptide Letters
, vol.17
, Issue.11
, pp. 1441-1449
-
-
Wang, Y.1
Wang, X.2
Yang, Z.3
Deng, N.4
-
98
-
-
79953093817
-
A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models
-
Bernardes J, Carbone A, Zaverucha G. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models. BMC Bioinformatics. 2011; 12: 83.
-
(2011)
BMC Bioinformatics
, vol.12
, pp. 83
-
-
Bernardes, J.1
Carbone, A.2
Zaverucha, G.3
-
99
-
-
0041736652
-
Protein function classification via support vector machine approach
-
Cai C, Wang W, Sun L, Chen Y. Protein function classification via support vector machine approach. Mathematical Biosciences. 2003; 185: 111-122.
-
(2003)
Mathematical Biosciences
, vol.185
, pp. 111-122
-
-
Cai, C.1
Wang, W.2
Sun, L.3
Chen, Y.4
-
100
-
-
0042622243
-
SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence
-
Cai C, Han L, Ji Z, Chen X, Chen Y. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Research. 2003; 31(13): 3692-3697.
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.13
, pp. 3692-3697
-
-
Cai, C.1
Han, L.2
Ji, Z.3
Chen, X.4
Chen, Y.5
-
101
-
-
1442275650
-
Enzyme family classification by support vector machines. Proteins: Structure
-
Cai CZ, Han LY, Ji ZL, Chen YZ. Enzyme family classification by support vector machines. Proteins: Structure, Function, and Bioinformatics. 2004; 55(1): 66-76.
-
(2004)
Function, and Bioinformatics
, vol.55
, Issue.1
, pp. 66-76
-
-
Cai, C.Z.1
Han, L.Y.2
Ji, Z.L.3
Chen, Y.Z.4
-
102
-
-
49749089288
-
CyclinPred: A SVMBased Method for Predicting Cyclin Protein Sequences
-
Kalita MK, Nandal UK, Pattnaik A, et al. CyclinPred: A SVMBased Method for Predicting Cyclin Protein Sequences. PLoS ONE. 2008; 3(7): e2605.
-
(2008)
PLoS ONE
, vol.3
, Issue.7
-
-
Kalita, M.K.1
Nandal, U.K.2
Pattnaik, A.3
-
103
-
-
78751591575
-
Wavelet images and Chou's pseudo amino acid composition for protein classification
-
Nanni L, Brahnam S, Lumini A. Wavelet images and Chou's pseudo amino acid composition for protein classification. Amino Acids. 2011; p. 443-451.
-
(2011)
Amino Acids
, pp. 443-451
-
-
Nanni, L.1
Brahnam, S.2
Lumini, A.3
-
105
-
-
0038038642
-
Using a mixture of probabilistic decision trees for direct prediction of protein function. In: Proceedings of the seventh annual international conference on Research in computational molecular biology. RECOMB '03
-
Syed U, Yona G. Using a mixture of probabilistic decision trees for direct prediction of protein function. In: Proceedings of the seventh annual international conference on Research in computational molecular biology. RECOMB '03. ACM; 2003. p. 289-300.
-
ACM
, vol.2003
, pp. 289-300
-
-
Syed, U.1
Yona, G.2
-
106
-
-
22544442176
-
Decision tree based information integration for automated protein classification
-
Camoglu O, Can T, Singh A, Wang Y. Decision tree based information integration for automated protein classification. Journal of Bioinformatics and Computational Biology. 2005; 3(3): 717-742.
-
(2005)
Journal of Bioinformatics and Computational Biology
, vol.3
, Issue.3
, pp. 717-742
-
-
Camoglu, O.1
Can, T.2
Singh, A.3
Wang, Y.4
-
107
-
-
66549127733
-
Improving classification in protein structure databases using text mining
-
Koussounadis A, Redfern O, Jones D. Improving classification in protein structure databases using text mining. BMC Bioinformatics. 2009; 10(1): 129.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 129
-
-
Koussounadis, A.1
Redfern, O.2
Jones, D.3
-
108
-
-
77953934865
-
High performance set of PseAAC and sequence based descriptors for protein classification
-
Nanni L, Brahnam S, Lumini A. High performance set of PseAAC and sequence based descriptors for protein classification. Journal of Theoretical Biology. 2010; 266(1): 1-10.
-
(2010)
Journal of Theoretical Biology
, vol.266
, Issue.1
, pp. 1-10
-
-
Nanni, L.1
Brahnam, S.2
Lumini, A.3
-
109
-
-
35348973511
-
EzyPred: A top-down approach for predicting enzyme functional classes and subclasses
-
Shen H, Chou K. EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochemical and Biophysical Research Communications. 2007; 364(1): 53-59.
-
(2007)
Biochemical and Biophysical Research Communications
, vol.364
, Issue.1
, pp. 53-59
-
-
Shen, H.1
Chou, K.2
-
110
-
-
0042121304
-
LOC3D: Annotate sub-cellular localization for protein structures
-
Nair R, Rost B. LOC3D: annotate sub-cellular localization for protein structures. Nucleic Acids Research. 2003; 31(13): 3337-3340.
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.13
, pp. 3337-3340
-
-
Nair, R.1
Rost, B.2
-
111
-
-
70349254021
-
Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins
-
Millar AH, Carrie C, Pogson B, Whelan J. Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins. The Plant Cell Online. 2009; 21(6): 1625-1631.
-
(2009)
The Plant Cell Online
, vol.21
, Issue.6
, pp. 1625-1631
-
-
Millar, A.H.1
Carrie, C.2
Pogson, B.3
Whelan, J.4
-
112
-
-
0141515750
-
Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
-
Park K, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics. 2003; 19(13): 1656-1663.
-
(2003)
Bioinformatics
, vol.19
, Issue.13
, pp. 1656-1663
-
-
Park, K.1
Kanehisa, M.2
-
113
-
-
0037195776
-
Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location
-
Chou K, Cai Y. Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. Journal of Biological Chemistry. 2002; 277(48): 45765-45769.
-
(2002)
Journal of Biological Chemistry
, vol.277
, Issue.48
, pp. 45765-45769
-
-
Chou, K.1
Cai, Y.2
-
114
-
-
79952846620
-
Predicting protein subcellular localization by pseudo amino acid composition with a segment-weighted and features-combined approach
-
Wang W, Geng X, Dou Y, Liu T, Zheng X. Predicting protein subcellular localization by pseudo amino acid composition with a segment-weighted and features-combined approach. Protein and Peptide Letters. 2011; 18(5): 480-487.
-
(2011)
Protein and Peptide Letters
, vol.18
, Issue.5
, pp. 480-487
-
-
Wang, W.1
Geng, X.2
Dou, Y.3
Liu, T.4
Zheng, X.5
-
115
-
-
80052988268
-
Predicting apoptosis protein subcellular location with PseAAC by incorporating tripeptide composition
-
Liao B, Jiang J, Zeng Q, Zhu W. Predicting apoptosis protein subcellular location with PseAAC by incorporating tripeptide composition. Protein and Peptide Letters. 2011; 18(11): 1086-1092.
-
(2011)
Protein and Peptide Letters
, vol.18
, Issue.11
, pp. 1086-1092
-
-
Liao, B.1
Jiang, J.2
Zeng, Q.3
Zhu, W.4
-
116
-
-
78650178724
-
Prediction of subcellular location of mycobacterial protein using feature selection techniques
-
Lin H, Ding H, Guo F, Huang J. Prediction of subcellular location of mycobacterial protein using feature selection techniques. Molecular Diversity. 2010; 14: 667-671.
-
(2010)
Molecular Diversity
, vol.14
, pp. 667-671
-
-
Lin, H.1
Ding, H.2
Guo, F.3
Huang, J.4
-
117
-
-
47249153247
-
Predicting Protein Subcellular Location Using Chou's Pseudo Amino Acid Composition and Improved Hybrid Approach
-
Li F, Li Q. Predicting Protein Subcellular Location Using Chou's Pseudo Amino Acid Composition and Improved Hybrid Approach. Protein and Peptide Letters. 2008; 15(6): 612.
-
(2008)
Protein and Peptide Letters
, vol.15
, Issue.6
, pp. 612
-
-
Li, F.1
Li, Q.2
-
118
-
-
84862759124
-
Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: Approach from amino acid substitution matrix and auto covariance transformation
-
Yu X, Zheng X, Liu T, Dou Y, Wang J. Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: approach from amino acid substitution matrix and auto covariance transformation. Amino Acids. 2012; 42: 1619-1625.
-
(2012)
Amino Acids
, vol.42
, pp. 1619-1625
-
-
Yu, X.1
Zheng, X.2
Liu, T.3
Dou, Y.4
Wang, J.5
-
119
-
-
0035672036
-
Support vector machines for prediction of protein subcellular location by incorporating quasisequence-order effect
-
Cai Y, Liu X, Xu X, Chou K. Support vector machines for prediction of protein subcellular location by incorporating quasisequence-order effect. Journal of Cellular Biochemistry. 2002; 84(2): 343-348.
-
(2002)
Journal of Cellular Biochemistry
, vol.84
, Issue.2
, pp. 343-348
-
-
Cai, Y.1
Liu, X.2
Xu, X.3
Chou, K.4
-
120
-
-
27644504110
-
A novel representation of protein sequences for prediction of subcellular location using support vector machines
-
Matsuda S, Vert JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science. 2005; 14(11): 2804-2813.
-
(2005)
Protein Science
, vol.14
, Issue.11
, pp. 2804-2813
-
-
Matsuda, S.1
Vert, J.P.2
Saigo, H.3
Ueda, N.4
Toh, H.5
Akutsu, T.6
-
123
-
-
33846488101
-
Protein subcellular localization based on PSI-BLAST and machine learning
-
Guo J, Pu X, Lin Y, Leung H. Protein subcellular localization based on PSI-BLAST and machine learning. Journal of Bioinformatics and Computational Biology. 2006; 4(6): 1181-1195.
-
(2006)
Journal of Bioinformatics and Computational Biology
, vol.4
, Issue.6
, pp. 1181-1195
-
-
Guo, J.1
Pu, X.2
Lin, Y.3
Leung, H.4
-
124
-
-
37249082479
-
Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs
-
Zou L, Wang Z, Huang J. Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs. Journal of Genetics and Genomics. 2007; 34(12): 1080-1087.
-
(2007)
Journal of Genetics and Genomics
, vol.34
, Issue.12
, pp. 1080-1087
-
-
Zou, L.1
Wang, Z.2
Huang, J.3
-
125
-
-
0036006486
-
Artificial neural network model for predicting protein subcellular location
-
Cai Y, Liu X, Chou K. Artificial neural network model for predicting protein subcellular location. Computers & Chemistry. 2002; 26(2): 179-182.
-
(2002)
Computers & Chemistry
, vol.26
, Issue.2
, pp. 179-182
-
-
Cai, Y.1
Liu, X.2
Chou, K.3
-
126
-
-
80053937952
-
SCLpred: Protein subcellular localization prediction by N-to-1 neural networks
-
Mooney C, Wang Y, Pollastri G. SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics. 2011; 27(20): 2812-2819.
-
(2011)
Bioinformatics
, vol.27
, Issue.20
, pp. 2812-2819
-
-
Mooney, C.1
Wang, Y.2
Pollastri, G.3
-
127
-
-
34247218437
-
Prediction of subcellular protein localization based on functional domain composition
-
Jia P, Qian Z, Zeng Z, Cai Y, Li Y. Prediction of subcellular protein localization based on functional domain composition. Biochemical and Biophysical Research Communications. 2007; 357(2): 366-370.
-
(2007)
Biochemical and Biophysical Research Communications
, vol.357
, Issue.2
, pp. 366-370
-
-
Jia, P.1
Qian, Z.2
Zeng, Z.3
Cai, Y.4
Li, Y.5
-
128
-
-
77949956719
-
Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method
-
T W, J Y. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method. Protein and Peptide Letters. 2010; 17(1): 32-37.
-
(2010)
Protein and Peptide Letters
, vol.17
, Issue.1
, pp. 32-37
-
-
-
129
-
-
43549087105
-
Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: An approach by approximate entropy
-
Jiang X, Wei R, Zhang T, Gu Q. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein and Peptide Letters. 2008; 15(4): 392-396.
-
(2008)
Protein and Peptide Letters
, vol.15
, Issue.4
, pp. 392-396
-
-
Jiang, X.1
Wei, R.2
Zhang, T.3
Gu, Q.4
-
130
-
-
67650757436
-
A complexity-based method for predicting protein subcellular location
-
Zheng X, Liu T, Wang J. A complexity-based method for predicting protein subcellular location. Amino Acids. 2009; 37: 427-433.
-
(2009)
Amino Acids
, vol.37
, pp. 427-433
-
-
Zheng, X.1
Liu, T.2
Wang, J.3
-
131
-
-
0347093598
-
Prediction of protein subcellular locations using fuzzy k-NN method
-
Huang Y, Li Y. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics. 2004; 20(1): 21-28.
-
(2004)
Bioinformatics
, vol.20
, Issue.1
, pp. 21-28
-
-
Huang, Y.1
Li, Y.2
-
132
-
-
77951665965
-
Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection
-
Gu Q, Ding YS, Jiang XY, Zhang TL. Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection. Amino Acids. 2010; 38: 975-983.
-
(2010)
Amino Acids
, vol.38
, pp. 975-983
-
-
Gu, Q.1
Ding, Y.S.2
Jiang, X.Y.3
Zhang, T.L.4
-
133
-
-
84856376845
-
An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity
-
Li L, Zhang Y, Zou L, Li C, Yu B. An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity. PLoS ONE. 2012; 7(1): e31057.
-
(2012)
PLoS ONE
, vol.7
, Issue.1
-
-
Li, L.1
Zhang, Y.2
Zou, L.3
Li, C.4
Yu, B.5
-
134
-
-
77957297596
-
Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites
-
Shen H, Chou K. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. Journal of Biomolecular Structure & Dynamics. 2010; 28: 175-186.
-
(2010)
Journal of Biomolecular Structure & Dynamics
, vol.28
, pp. 175-186
-
-
Shen, H.1
Chou, K.2
-
135
-
-
33747197197
-
Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest Neighbor Classifiers
-
Chou K, Shen HB. Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest Neighbor Classifiers. Journal of Proteome Research. 2006; 5(8): 1888-1897.
-
(2006)
Journal of Proteome Research
, vol.5
, Issue.8
, pp. 1888-1897
-
-
Chou, K.1
Shen, H.B.2
-
136
-
-
0029307876
-
A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics
-
Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics, IEEE Transactions on. 1995; 25(5): 804-813.
-
(1995)
IEEE Transactions On
, vol.25
, Issue.5
, pp. 804-813
-
-
Denoeux, T.1
-
137
-
-
33846605183
-
Large-scale plant protein subcellular location prediction
-
Chou K, Shen HB. Large-scale plant protein subcellular location prediction. Journal of Cellular Biochemistry. 2007; 100(3): 665-678.
-
(2007)
Journal of Cellular Biochemistry
, vol.100
, Issue.3
, pp. 665-678
-
-
Chou, K.1
Shen, H.B.2
-
138
-
-
49749132014
-
Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine
-
Zhou X, Chen C, Li Z, Zou X. Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids. 2008; 35: 383-388.
-
(2008)
Amino Acids
, vol.35
, pp. 383-388
-
-
Zhou, X.1
Chen, C.2
Li, Z.3
Zou, X.4
-
139
-
-
12744279642
-
Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
-
Chou K. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005; 21(1): 10-19.
-
(2005)
Bioinformatics
, vol.21
, Issue.1
, pp. 10-19
-
-
Chou, K.1
-
140
-
-
33749646840
-
GNBSL: A new integrative system to predict the subcellular location for Gram-negative bacteria proteins
-
Guo J, Lin Y, Liu X. GNBSL: A new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteomics. 2006; 6(19): 5099-5105.
-
(2006)
Proteomics
, vol.6
, Issue.19
, pp. 5099-5105
-
-
Guo, J.1
Lin, Y.2
Liu, X.3
-
141
-
-
33746717455
-
Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains
-
Bulashevska A, Eils R. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinformatics. 2006; 7(1): 298.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 298
-
-
Bulashevska, A.1
Eils, R.2
-
142
-
-
79959741759
-
CE-PLoc: An ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition
-
Khan A, Majid A, Hayat M. CE-PLoc: An ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition. Computational Biology and Chemistry. 2011; 35(4): 218-229.
-
(2011)
Computational Biology and Chemistry
, vol.35
, Issue.4
, pp. 218-229
-
-
Khan, A.1
Majid, A.2
Hayat, M.3
-
143
-
-
37849032668
-
Unite and conquer': Enhanced prediction of protein subcellular localization by integrating multiple specialized tools
-
Shen Y, Burger G. Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools. BMC Bioinformatics. 2007; 8(1): 420.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 420
-
-
Shen, Y.1
Burger, G.2
-
144
-
-
0017309766
-
Structural patterns in globular proteins
-
Levitt M, Chothia C. Structural patterns in globular proteins. Nature. 1976; 261(5561): 552-558.
-
(1976)
Nature
, vol.261
, Issue.5561
, pp. 552-558
-
-
Levitt, M.1
Chothia, C.2
-
145
-
-
33645741221
-
Improvement of domain linker prediction by incorporating loop-length-dependent characteristics
-
Tanaka T, Yokoyama S, Kuroda Y. Improvement of domain linker prediction by incorporating loop-length-dependent characteristics. Peptide Science. 2006; 84(2): 161-168.
-
(2006)
Peptide Science
, vol.84
, Issue.2
, pp. 161-168
-
-
Tanaka, T.1
Yokoyama, S.2
Kuroda, Y.3
-
146
-
-
0030777303
-
CATH a hierarchic classification of protein domain structures
-
Orengo C, Michie A, Jones S, Jones D, Swindells M, Thornton J. CATH a hierarchic classification of protein domain structures. Structure. 1997; 5(8): 1093-1109.
-
(1997)
Structure
, vol.5
, Issue.8
, pp. 1093-1109
-
-
Orengo, C.1
Michie, A.2
Jones, S.3
Jones, D.4
Swindells, M.5
Thornton, J.6
-
147
-
-
0033977962
-
SCOP: A Structural Classification of Proteins database
-
Lo Conte L, Ailey B, Hubbard T, Brenner S, Murzin A, Chothia C. SCOP: a Structural Classification of Proteins database. Nucleic Acids Research. 2000; 28(1): 257-259.
-
(2000)
Nucleic Acids Research
, vol.28
, Issue.1
, pp. 257-259
-
-
Lo Conte, L.1
Ailey, B.2
Hubbard, T.3
Brenner, S.4
Murzin, A.5
Chothia, C.6
-
148
-
-
3042810008
-
Sequence-based prediction of protein domains
-
Liu J, Rost B. Sequence-based prediction of protein domains. Nucleic Acids Research. 2004; 32(12): 3522-3530.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.12
, pp. 3522-3530
-
-
Liu, J.1
Rost, B.2
-
149
-
-
0036288851
-
Characterization and prediction of linker sequences of multi-domain proteins by a neural network
-
Miyazaki S, Kuroda Y, Yokoyama S. Characterization and prediction of linker sequences of multi-domain proteins by a neural network. Journal of Structural and Functional Genomics. 2002; 2: 37-51.
-
(2002)
Journal of Structural and Functional Genomics
, vol.2
, pp. 37-51
-
-
Miyazaki, S.1
Kuroda, Y.2
Yokoyama, S.3
-
150
-
-
3142680264
-
Automatic prediction of protein domains from sequence information using a hybrid learning system
-
Nagarajan N, Yona G. Automatic prediction of protein domains from sequence information using a hybrid learning system. Bioinformatics. 2004; 20(9): 1335-1360.
-
(2004)
Bioinformatics
, vol.20
, Issue.9
, pp. 1335-1360
-
-
Nagarajan, N.1
Yona, G.2
-
151
-
-
33745101459
-
DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks
-
Cheng J, Sweredoski M, Baldi P. DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks. Data Mining and Knowledge Discovery. 2006; 13: 1-10.
-
(2006)
Data Mining and Knowledge Discovery
, vol.13
, pp. 1-10
-
-
Cheng, J.1
Sweredoski, M.2
Baldi, P.3
-
153
-
-
67650898274
-
Ab initio and homology based prediction of protein domains by recursive neural networks
-
Walsh I, Martin A, Mooney C, Rubagotti E, Vullo A, Pollastri G. Ab initio and homology based prediction of protein domains by recursive neural networks. BMC Bioinformatics. 2009; 10(1): 195.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 195
-
-
Walsh, I.1
Martin, A.2
Mooney, C.3
Rubagotti, E.4
Vullo, A.5
Pollastri, G.6
-
154
-
-
17844363963
-
PPRODO: Prediction of protein domain boundaries using neural networks. Proteins: Structure
-
Sim J, Kim SY, Lee J. PPRODO: Prediction of protein domain boundaries using neural networks. Proteins: Structure, Function, and Bioinformatics. 2005; 59(3): 627-632.
-
(2005)
Function, and Bioinformatics
, vol.59
, Issue.3
, pp. 627-632
-
-
Sim, J.1
Kim, S.Y.2
Lee, J.3
-
155
-
-
40549099733
-
Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins
-
Ye L, Liu T, Wu Z, Zhou R. Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins: Structure, Function, and Bioinformatics. 2008; 71(1): 300-307.
-
(2008)
Structure, Function, and Bioinformatics
, vol.71
, Issue.1
, pp. 300-307
-
-
Ye, L.1
Liu, T.2
Wu, Z.3
Zhou, R.4
-
156
-
-
41949117705
-
Improved general regression network for protein domain boundary prediction
-
Yoo P, Sikder A, Zhou B, Zomaya A. Improved general regression network for protein domain boundary prediction. BMC Bioinformatics. 2008; 9(Suppl 1): S12.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.SUPPL. 1
-
-
Yoo, P.1
Sikder, A.2
Zhou, B.3
Zomaya, A.4
-
157
-
-
0037460953
-
DomCut: Prediction of inter-domain linker regions in amino acid sequences
-
Suyama M, Ohara O. DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics. 2003; 19(5): 673-674.
-
(2003)
Bioinformatics
, vol.19
, Issue.5
, pp. 673-674
-
-
Suyama, M.1
Ohara, O.2
-
158
-
-
60149103898
-
Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics
-
Ebina T, Toh H, Kuroda Y. Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics. Peptide Science. 2009; 92(1): 1-8.
-
(2009)
Peptide Science
, vol.92
, Issue.1
, pp. 1-8
-
-
Ebina, T.1
Toh, H.2
Kuroda, Y.3
-
159
-
-
33947385412
-
Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index
-
Sikder A, Zomaya A. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index. BMC Bioinformatics. 2006; 7(Suppl 5): S6.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.SUPPL. 5
-
-
Sikder, A.1
Zomaya, A.2
-
160
-
-
77956938868
-
DomSVR: Domain boundary prediction with support vector regression from sequence information alone
-
Chen P, Liu C, Burge L, et al. DomSVR: domain boundary prediction with support vector regression from sequence information alone. Amino Acids. 2010; 39: 713-726.
-
(2010)
Amino Acids
, vol.39
, pp. 713-726
-
-
Chen, P.1
Liu, C.2
Burge, L.3
-
162
-
-
79951527638
-
DROP: An SVM domain linker predictor trained with optimal features selected by random forest
-
Ebina T, Toh H, Kuroda Y. DROP: an SVM domain linker predictor trained with optimal features selected by random forest. Bioinformatics. 2011; 27(4): 487-494.
-
(2011)
Bioinformatics
, vol.27
, Issue.4
, pp. 487-494
-
-
Ebina, T.1
Toh, H.2
Kuroda, Y.3
-
164
-
-
37249005327
-
Novel Method for Prediction of Protein Domain Using Distance-Based Maximal Entropy
-
Springer Berlin / Heidelberg;
-
Zou S, Huang Y, Wang Y, Hu C, Liang Y, Zhou C. A Novel Method for Prediction of Protein Domain Using Distance-Based Maximal Entropy. In: Advances in Neural Networks. vol. 4492 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg; 2007. p. 1264-1272.
-
(2007)
Advances In Neural Networks. Vol. 4492 of Lecture Notes In Computer Science
, pp. 1264-1272
-
-
Zou, S.1
Huang, Y.2
Wang, Y.3
Hu, C.4
Liang, Y.5
Zhou, C.A.6
-
165
-
-
0032932490
-
From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions
-
Zhang B, Rychlewski L, Pawlowski K, Fetrow JS, Skolnick J, Godzik A. From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions. Protein Science. 1999; 8(5): 1104-1115.
-
(1999)
Protein Science
, vol.8
, Issue.5
, pp. 1104-1115
-
-
Zhang, B.1
Rychlewski, L.2
Pawlowski, K.3
Fetrow, J.S.4
Skolnick, J.5
Godzik, A.6
-
166
-
-
3042681902
-
ConSeq: The identification of functionally and structurally important residues in protein sequences
-
Berezin C, Glaser F, Rosenberg J, et al. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics. 2004; 20(8): 1322-1324.
-
(2004)
Bioinformatics
, vol.20
, Issue.8
, pp. 1322-1324
-
-
Berezin, C.1
Glaser, F.2
Rosenberg, J.3
-
167
-
-
58149278887
-
Structural descriptor database: A new tool for sequence-based functional site prediction
-
Bernardes J, Fernandez J, Vasconcelos A. Structural descriptor database: a new tool for sequence-based functional site prediction. BMC Bioinformatics. 2008; 9(1): 492.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 492
-
-
Bernardes, J.1
Fernandez, J.2
Vasconcelos, A.3
-
168
-
-
0036087630
-
CDD: A database of conserved domain alignments with links to domain three-dimensional structure
-
Marchler-Bauer A, Panchenko AR, Shoemaker BA, Thiessen PA, Geer LY, Bryant SH. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Research. 2002; 30(1): 281-283.
-
(2002)
Nucleic Acids Research
, vol.30
, Issue.1
, pp. 281-283
-
-
Marchler-Bauer, A.1
Panchenko, A.R.2
Shoemaker, B.A.3
Thiessen, P.A.4
Geer, L.Y.5
Bryant, S.H.6
-
169
-
-
0141506120
-
Characterizing proteolytic cleavage site activity using bio-basis function neural networks
-
Thomson R, Hodgman TC, Yang ZR, Doyle AK. Characterizing proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics. 2003; 19(14): 1741-1747.
-
(2003)
Bioinformatics
, vol.19
, Issue.14
, pp. 1741-1747
-
-
Thomson, R.1
Hodgman, T.C.2
Yang, Z.R.3
Doyle, A.K.4
-
170
-
-
0037407113
-
Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
-
Nielsen M, Lundegaard C, Worning P, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science. 2003; 12(5): 1007-1017.
-
(2003)
Protein Science
, vol.12
, Issue.5
, pp. 1007-1017
-
-
Nielsen, M.1
Lundegaard, C.2
Worning, P.3
-
171
-
-
0042674397
-
Using A Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes
-
Gutteridge A, Bartlett GJ, Thornton JM. Using A Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes. Journal of Molecular Biology. 2003; 330(4): 719-734.
-
(2003)
Journal of Molecular Biology
, vol.330
, Issue.4
, pp. 719-734
-
-
Gutteridge, A.1
Bartlett, G.J.2
Thornton, J.M.3
-
172
-
-
77949602893
-
Active site prediction using evolutionary and structural information
-
Sankararaman S, Sha F, Kirsch JF, Jordan MI, Sjolander K. Active site prediction using evolutionary and structural information. Bioinformatics. 2010; 26(5): 617-624.
-
(2010)
Bioinformatics
, vol.26
, Issue.5
, pp. 617-624
-
-
Sankararaman, S.1
Sha, F.2
Kirsch, J.F.3
Jordan, M.I.4
Sjolander, K.5
-
173
-
-
0344405703
-
Prediction of Catalytic Residues in Enzymes Based on Known Tertiary Structure, Stability Profile, and Sequence Conservation
-
Ota M, Kinoshita K, Nishikawa K. Prediction of Catalytic Residues in Enzymes Based on Known Tertiary Structure, Stability Profile, and Sequence Conservation. Journal of Molecular Biology. 2003; 327(5): 1053-1064.
-
(2003)
Journal of Molecular Biology
, vol.327
, Issue.5
, pp. 1053-1064
-
-
Ota, M.1
Kinoshita, K.2
Nishikawa, K.3
-
174
-
-
33746950964
-
Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties
-
Petrova N, Wu C. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics. 2006; 7(1): 312.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.1
, pp. 312
-
-
Petrova, N.1
Wu, C.2
-
175
-
-
79955716853
-
Structure-based identification of catalytic residues. Proteins: Structure
-
Yahalom R, Reshef D, Wiener A, et al. Structure-based identification of catalytic residues. Proteins: Structure, Function, and Bioinformatics. 2011; 79(6): 1952-1963.
-
(2011)
Function, and Bioinformatics
, vol.79
, Issue.6
, pp. 1952-1963
-
-
Yahalom, R.1
Reshef, D.2
Wiener, A.3
-
176
-
-
0036435882
-
Analysis of Catalytic Residues in Enzyme Active Sites
-
Bartlett GJ, Porter CT, Borkakoti N, Thornton JM. Analysis of Catalytic Residues in Enzyme Active Sites. Journal of Molecular Biology. 2002; 324(1): 105-121.
-
(2002)
Journal of Molecular Biology
, vol.324
, Issue.1
, pp. 105-121
-
-
Bartlett, G.J.1
Porter, C.T.2
Borkakoti, N.3
Thornton, J.M.4
-
177
-
-
79958057774
-
Sequence Conservation in the Prediction of Catalytic Sites
-
Dou Y, Geng X, Gao H, Yang J, Zheng X, Wang J. Sequence Conservation in the Prediction of Catalytic Sites. The Protein Journal. 2011; 30: 229-239.
-
(2011)
The Protein Journal
, vol.30
, pp. 229-239
-
-
Dou, Y.1
Geng, X.2
Gao, H.3
Yang, J.4
Zheng, X.5
Wang, J.6
-
178
-
-
34548133728
-
Predicting functionally important residues from sequence conservation
-
Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23(15): 1875-1882.
-
(2007)
Bioinformatics
, vol.23
, Issue.15
, pp. 1875-1882
-
-
Capra, J.A.1
Singh, M.2
-
179
-
-
78449287914
-
Prediction of catalytic residues based on an overlapping amino acid classification
-
Dou Y, Zheng X, Yang J, Wang J. Prediction of catalytic residues based on an overlapping amino acid classification. Amino Acids. 2010; 39: 1353-1361.
-
(2010)
Amino Acids
, vol.39
, pp. 1353-1361
-
-
Dou, Y.1
Zheng, X.2
Yang, J.3
Wang, J.4
-
181
-
-
53749083563
-
Accurate sequence-based prediction of catalytic residues
-
Zhang T, Zhang H, Chen K, Shen S, Ruan J, Kurgan L. Accurate sequence-based prediction of catalytic residues. Bioinformatics. 2008; 24(20): 2329-2338.
-
(2008)
Bioinformatics
, vol.24
, Issue.20
, pp. 2329-2338
-
-
Zhang, T.1
Zhang, H.2
Chen, K.3
Shen, S.4
Ruan, J.5
Kurgan, L.6
-
182
-
-
38649108457
-
Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines
-
Tong W, Williams RJ, Wei Y, Murga LF, Ko J, Ondrechen MJ. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines. Protein Science. 2008; 17(2): 333-341.
-
(2008)
Protein Science
, vol.17
, Issue.2
, pp. 333-341
-
-
Tong, W.1
Williams, R.J.2
Wei, Y.3
Murga, L.F.4
Ko, J.5
Ondrechen, M.J.6
-
183
-
-
59149090849
-
Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties
-
Tong W, Wei Y, Murga LF, Ondrechen MJ, Williams RJ. Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties. PLoS Comput Biol. 2009; 5(1): e1000266.
-
(2009)
PLoS Comput Biol
, vol.5
, Issue.1
-
-
Tong, W.1
Wei, Y.2
Murga, L.F.3
Ondrechen, M.J.4
Williams, R.J.5
-
184
-
-
0026636320
-
A correlation-coefficient method to predicting protein-structural classes from amino acid compositions
-
Chou K, Zhang C. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. European Journal of Biochemistry. 1992; 207(2): 429-433.
-
(1992)
European Journal of Biochemistry
, vol.207
, Issue.2
, pp. 429-433
-
-
Chou, K.1
Zhang, C.2
-
185
-
-
76649141763
-
Prediction of protein structural classes for low-homology sequences based on predicted secondary structure
-
Yang J, Peng Z, Chen X. Prediction of protein structural classes for low-homology sequences based on predicted secondary structure. BMC Bioinformatics. 2010; 11(Suppl 1): S9.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.SUPPL. 1
-
-
Yang, J.1
Peng, Z.2
Chen, X.3
-
186
-
-
0022777472
-
Prediction of protein structural class from the amino acid sequence
-
Klein P, Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986; 25(9): 1659-1672.
-
(1986)
Biopolymers
, vol.25
, Issue.9
, pp. 1659-1672
-
-
Klein, P.1
Delisi, C.2
-
187
-
-
0027080161
-
An optimization approach to predicting protein structural class from amino acid composition
-
Zhang C, Chou K. An optimization approach to predicting protein structural class from amino acid composition. Protein Science. 1992; 1(3): 401-408.
-
(1992)
Protein Science
, vol.1
, Issue.3
, pp. 401-408
-
-
Zhang, C.1
Chou, K.2
-
188
-
-
0032054085
-
Prediction and classification of domain structural classes
-
Chou K, Liu W, Maggiora GM, Zhang C. Prediction and classification of domain structural classes. Proteins: Structure, Function, and Bioinformatics. 1998; 31(1): 97-103.
-
(1998)
Proteins: Structure, Function, and Bioinformatics
, vol.31
, Issue.1
, pp. 97-103
-
-
Chou, K.1
Liu, W.2
Maggiora, G.M.3
Zhang, C.4
-
189
-
-
2942601555
-
Support Vector Machines for predicting protein structural class
-
Cai Y, Liu X, Xu X, Zhou G. Support Vector Machines for predicting protein structural class. BMC Bioinformatics. 2001; 2(1): 3.
-
(2001)
BMC Bioinformatics
, vol.2
, Issue.1
, pp. 3
-
-
Cai, Y.1
Liu, X.2
Xu, X.3
Zhou, G.4
-
190
-
-
45649085108
-
Predicting protein structural class by SVM with class-wise optimized features and decision probabilities
-
Anand A, Pugalenthi G, Suganthan P. Predicting protein structural class by SVM with class-wise optimized features and decision probabilities. Journal of Theoretical Biology. 2008; 253(2): 375-380.
-
(2008)
Journal of Theoretical Biology
, vol.253
, Issue.2
, pp. 375-380
-
-
Anand, A.1
Pugalenthi, G.2
Suganthan, P.3
-
191
-
-
44349134514
-
SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences
-
Kurgan L, Cios K, Chen K. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences. BMC Bioinformatics. 2008; 9(1): 226.
-
(2008)
BMC Bioinformatics
, vol.9
, Issue.1
, pp. 226
-
-
Kurgan, L.1
Cios, K.2
Chen, K.3
-
192
-
-
80054684286
-
Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features
-
Dai Q, Wu L, Li L. Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features. Journal of Computational Chemistry. 2011; 32(16): 3393-3398.
-
(2011)
Journal of Computational Chemistry
, vol.32
, Issue.16
, pp. 3393-3398
-
-
Dai, Q.1
Wu, L.2
Li, L.3
-
193
-
-
84863389371
-
Predicting Protein Structural Class by Incorporating Patterns of Over-Represented kmers into the General form of Chou's PseAAC
-
Qin Y, Wang C, Yu X, Zhu J, Liu T, Zheng X. Predicting Protein Structural Class by Incorporating Patterns of Over-Represented kmers into the General form of Chou's PseAAC. Protein and Peptide Letters. 2012; 19(4): 388-397.
-
(2012)
Protein and Peptide Letters
, vol.19
, Issue.4
, pp. 388-397
-
-
Qin, Y.1
Wang, C.2
Yu, X.3
Zhu, J.4
Liu, T.5
Zheng, X.6
-
194
-
-
78649324596
-
A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction
-
Sahu SS, Panda G. A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction. Computational Biology and Chemistry. 2010; 34(5): 320-327.
-
(2010)
Computational Biology and Chemistry
, vol.34
, Issue.5
, pp. 320-327
-
-
Sahu, S.S.1
Panda, G.2
-
195
-
-
51349105695
-
Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image
-
Xiao X, Wang P, Chou K. Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image. Journal of Theoretical Biology. 2008; 254(3): 691-696.
-
(2008)
Journal of Theoretical Biology
, vol.254
, Issue.3
, pp. 691-696
-
-
Xiao, X.1
Wang, P.2
Chou, K.3
-
196
-
-
36448935288
-
Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes
-
Zhang T, Ding Y. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids. 2007; 33(4): 623-629.
-
(2007)
Amino Acids
, vol.33
, Issue.4
, pp. 623-629
-
-
Zhang, T.1
Ding, Y.2
-
197
-
-
33750475941
-
Using pseudo-amino acid composition and support vector machine to predict protein structural class
-
Chen C, Tian Y, Zou X, Cai P, Mo J. Using pseudo-amino acid composition and support vector machine to predict protein structural class. Journal of Theoretical Biology. 2006; 243(3): 444-448.
-
(2006)
Journal of Theoretical Biology
, vol.243
, Issue.3
, pp. 444-448
-
-
Chen, C.1
Tian, Y.2
Zou, X.3
Cai, P.4
Mo, J.5
-
198
-
-
84862763274
-
Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles
-
Liu T, Geng X, Zheng X, Li R, Wang J. Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles. Amino Acids. 2012; 42(6): 2243-2249.
-
(2012)
Amino Acids
, vol.42
, Issue.6
, pp. 2243-2249
-
-
Liu, T.1
Geng, X.2
Zheng, X.3
Li, R.4
Wang, J.5
-
199
-
-
84865383117
-
Using principal component analysis and support vector machine to predict protein structural class for lowsimilarity sequences via PSSM
-
Zhang S, Ye F, Yuan X. Using principal component analysis and support vector machine to predict protein structural class for lowsimilarity sequences via PSSM. Journal of Biomolecular Structure and Dynamics. 2012; 29(6): 1138-1146.
-
(2012)
Journal of Biomolecular Structure and Dynamics
, vol.29
, Issue.6
, pp. 1138-1146
-
-
Zhang, S.1
Ye, F.2
Yuan, X.3
-
200
-
-
77957124553
-
Prediction of protein structural class for low-similarity sequences using support vector machine and PSIBLAST profile
-
Liu T, Zheng X, Wang J. Prediction of protein structural class for low-similarity sequences using support vector machine and PSIBLAST profile. Biochimie. 2010; 92(10): 1330-1334.
-
(2010)
Biochimie
, vol.92
, Issue.10
, pp. 1330-1334
-
-
Liu, T.1
Zheng, X.2
Wang, J.3
-
201
-
-
46449128812
-
Prediction of protein structural class using novel evolutionary collocation-based sequence representation
-
Chen K, Kurgan LA, Ruan J. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. Journal of Computational Chemistry. 2008; 29(10): 1596-1604.
-
(2008)
Journal of Computational Chemistry
, vol.29
, Issue.10
, pp. 1596-1604
-
-
Chen, K.1
Kurgan, L.A.2
Ruan, J.3
-
202
-
-
84862812419
-
A novel protein structural classes prediction method based on predicted secondary structure
-
Ding S, Zhang S, Li Y, Wang T. A novel protein structural classes prediction method based on predicted secondary structure. Biochimie. 2012; 94(5): 1166-1171.
-
(2012)
Biochimie
, vol.94
, Issue.5
, pp. 1166-1171
-
-
Ding, S.1
Zhang, S.2
Li, Y.3
Wang, T.4
-
203
-
-
84863864586
-
Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences
-
Ahmadi Adl A, Nowzari-Dalini A, Xue B, Uversky VN, Qian X. Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences. Journal of Biomolecular Structure and Dynamics. 2012; 29(6): 1127-1137.
-
(2012)
Journal of Biomolecular Structure and Dynamics
, vol.29
, Issue.6
, pp. 1127-1137
-
-
Ahmadi Adl, A.1
Nowzari-Dalini, A.2
Xue, B.3
Uversky, V.N.4
Qian, X.5
-
204
-
-
79960352702
-
SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids
-
Mohammad T, Nagarajaram H. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. Journal of Bioinformatics and Computational Biology. 2011; 9(4): 489-502.
-
(2011)
Journal of Bioinformatics and Computational Biology
, vol.9
, Issue.4
, pp. 489-502
-
-
Mohammad, T.1
Nagarajaram, H.2
-
205
-
-
77956623830
-
A high-accuracy protein structural class prediction algorithm using predicted secondary structural information
-
Liu T, Jia C. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information. Journal of Theoretical Biology. 2010; 267(3): 272-275.
-
(2010)
Journal of Theoretical Biology
, vol.267
, Issue.3
, pp. 272-275
-
-
Liu, T.1
Jia, C.2
-
206
-
-
3843117638
-
Predicting protein structural class by functional domain composition
-
Chou K, Cai YD. Predicting protein structural class by functional domain composition. Biochemical and Biophysical Research Communications. 2004; 321(4): 1007-1009.
-
(2004)
Biochemical and Biophysical Research Communications
, vol.321
, Issue.4
, pp. 1007-1009
-
-
Chou, K.1
Cai, Y.D.2
-
207
-
-
77956141361
-
An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments
-
Washington, DC, USA: IEEE Computer Society
-
Arai H, Tochio N, Kato T, Kigawa T, Yamamura M. An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments. In: Proceedings of the 2010 IEEE International Conference on Bioinformatics and Bioengineering. Washington, DC, USA: IEEE Computer Society; 2010. p. 32-37.
-
(2010)
Proceedings of the 2010 IEEE International Conference On Bioinformatics and Bioengineering
, pp. 32-37
-
-
Arai, H.1
Tochio, N.2
Kato, T.3
Kigawa, T.4
Yamamura, M.5
-
208
-
-
0033809190
-
Prediction of protein structural classes by neural network
-
Cai Y, Zhou G. Prediction of protein structural classes by neural network. Biochimie. 2000 01; 82: 1-3.
-
(2000)
Biochimie
, vol.1
, Issue.82
, pp. 1-3
-
-
Cai, Y.1
Zhou, G.2
-
209
-
-
70349753153
-
A hybrid genetic-neural model for predicting protein structural classes
-
Jahandideh S, Hoseini S, Jahandideh M, Davoodi M. A hybrid genetic-neural model for predicting protein structural classes. Biologia. 2009; 64: 649-654.
-
(2009)
Biologia
, vol.64
, pp. 649-654
-
-
Jahandideh, S.1
Hoseini, S.2
Jahandideh, M.3
Davoodi, M.4
-
210
-
-
34247622820
-
Novel two-stage hybrid neural discriminant model for predicting proteins structural classes
-
Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB. Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophysical Chemistry. 2007; 128(1): 87-93.
-
(2007)
Biophysical Chemistry
, vol.128
, Issue.1
, pp. 87-93
-
-
Jahandideh, S.1
Abdolmaleki, P.2
Jahandideh, M.3
Asadabadi, E.B.4
-
211
-
-
0033151954
-
Recognition of a protein fold in the context of the SCOP classification. Proteins
-
Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim S. Recognition of a protein fold in the context of the SCOP classification. Proteins: Structure, Function and Genetics. 1999; 35(4): 401-407.
-
(1999)
Structure, Function and Genetics
, vol.35
, Issue.4
, pp. 401-407
-
-
Dubchak, I.1
Muchnik, I.2
Mayor, C.3
Dralyuk, I.4
Kim, S.5
-
212
-
-
0034141493
-
How good is prediction of protein structural class by the component-coupled method?
-
Wang Z, Yuan Z. How good is prediction of protein structural class by the component-coupled method? Proteins: Structure, Function, and Bioinformatics. 2000; 38(2): 165-175.
-
(2000)
Proteins: Structure, Function, and Bioinformatics
, vol.38
, Issue.2
, pp. 165-175
-
-
Wang, Z.1
Yuan, Z.2
-
213
-
-
36348994911
-
Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern
-
Zhang T, Ding Y, Chou K. Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern. Journal of Theoretical Biology. 2008; 250(1): 186-193.
-
(2008)
Journal of Theoretical Biology
, vol.250
, Issue.1
, pp. 186-193
-
-
Zhang, T.1
Ding, Y.2
Chou, K.3
-
214
-
-
77950588824
-
An information-theoretic approach to the prediction of protein structural class
-
Zheng X, Li C, Wang J. An information-theoretic approach to the prediction of protein structural class. Journal of Computational Chemistry. 2010; 31(6): 1201-1206.
-
(2010)
Journal of Computational Chemistry
, vol.31
, Issue.6
, pp. 1201-1206
-
-
Zheng, X.1
Li, C.2
Wang, J.3
-
215
-
-
77951667432
-
Prediction of protein structural class using a complexity-based distance measure
-
Liu T, Zheng X, Wang J. Prediction of protein structural class using a complexity-based distance measure. Amino Acids. 2010; 38(3): 721-728.
-
(2010)
Amino Acids
, vol.38
, Issue.3
, pp. 721-728
-
-
Liu, T.1
Zheng, X.2
Wang, J.3
-
216
-
-
75049084860
-
An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition
-
Wu J, Li M, Yu L, Wang C. An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition. The Protein Journal. 2010; 29: 62-67.
-
(2010)
The Protein Journal
, vol.29
, pp. 62-67
-
-
Wu, J.1
Li, M.2
Yu, L.3
Wang, C.4
-
217
-
-
70349466390
-
Multiple classifier integration for the prediction of protein structural classes
-
Chen L, Lu L, Feng K, et al. Multiple classifier integration for the prediction of protein structural classes. Journal of Computational Chemistry. 2009; 30(14): 2248-2254.
-
(2009)
Journal of Computational Chemistry
, vol.30
, Issue.14
, pp. 2248-2254
-
-
Chen, L.1
Lu, L.2
Feng, K.3
-
221
-
-
33646393287
-
Predicting protein structural class with AdaBoost learner
-
Niu B, Cai Y, Lu W, Li G, Chou K. Predicting protein structural class with AdaBoost learner. Protein and Peptide Letters. 2006; 13(5): 489-492.
-
(2006)
Protein and Peptide Letters
, vol.13
, Issue.5
, pp. 489-492
-
-
Niu, B.1
Cai, Y.2
Lu, W.3
Li, G.4
Chou, K.5
-
222
-
-
28444439947
-
Using LogitBoost classifier to predict protein structural classes
-
Cai Y, Feng K, Lu W, Chou K. Using LogitBoost classifier to predict protein structural classes. Journal of Theoretical Biology. 2006; 238(1): 172-176.
-
(2006)
Journal of Theoretical Biology
, vol.238
, Issue.1
, pp. 172-176
-
-
Cai, Y.1
Feng, K.2
Lu, W.3
Chou, K.4
-
223
-
-
0014757386
-
A general method applicable to the search for similarities in the amino acid sequence of two proteins
-
Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology. 1970; 48(3): 443-453.
-
(1970)
Journal of Molecular Biology
, vol.48
, Issue.3
, pp. 443-453
-
-
Needleman, S.B.1
Wunsch, C.D.2
-
224
-
-
0035703313
-
Fold recognition from sequence comparisons. Proteins: Structure
-
Koretke KK, Russell RB, Lupas AN. Fold recognition from sequence comparisons. Proteins: Structure, Function, and Bioinformatics. 2001; 45(S5): 68-75.
-
(2001)
Function, and Bioinformatics
, vol.45
, Issue.S5
, pp. 68-75
-
-
Koretke, K.K.1
Russell, R.B.2
Lupas, A.N.3
-
225
-
-
0345827718
-
Using evolutionary information for the query and target improves fold recognition. Proteins: Structure
-
Wallner B, Fang H, Ohlson T, Frey-Skott J, Elofsson A. Using evolutionary information for the query and target improves fold recognition. Proteins: Structure, Function, and Bioinformatics. 2004; 54(2): 342-350.
-
(2004)
Function, and Bioinformatics
, vol.54
, Issue.2
, pp. 342-350
-
-
Wallner, B.1
Fang, H.2
Ohlson, T.3
Frey-Skott, J.4
Elofsson, A.5
-
226
-
-
0034328688
-
3D-1D threading methods for protein fold recognition
-
David R, Korenberg M, Hunter I. 3D-1D threading methods for protein fold recognition. Pharmacogenomics. 2000; 1(4): 445-455.
-
(2000)
Pharmacogenomics
, vol.1
, Issue.4
, pp. 445-455
-
-
David, R.1
Korenberg, M.2
Hunter, I.3
-
227
-
-
0037342909
-
A neural network approach to evaluate fold recognition results. Proteins
-
Juan D, Grana O, Pazos F, Fariselli P, Casadio R, Valencia A. A neural network approach to evaluate fold recognition results. Proteins: Structure, Function, and Bioinformatics. 2003; 50(4): 600-608.
-
(2003)
Structure, Function, and Bioinformatics
, vol.50
, Issue.4
, pp. 600-608
-
-
Juan, D.1
Grana, O.2
Pazos, F.3
Fariselli, P.4
Casadio, R.5
Valencia, A.6
-
228
-
-
84864409371
-
Recursive Neural Networks for Predicting Protein Folds from Their Pseudo Amino Acid Composition
-
Mishra P, Pandey PN. Recursive Neural Networks for Predicting Protein Folds from Their Pseudo Amino Acid Composition. Advanced Science Letters. 2012; 11(1): 63-66.
-
(2012)
Advanced Science Letters
, vol.11
, Issue.1
, pp. 63-66
-
-
Mishra, P.1
Pandey, P.N.2
-
229
-
-
33646405841
-
K-Local Hyperplane Distance Nearest-Neighbor Algorithm and Protein Fold Recognition
-
Okun O. K-Local Hyperplane Distance Nearest-Neighbor Algorithm and Protein Fold Recognition. Pattern Recognition and Image Analysis. 2006; 16(1): 19-22.
-
(2006)
Pattern Recognition and Image Analysis
, vol.16
, Issue.1
, pp. 19-22
-
-
Okun, O.1
-
230
-
-
34447648188
-
SVM-Fold: A tool for discriminative multi-class protein fold and superfamily recognition
-
Melvin I, Ie E, Kuang R, Weston J, Noble W, Leslie C. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinformatics. 2007; 8(Suppl 4): S2.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.SUPPL. 4
-
-
Melvin, I.1
Ie, E.2
Kuang, R.3
Weston, J.4
Noble, W.5
Leslie, C.6
-
232
-
-
36949013631
-
Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs
-
Shamim MTA, Anwaruddin M, Nagarajaram HA. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics. 2007; 23(24): 3320-3327.
-
(2007)
Bioinformatics
, vol.23
, Issue.24
, pp. 3320-3327
-
-
Shamim, M.T.A.1
Anwaruddin, M.2
Nagarajaram, H.A.3
-
233
-
-
70349985248
-
A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation
-
Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. Bioinformatics. 2009; 25(20): 2655-2662.
-
(2009)
Bioinformatics
, vol.25
, Issue.20
, pp. 2655-2662
-
-
Dong, Q.1
Zhou, S.2
Guan, J.3
-
234
-
-
0035014847
-
Multi-class protein fold recognition using support vector machines and neural networks
-
Ding C, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics. 2001; 17(4): 349-358.
-
(2001)
Bioinformatics
, vol.17
, Issue.4
, pp. 349-358
-
-
Ding, C.1
Dubchak, I.2
-
236
-
-
84862605679
-
C L. Improved method for predicting protein fold patterns with ensemble classifiers
-
Chen W, Liu X, Huang Y, Jiang Y, Zou Q, C L. Improved method for predicting protein fold patterns with ensemble classifiers. Genetics and Molecular Research. 2012; 11(1): 174-181.
-
(2012)
Genetics and Molecular Research
, vol.11
, Issue.1
, pp. 174-181
-
-
Chen, W.1
Liu, X.2
Huang, Y.3
Jiang, Y.4
Zou, Q.5
-
237
-
-
33747880465
-
Ensemble classifier for protein fold pattern recognition
-
Shen H, Chou K. Ensemble classifier for protein fold pattern recognition. Bioinformatics. 2006; 22(14): 1717-1722.
-
(2006)
Bioinformatics
, vol.22
, Issue.14
, pp. 1717-1722
-
-
Shen, H.1
Chou, K.2
-
238
-
-
34147094355
-
Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: Comparison with high-throughput experimental data
-
Yellaboina S, Goyal K, Mande SC. Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: Comparison with high-throughput experimental data. Genome Research. 2007; 17(4): 527-535.
-
(2007)
Genome Research
, vol.17
, Issue.4
, pp. 527-535
-
-
Yellaboina, S.1
Goyal, K.2
Mande, S.C.3
-
239
-
-
51649096656
-
Phylogenetic profiles reveal evolutionary relationships within the "twilight zone" of sequence similarity
-
Chang G, Hong Y, Ko K, et al. Phylogenetic profiles reveal evolutionary relationships within the "twilight zone" of sequence similarity. Proceedings of the National Academy of Sciences. 2008; 105(36): 13474-13479.
-
(2008)
Proceedings of the National Academy of Sciences
, vol.105
, Issue.36
, pp. 13474-13479
-
-
Chang, G.1
Hong, Y.2
Ko, K.3
-
240
-
-
0042889111
-
Identification of functional links between genes using phylogenetic profiles
-
Wu J, Kasif S, DeLisi C. Identification of functional links between genes using phylogenetic profiles. Bioinformatics. 2003; 19(12): 1524-1530.
-
(2003)
Bioinformatics
, vol.19
, Issue.12
, pp. 1524-1530
-
-
Wu, J.1
Kasif, S.2
Delisi, C.3
-
241
-
-
0041358614
-
Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages
-
Date SV, Marcotte EM. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nature Biotechnology. 2003; 21(9): 1055-1062.
-
(2003)
Nature Biotechnology
, vol.21
, Issue.9
, pp. 1055-1062
-
-
Date, S.V.1
Marcotte, E.M.2
-
242
-
-
79953689634
-
Computational Bacterial Genome-Wide Analysis of Phylogenetic Profiles Reveals Potential Virulence Genes of Streptococcus agalactiae
-
Lin FPY, Lan R, Sintchenko V, Gilbert GL, Kong F, Coiera E. Computational Bacterial Genome-Wide Analysis of Phylogenetic Profiles Reveals Potential Virulence Genes of Streptococcus agalactiae. PLoS ONE. 2011; 6(4): e17964.
-
(2011)
PLoS ONE
, vol.6
, Issue.4
-
-
Lin, F.P.Y.1
Lan, R.2
Sintchenko, V.3
Gilbert, G.L.4
Kong, F.5
Coiera, E.6
-
243
-
-
61449137850
-
Modeling adaptive kernels from probabilistic phylogenetic trees
-
Nicotra L, Micheli A. Modeling adaptive kernels from probabilistic phylogenetic trees. Artificial Intelligence in Medicine. 2009; 45(2-3): 125-134.
-
(2009)
Artificial Intelligence In Medicine
, vol.45
, Issue.2-3
, pp. 125-134
-
-
Nicotra, L.1
Micheli, A.2
-
244
-
-
11244331236
-
A tree kernel to analyse phylogenetic profiles
-
Vert J. A tree kernel to analyse phylogenetic profiles. Bioinformatics. 2002; 18(suppl 1): S276-S284.
-
(2002)
Bioinformatics
, vol.18
, Issue.SUPPL. 1
-
-
Vert, J.1
-
245
-
-
0033028596
-
Systematic determination of genetic network architecture
-
Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM. Systematic determination of genetic network architecture. Nature Genetics. 1999; 22(3): 281-285.
-
(1999)
Nature Genetics
, vol.22
, Issue.3
, pp. 281-285
-
-
Tavazoie, S.1
Hughes, J.D.2
Campbell, M.J.3
Cho, R.J.4
Church, G.M.5
-
246
-
-
0034730140
-
Singular value decomposition for genome-wide expression data processing and modeling
-
Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences. 2000; 97(18): 10101-10106.
-
(2000)
Proceedings of the National Academy of Sciences
, vol.97
, Issue.18
, pp. 10101-10106
-
-
Alter, O.1
Brown, P.O.2
Botstein, D.3
-
247
-
-
0033027794
-
Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
-
Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences. 1999; 96(6): 2907-2912.
-
(1999)
Proceedings of the National Academy of Sciences
, vol.96
, Issue.6
, pp. 2907-2912
-
-
Tamayo, P.1
Slonim, D.2
Mesirov, J.3
-
248
-
-
0042863923
-
Analysis of gene expression data using self-organizing maps
-
Toronen P, Kolehmainen M, Wong G, Castren E. Analysis of gene expression data using self-organizing maps. FEBS Letters. 1999; 451(2): 142-146.
-
(1999)
FEBS Letters
, vol.451
, Issue.2
, pp. 142-146
-
-
Toronen, P.1
Kolehmainen, M.2
Wong, G.3
Castren, E.4
-
249
-
-
0036791318
-
Analysis and visualization of gene expression data using Self-Organizing Maps
-
Nikkila J, Toronen P, Kaski S, Venna J, Castren E, Wong G. Analysis and visualization of gene expression data using Self-Organizing Maps. Neural Networks. 2002; 15(8-9): 953-966.
-
(2002)
Neural Networks
, vol.15
, Issue.8-9
, pp. 953-966
-
-
Nikkila, J.1
Toronen, P.2
Kaski, S.3
Venna, J.4
Castren, E.5
Wong, G.6
-
250
-
-
0035108235
-
A hierarchical unsupervised growing neural network for clustering gene expression patterns
-
Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001; 17(2): 126-136.
-
(2001)
Bioinformatics
, vol.17
, Issue.2
, pp. 126-136
-
-
Herrero, J.1
Valencia, A.2
Dopazo, J.3
-
251
-
-
0034602774
-
Knowledge-based analysis of microarray gene expression data by using support vector machines
-
Brown MPS, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences. 2000; 97(1): 262-267.
-
(2000)
Proceedings of the National Academy of Sciences
, vol.97
, Issue.1
, pp. 262-267
-
-
Brown, M.P.S.1
Grundy, W.N.2
Lin, D.3
Cristianini, N.4
Sugnet, C.W.5
Furey, T.S.6
-
252
-
-
0036852181
-
Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons
-
Mateos A, Dopazo J, Jansen R, Tu Y, Gerstein M, Stolovitzky G. Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons. Genome Research. 2002; 12(11): 1703-1715.
-
(2002)
Genome Research
, vol.12
, Issue.11
, pp. 1703-1715
-
-
Mateos, A.1
Dopazo, J.2
Jansen, R.3
Tu, Y.4
Gerstein, M.5
Stolovitzky, G.6
-
253
-
-
67650898284
-
Incorporating functional interrelationships into protein function prediction algorithms
-
Pandey G, Myers C, Kumar V. Incorporating functional interrelationships into protein function prediction algorithms. BMC Bioinformatics. 2009; 10(1): 142.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 142
-
-
Pandey, G.1
Myers, C.2
Kumar, V.3
-
254
-
-
0035369531
-
Protein-protein interaction maps: A lead towards cellular functions
-
Legrain P, Wojcik J, Gauthier JM. Protein-protein interaction maps: a lead towards cellular functions. Trends in Genetics. 2001; 17(6): 346-352.
-
(2001)
Trends In Genetics
, vol.17
, Issue.6
, pp. 346-352
-
-
Legrain, P.1
Wojcik, J.2
Gauthier, J.M.3
-
255
-
-
0038135024
-
Computational analyses of high-throughput proteinprotein interaction data
-
Chen Y, Xu D. Computational analyses of high-throughput proteinprotein interaction data. Current Protein and Peptide Science. 2003; 4(3): 159-181.
-
(2003)
Current Protein and Peptide Science
, vol.4
, Issue.3
, pp. 159-181
-
-
Chen, Y.1
Xu, D.2
-
257
-
-
0347755535
-
The Database of Interacting Proteins: 2004 update
-
Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The Database of Interacting Proteins: 2004 update. Nucleic Acids Research. 2004; 32(suppl 1): D449-D451.
-
(2004)
Nucleic Acids Research
, vol.32
, Issue.SUPPL. 1
-
-
Salwinski, L.1
Miller, C.S.2
Smith, A.J.3
Pettit, F.K.4
Bowie, J.U.5
Eisenberg, D.6
-
258
-
-
0033669189
-
A network of protein-protein interactions in yeast
-
Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology. 2000; 18(12): 1257-1261.
-
(2000)
Nature Biotechnology
, vol.18
, Issue.12
, pp. 1257-1261
-
-
Schwikowski, B.1
Uetz, P.2
Fields, S.3
-
259
-
-
33745619564
-
Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
-
Chua H, Sung W, Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics. 2006; 22(13): 1623-1630.
-
(2006)
Bioinformatics
, vol.22
, Issue.13
, pp. 1623-1630
-
-
Chua, H.1
Sung, W.2
Wong, L.3
-
260
-
-
0038699587
-
Global protein function prediction from protein-protein interaction networks
-
Vazquez A, Flammini A, Maritan A, Vespignani A. Global protein function prediction from protein-protein interaction networks. Nature Biotechnology. 2003; 21(6): 697-700.
-
(2003)
Nature Biotechnology
, vol.21
, Issue.6
, pp. 697-700
-
-
Vazquez, A.1
Flammini, A.2
Maritan, A.3
Vespignani, A.4
-
261
-
-
29144442904
-
Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps
-
Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics. 2005; 21(suppl 1): i302-i310.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Nabieva, E.1
Jim, K.2
Agarwal, A.3
Chazelle, B.4
Singh, M.5
-
262
-
-
2942552459
-
An automated method for finding molecular complexes in large protein interaction networks
-
Bader G, Hogue C. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4(1): 2.
-
(2003)
BMC Bioinformatics
, vol.4
, Issue.1
, pp. 2
-
-
Bader, G.1
Hogue, C.2
-
263
-
-
0032482432
-
Collective dynamics of small-worldnetworks
-
Watts DJ, Strogatz SH. Collective dynamics of small-worldnetworks. Nature. 1998; 393(6684): 440-442.
-
(1998)
Nature
, vol.393
, Issue.6684
, pp. 440-442
-
-
Watts, D.J.1
Strogatz, S.H.2
-
264
-
-
0142059836
-
Protein complexes and functional modules in molecular networks
-
Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences. 2003; 100(21): 12123-12128.
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.21
, pp. 12123-12128
-
-
Spirin, V.1
Mirny, L.A.2
-
265
-
-
0000521616
-
Superparamagnetic Clustering of Data
-
Blatt M, Wiseman S, Domany E. Superparamagnetic Clustering of Data. Phys Rev Lett. 1996; 76: 3251-3254.
-
(1996)
Phys Rev Lett
, vol.76
, pp. 3251-3254
-
-
Blatt, M.1
Wiseman, S.2
Domany, E.3
-
266
-
-
0346156102
-
Detection of functional modules from protein interaction networks. Proteins: Structure
-
Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules from protein interaction networks. Proteins: Structure, Function, and Bioinformatics. 2004; 54(1): 49-57.
-
(2004)
Function, and Bioinformatics
, vol.54
, Issue.1
, pp. 49-57
-
-
Pereira-Leal, J.B.1
Enright, A.J.2
Ouzounis, C.A.3
-
267
-
-
0034515528
-
A clustering algorithm based on graph connectivity
-
Hartuv E, Shamir R. A clustering algorithm based on graph connectivity. Information Processing Letters. 2000; 76(4-6): 175-181.
-
(2000)
Information Processing Letters
, vol.76
, Issue.4-6
, pp. 175-181
-
-
Hartuv, E.1
Shamir, R.2
-
268
-
-
0000411214
-
Tabu Search-Part I
-
Glover F. Tabu Search-Part I. ORSA Journal on Computing. 1989; 1(3): 190-206.
-
(1989)
ORSA Journal On Computing
, vol.1
, Issue.3
, pp. 190-206
-
-
Glover, F.1
-
269
-
-
10244264813
-
Protein complex prediction via costbased clustering
-
King A, Przulj N, Jurisica I. Protein complex prediction via costbased clustering. Bioinformatics. 2004; 20(17): 3013-3020.
-
(2004)
Bioinformatics
, vol.20
, Issue.17
, pp. 3013-3020
-
-
King, A.1
Przulj, N.2
Jurisica, I.3
-
270
-
-
0242268461
-
Predicting protein functions from redundancies in large-scale protein interaction networks
-
Samanta MP, Liang S. Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences. 2003; 100(22): 12579-12583.
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.22
, pp. 12579-12583
-
-
Samanta, M.P.1
Liang, S.2
-
271
-
-
33645832853
-
Systems-level analyses identify extensive coupling among gene expression machines
-
Maciag K, Altschuler SJ, Slack MD, et al. Systems-level analyses identify extensive coupling among gene expression machines. Mol Syst Biol. 2006; 2.
-
(2006)
Mol Syst Biol
, pp. 2
-
-
Maciag, K.1
Altschuler, S.J.2
Slack, M.D.3
-
273
-
-
13844264514
-
Iterative Cluster Analysis of Protein Interaction Data
-
Arnau V, Mars S, Marin I. Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics. 2005; 21(3): 364-378.
-
(2005)
Bioinformatics
, vol.21
, Issue.3
, pp. 364-378
-
-
Arnau, V.1
Mars, S.2
Marin, I.3
-
274
-
-
1442329655
-
Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network
-
Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome biology. 2003; 5(1).
-
(2003)
Genome Biology
, vol.5
, Issue.1
-
-
Brun, C.1
Chevenet, F.2
Martin, D.3
Wojcik, J.4
Guénoche, A.5
Jacq, B.6
-
275
-
-
77951667947
-
Predicting protein-protein interactions from sequence using correlation coefficient and highquality interaction dataset
-
Shi M, Xia J, Li X, Huang D. Predicting protein-protein interactions from sequence using correlation coefficient and highquality interaction dataset. Amino Acids. 2010; 38: 891-899.
-
(2010)
Amino Acids
, vol.38
, pp. 891-899
-
-
Shi, M.1
Xia, J.2
Li, X.3
Huang, D.4
-
276
-
-
67649494468
-
Proteinprotein interaction based on pairwise similarity
-
Zaki N, Lazarova-Molnar S, El-Hajj W, Campbell P. Proteinprotein interaction based on pairwise similarity. BMC Bioinformatics. 2009; 10(1): 150.
-
(2009)
BMC Bioinformatics
, vol.10
, Issue.1
, pp. 150
-
-
Zaki, N.1
Lazarova-Molnar, S.2
El-Hajj, W.3
Campbell, P.4
-
277
-
-
33846868175
-
Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices
-
Craig R, Liao L. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics. 2007; 8(1): 6.
-
(2007)
BMC Bioinformatics
, vol.8
, Issue.1
, pp. 6
-
-
Craig, R.1
Liao, L.2
-
278
-
-
47149118685
-
Large-scale Protein-Protein Interaction prediction using novel kernel methods
-
Chen X, Han B, Fang J, Haasl RJ. Large-scale Protein-Protein Interaction prediction using novel kernel methods. Int J Data Min Bioinformatics. 2008; 2(2): 145-156.
-
(2008)
Int J Data Min Bioinformatics
, vol.2
, Issue.2
, pp. 145-156
-
-
Chen, X.1
Han, B.2
Fang, J.3
Haasl, R.J.4
-
279
-
-
19544389868
-
Protein network inference from multiple genomic data: A supervised approach
-
Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics. 2004; 20(suppl 1): i363-i370.
-
(2004)
Bioinformatics
, vol.20
, Issue.SUPPL. 1
-
-
Yamanishi, Y.1
Vert, J.P.2
Kanehisa, M.3
-
280
-
-
24744435534
-
Kernel methods for predicting proteinprotein interactions
-
Ben-Hur A, Noble WS. Kernel methods for predicting proteinprotein interactions. Bioinformatics. 2005; 21(suppl 1): i38-i46.
-
(2005)
Bioinformatics
, vol.21
, Issue.SUPPL. 1
-
-
Ben-Hur, A.1
Noble, W.S.2
-
281
-
-
44949178403
-
Predicting proteinprotein interactions based on BP neural network
-
P, Workshops
-
Ma Z, Zhou C, Lu L, Ma Y, Sun P, Cui Y. Predicting proteinprotein interactions based on BP neural network. In: Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine Workshops; 2007. p. 3-7.
-
(2007)
Roceedings of the IEEE International Conference On Bioinformatics and Biomedicine
, pp. 3-7
-
-
Ma, Z.1
Zhou, C.2
Lu, L.3
Ma, Y.4
Sun, P.5
Cui, Y.6
-
282
-
-
33750695625
-
Prediction of Protein Interaction with Neural Network-Based Feature Association Rule Mining
-
vol. 4234 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
-
Eom J, Zhang B. Prediction of Protein Interaction with Neural Network-Based Feature Association Rule Mining. In: Neural Information Processing. vol. 4234 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg; 2006. p. 30-39.
-
(2006)
Neural Information Processing
, pp. 30-39
-
-
Eom, J.1
Zhang, B.2
-
283
-
-
4644306020
-
Analyzing protein function on a genomic scale: The importance of gold-standard positives and negatives for network prediction
-
Jansen R, Gerstein M. Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology. 2004; 7(5): 535-545.
-
(2004)
Current Opinion In Microbiology
, vol.7
, Issue.5
, pp. 535-545
-
-
Jansen, R.1
Gerstein, M.2
-
284
-
-
2942541277
-
Predicting co-complexed protein pairs using genomic and proteomic data integration
-
Zhang L, Wong S, King O, Roth F. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics. 2004; 5(1): 38.
-
(2004)
BMC Bioinformatics
, vol.5
, Issue.1
, pp. 38
-
-
Zhang, L.1
Wong, S.2
King, O.3
Roth, F.4
-
285
-
-
39049191929
-
Struct2Net: Integrating Structure into Protein-Protein Interaction Prediction
-
Singh R, Xu J, Berger B. Struct2Net: Integrating Structure into Protein-Protein Interaction Prediction. Pacific Symposium on Biocomputing. 2006; p. 403-414.
-
(2006)
Pacific Symposium On Biocomputing
, pp. 403-414
-
-
Singh, R.1
Xu, J.2
Berger, B.3
-
286
-
-
13244265581
-
Information assessment on predicting protein-protein interactions
-
Lin N, Wu B, Jansen R, Gerstein M, Zhao H. Information assessment on predicting protein-protein interactions. BMC Bioinformatics. 2004; 5(1): 154.
-
(2004)
BMC Bioinformatics
, vol.5
, Issue.1
, pp. 154
-
-
Lin, N.1
Wu, B.2
Jansen, R.3
Gerstein, M.4
Zhao, H.5
-
287
-
-
15944418607
-
Random forest similarity for protein-protein interaction prediction from multiple sources
-
Qi Y, Klein-Seetharaman J, Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symposium on Biocomputing. 2005; 10: 531-542.
-
(2005)
Pacific Symposium On Biocomputing
, vol.10
, pp. 531-542
-
-
Qi, Y.1
Klein-Seetharaman, J.2
Bar-Joseph, Z.3
-
288
-
-
33646018046
-
Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure
-
Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics. 2006; 63(3): 490-500.
-
(2006)
Function, and Bioinformatics
, vol.63
, Issue.3
, pp. 490-500
-
-
Qi, Y.1
Bar-Joseph, Z.2
Klein-Seetharaman, J.3
-
289
-
-
18444390875
-
Prediction of Human Protein Function from Post-translational Modifications and Localization Features
-
Jensen LJ, Gupta R, Blom N, et al. Prediction of Human Protein Function from Post-translational Modifications and Localization Features. Journal of Molecular Biology. 2002; 319(5): 1257-1265.
-
(2002)
Journal of Molecular Biology
, vol.319
, Issue.5
, pp. 1257-1265
-
-
Jensen, L.J.1
Gupta, R.2
Blom, N.3
-
291
-
-
0242458810
-
Order, Disorder, and Flexibility: Prediction from Protein Sequence
-
Iakoucheva LM, Dunker AK. Order, Disorder, and Flexibility: Prediction from Protein Sequence. Structure. 2003; 11(11): 1316-1317.
-
(2003)
Structure
, vol.11
, Issue.11
, pp. 1316-1317
-
-
Iakoucheva, L.M.1
Dunker, A.K.2
-
292
-
-
84864437522
-
CombFunc: Predicting protein function using heterogeneous data sources
-
Wass MN, Barton G, Sternberg MJE. CombFunc: predicting protein function using heterogeneous data sources. Nucleic Acids Research. 2012; 40(W1): W466-W470.
-
(2012)
Nucleic Acids Research
, vol.40
, Issue.W1
-
-
Wass, M.N.1
Barton, G.2
Sternberg, M.J.E.3
-
293
-
-
0026692226
-
Stacked generalization
-
Wolpert D. Stacked generalization. Neural Networks. 1992; 5(2): 241-259.
-
(1992)
Neural Networks
, vol.5
, Issue.2
, pp. 241-259
-
-
Wolpert, D.1
-
294
-
-
79952821145
-
Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction
-
Ré M, Valentini G. Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction. Journal of Machine Learning Research-Proceedings Track. 2010; 8: 98-111.
-
(2010)
Journal of Machine Learning Research-Proceedings Track
, vol.8
, pp. 98-111
-
-
Ré, M.1
Valentini, G.2
-
295
-
-
0034830461
-
Decision templates for multiple classifier fusion: An experimental comparison
-
Kuncheva L, Bezdek J, Duin R. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition. 2001; 34: 299-314.
-
(2001)
Pattern Recognition
, vol.34
, pp. 299-314
-
-
Kuncheva, L.1
Bezdek, J.2
Duin, R.3
-
296
-
-
47549108100
-
Predicting gene function in a hierarchical context with an ensemble of classifiers
-
Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, Troyanskaya O. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology. 2008; 9(Suppl 1): S3.
-
(2008)
Genome Biology
, vol.9
, Issue.SUPPL. 1
-
-
Guan, Y.1
Myers, C.2
Hess, D.3
Barutcuoglu, Z.4
Caudy, A.5
Troyanskaya, O.6
-
297
-
-
47549088657
-
Consistent probabilistic outputs for protein function prediction
-
Obozinski G, Lanckriet G, Grant C, Jordan M, Noble W. Consistent probabilistic outputs for protein function prediction. Genome Biology. 2008; 9(Suppl 1): S6.
-
(2008)
Genome Biology
, vol.9
, Issue.SUPPL. 1
-
-
Obozinski, G.1
Lanckriet, G.2
Grant, C.3
Jordan, M.4
Noble, W.5
-
298
-
-
79952831194
-
True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction. Computational Biology and Bioinformatics
-
Valentini G. True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 2011; 8(3): 832-847.
-
(2011)
IEEE/ACM Transactions On
, vol.8
, Issue.3
, pp. 832-847
-
-
Valentini, G.1
-
299
-
-
77349119213
-
Predicting gene function using hierarchical multi-label decision tree ensembles
-
Schietgat L, Vens C, Struyf J, Blockeel H, Kocev D, Dzeroski S. Predicting gene function using hierarchical multi-label decision tree ensembles. BMC Bioinformatics. 2010; 11(1): 2.
-
(2010)
BMC Bioinformatics
, vol.11
, Issue.1
, pp. 2
-
-
Schietgat, L.1
Vens, C.2
Struyf, J.3
Blockeel, H.4
Kocev, D.5
Dzeroski, S.6
-
300
-
-
2442674422
-
Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast
-
Lanckriet GRG, Deng M, Cristianini N, Jordan MI, Noble WS. Kernel-Based Data Fusion and Its Application to Protein Function Prediction in Yeast. In: Pacific Symposium on Biocomputing; 2004. p. 300-311.
-
(2004)
Pacific Symposium On Biocomputing
, pp. 300-311
-
-
Lanckriet, G.R.G.1
Deng, M.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
302
-
-
8844263749
-
A statistical framework for genomic data fusion
-
Lanckriet GRG, De Bie T, Cristianini N, Jordan MI, Noble WS. A statistical framework for genomic data fusion. Bioinformatics. 2004; 20(16): 2626-2635.
-
(2004)
Bioinformatics
, vol.20
, Issue.16
, pp. 2626-2635
-
-
Lanckriet, G.R.G.1
de Bie, T.2
Cristianini, N.3
Jordan, M.I.4
Noble, W.S.5
-
304
-
-
33645901213
-
Diffusion Kernel-Based Logistic Regression Models for Protein Function Prediction
-
Lee H, Tu Z, Deng M, Sun F, Chen T. Diffusion Kernel-Based Logistic Regression Models for Protein Function Prediction. OMICS: A Journal of Integrative Biology. 2006; 10(1): 40-55.
-
(2006)
OMICS: A Journal of Integrative Biology
, vol.10
, Issue.1
, pp. 40-55
-
-
Lee, H.1
Tu, Z.2
Deng, M.3
Sun, F.4
Chen, T.5
-
305
-
-
33646001111
-
Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach
-
Jaimovich A, Elidan G, Margalit H, Friedman N. Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach. Journal of Computational Biology. 2006; 13(2): 145-164.
-
(2006)
Journal of Computational Biology
, vol.13
, Issue.2
, pp. 145-164
-
-
Jaimovich, A.1
Elidan, G.2
Margalit, H.3
Friedman, N.4
-
306
-
-
0038492417
-
A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae
-
Troyanskaya OG, Dolinski K, Owen AB, Altman RB, Botstein D. A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences. 2003; 100(14): 8348-8353.
-
(2003)
Proceedings of the National Academy of Sciences
, vol.100
, Issue.14
, pp. 8348-8353
-
-
Troyanskaya, O.G.1
Dolinski, K.2
Owen, A.B.3
Altman, R.B.4
Botstein, D.5
-
307
-
-
55449131589
-
Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data
-
Nariai N, Kolaczyk ED, Kasif S. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data. PLoS ONE. 2007; 2(3): e337.
-
(2007)
PLoS ONE
, vol.2
, Issue.3
-
-
Nariai, N.1
Kolaczyk, E.D.2
Kasif, S.3
-
308
-
-
0038014879
-
Co-clustering of biological networks and gene expression data
-
Hanisch D, Zien A, Zimmer R, Lengauer T. Co-clustering of biological networks and gene expression data. Bioinformatics. 2002; 18(suppl 1): S145-S154.
-
(2002)
Bioinformatics
, vol.18
, Issue.SUPPL. 1
-
-
Hanisch, D.1
Zien, A.2
Zimmer, R.3
Lengauer, T.4
-
309
-
-
0345305369
-
Functional modules by relating protein interaction networks and gene expression
-
Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research. 2003; 31(21): 6283-6289.
-
(2003)
Nucleic Acids Research
, vol.31
, Issue.21
, pp. 6283-6289
-
-
Tornow, S.1
Mewes, H.W.2
-
310
-
-
1542357674
-
Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data
-
Tanay A, Sharan R, Kupiec M, Shamir R. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences of the United States of America. 2004; 101(9): 2981-2986.
-
(2004)
Proceedings of the National Academy of Sciences of the United States of America
, vol.101
, Issue.9
, pp. 2981-2986
-
-
Tanay, A.1
Sharan, R.2
Kupiec, M.3
Shamir, R.4
-
311
-
-
34547840226
-
Annotating gene function by combining expression data with a modular gene network
-
Shiga M, Takigawa I, Mamitsuka H. Annotating gene function by combining expression data with a modular gene network. Bioinformatics. 2007; 23(13): i468-i478.
-
(2007)
Bioinformatics
, vol.23
, Issue.13
-
-
Shiga, M.1
Takigawa, I.2
Mamitsuka, H.3
-
313
-
-
79959619604
-
Proteins with neomorphic moonlighting functions in disease
-
Jeffery C. Proteins with neomorphic moonlighting functions in disease. IUBMB Life. 2011; 63(7): 489-494.
-
(2011)
IUBMB Life
, vol.63
, Issue.7
, pp. 489-494
-
-
Jeffery, C.1
|