메뉴 건너뛰기




Volumn 7, Issue 2, 2013, Pages 122-141

A review of protein function prediction under machine learning perspective

Author keywords

Classification; Gene ontology; High throughput techniques; Machine learning; Pattern recognition; Protein

Indexed keywords

ARTIFICIAL INTELLIGENCE; FORECASTING; GENE ONTOLOGY; LEARNING SYSTEMS; MOLECULAR BIOLOGY; PATTERN RECOGNITION; THROUGHPUT;

EID: 84884262140     PISSN: 18722083     EISSN: None     Source Type: Journal    
DOI: 10.2174/18722083113079990006     Document Type: Review
Times cited : (46)

References (313)
  • 2
    • 0025272240 scopus 로고
    • Rapid and sensitive sequence comparison with FASTP and FASTA
    • Pearson W. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1985; 183: 63-98.
    • (1985) Methods Enzymol , vol.183 , pp. 63-98
    • Pearson, W.1
  • 3
    • 0036308741 scopus 로고    scopus 로고
    • Enzyme Function Less Conserved than Anticipated
    • Rost B. Enzyme Function Less Conserved than Anticipated. Journal of Molecular Biology. 2002; 318(2): 595-608.
    • (2002) Journal of Molecular Biology , vol.318 , Issue.2 , pp. 595-608
    • Rost, B.1
  • 4
    • 74549221383 scopus 로고    scopus 로고
    • Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies
    • Schnoes A, Brown S, Dodevski I, Babbitt P. Annotation Error in Public Databases: Misannotation of Molecular Function in Enzyme Superfamilies. PLoS Computational Biology. 2009; 5(12): e1000605.
    • (2009) PLoS Computational Biology , vol.5 , Issue.12
    • Schnoes, A.1    Brown, S.2    Dodevski, I.3    Babbitt, P.4
  • 5
    • 14644389482 scopus 로고    scopus 로고
    • Percolation of annotation errors through hierarchically structured protein sequence databases
    • Gilks W, Audit B, Angelis D, Tsoka S, Ouzounis C. Percolation of annotation errors through hierarchically structured protein sequence databases. Mathematical Biosciences. 2005; 193(2): 223-234.
    • (2005) Mathematical Biosciences , vol.193 , Issue.2 , pp. 223-234
    • Gilks, W.1    Audit, B.2    Angelis, D.3    Tsoka, S.4    Ouzounis, C.5
  • 6
    • 34748833491 scopus 로고    scopus 로고
    • Exploring inconsistencies in genome-wide protein function annotations: A machine learning approach
    • Andorf C, Dobbs D, Honavar V. Exploring inconsistencies in genome-wide protein function annotations: a machine learning approach. BMC Bioinformatics. 2007; 8(1): 284.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 284
    • Andorf, C.1    Dobbs, D.2    Honavar, V.3
  • 7
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium
    • Ashburner M, Ball C, Blake J, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nature genetics. 2000; 25(1): 25-29.
    • (2000) Nature Genetics , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1    Ball, C.2    Blake, J.3
  • 11
    • 60849128834 scopus 로고    scopus 로고
    • Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome
    • Galea C, High A, Obenauer J, et al. Large-Scale Analysis of Thermostable, Mammalian Proteins Provides Insights into the Intrinsically Disordered Proteome. Journal of Proteome Research. 2009; 8(1): 211-226.
    • (2009) Journal of Proteome Research , vol.8 , Issue.1 , pp. 211-226
    • Galea, C.1    High, A.2    Obenauer, J.3
  • 12
    • 70349705654 scopus 로고    scopus 로고
    • Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins
    • Mohan A, Uversky V, Radivojac P. Influence of Sequence Changes and Environment on Intrinsically Disordered Proteins. PLoS Computational Biology. 2009; 5(9): e1000497.
    • (2009) PLoS Computational Biology , vol.5 , Issue.9
    • Mohan, A.1    Uversky, V.2    Radivojac, P.3
  • 13
    • 34548606295 scopus 로고    scopus 로고
    • Recent progress in protein subcellular location prediction
    • Chou K, Shen H. Recent progress in protein subcellular location prediction. Analytical Biochemistry. 2007; 370(1): 1-16.
    • (2007) Analytical Biochemistry , vol.370 , Issue.1 , pp. 1-16
    • Chou, K.1    Shen, H.2
  • 14
    • 0033963089 scopus 로고    scopus 로고
    • The ENZYME database in 2000
    • Bairoch A. The ENZYME database in 2000. Nucleic Acids Research. 2000; 28(1): 304-305.
    • (2000) Nucleic Acids Research , vol.28 , Issue.1 , pp. 304-305
    • Bairoch, A.1
  • 15
    • 9144257282 scopus 로고    scopus 로고
    • The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes
    • Ruepp A, Zollner A, Maier D, et al. The FunCat, a functional annotation scheme for systematic classification of proteins from whole genomes. Nucleic Acids Research. 2004; 32(18): 5539-5545.
    • (2004) Nucleic Acids Research , vol.32 , Issue.18 , pp. 5539-5545
    • Ruepp, A.1    Zollner, A.2    Maier, D.3
  • 16
    • 0034308142 scopus 로고    scopus 로고
    • Practical limits of function prediction. Proteins: Structure
    • Devos D, Valencia A. Practical limits of function prediction. Proteins: Structure, Function, and Bioinformatics. 2000; 41(1): 98-107.
    • (2000) Function, and Bioinformatics , vol.41 , Issue.1 , pp. 98-107
    • Devos, D.1    Valencia, A.2
  • 17
    • 0034677669 scopus 로고    scopus 로고
    • Assessing annotation transfer for genomics: Quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores
    • Wilson CA, Kreychman J, Gerstein M. Assessing annotation transfer for genomics: quantifying the relations between protein sequence, structure and function through traditional and probabilistic scores. Journal of Molecular Biology. 2000; 297(1): 233-249.
    • (2000) Journal of Molecular Biology , vol.297 , Issue.1 , pp. 233-249
    • Wilson, C.A.1    Kreychman, J.2    Gerstein, M.3
  • 19
    • 33750125547 scopus 로고    scopus 로고
    • Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity
    • Han L, Cui J, Lin H, et al. Recent progresses in the application of machine learning approach for predicting protein functional class independent of sequence similarity. Proteomics. 2006; 6(14): 4023-4037.
    • (2006) Proteomics , vol.6 , Issue.14 , pp. 4023-4037
    • Han, L.1    Cui, J.2    Lin, H.3
  • 20
    • 79959481526 scopus 로고    scopus 로고
    • Recent progress in predicting protein subsubcellular locations
    • Du P, Li T, Wang X. Recent progress in predicting protein subsubcellular locations. Expert Review of Proteomics. 2011; 8(3): 391-404.
    • (2011) Expert Review of Proteomics , vol.8 , Issue.3 , pp. 391-404
    • Du, P.1    Li, T.2    Wang, X.3
  • 21
    • 77957202889 scopus 로고    scopus 로고
    • A systematic study of genome context methods: Calibration, normalization and combination
    • Ferrer L, Dale J, Karp P. A systematic study of genome context methods: calibration, normalization and combination. BMC Bioinformatics. 2010; 11(1): 493.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 493
    • Ferrer, L.1    Dale, J.2    Karp, P.3
  • 23
    • 0033523989 scopus 로고    scopus 로고
    • Protein interaction maps for complete genomes based on gene fusion events
    • Enright AJ, Iliopoulos I, Kyrpides NC, Ouzounis CA. Protein interaction maps for complete genomes based on gene fusion events. Nature. 1999; 402(6757): 86-90.
    • (1999) Nature , vol.402 , Issue.6757 , pp. 86-90
    • Enright, A.J.1    Iliopoulos, I.2    Kyrpides, N.C.3    Ouzounis, C.A.4
  • 26
    • 0037050026 scopus 로고    scopus 로고
    • Functional organization of the yeast proteome by systematic analysis of protein complexes
    • Gavin A, Bosche M, Krause R, et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature. 2002; 415(6868): 141-147.
    • (2002) Nature , vol.415 , Issue.6868 , pp. 141-147
    • Gavin, A.1    Bosche, M.2    Krause, R.3
  • 28
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys Y, Inza I, Larranaga P. A review of feature selection techniques in bioinformatics. Bioinformatics. 2007; 23(19): 2507-2517.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larranaga, P.3
  • 36
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpretability of classifications
    • Forgy E. Cluster analysis of multivariate data: efficiency versus interpretability of classifications. Biometrics. 1965; 21: 768-780.
    • (1965) Biometrics , vol.21 , pp. 768-780
    • Forgy, E.1
  • 37
    • 0029051959 scopus 로고
    • Novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space
    • Chou K. A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins: Structure, Function, and Bioinformatics. 1995; 21(4): 319-344.
    • (1995) Proteins Structure, Function, and Bioinformatics , vol.21 , Issue.4 , pp. 319-344
    • Chou, K.A.1
  • 38
    • 0035874091 scopus 로고    scopus 로고
    • Prediction of protein cellular attributes using pseudoamino acid composition
    • Chou K. Prediction of protein cellular attributes using pseudoamino acid composition. Proteins: Structure, Function, and Bioinformatics. 2001; 43(3): 246-255.
    • (2001) Proteins: Structure, Function, and Bioinformatics , vol.43 , Issue.3 , pp. 246-255
    • Chou, K.1
  • 41
    • 0242362191 scopus 로고    scopus 로고
    • Valencia A. Automatic annotation of protein function based on family identification. Proteins: Structure
    • Abascal F, Valencia A. Automatic annotation of protein function based on family identification. Proteins: Structure, Function, and Bioinformatics. 2003; 53(3): 683-692.
    • (2003) Function, and Bioinformatics , vol.53 , Issue.3 , pp. 683-692
    • Abascal, F.1
  • 42
    • 84862204079 scopus 로고    scopus 로고
    • ProtoNet 6.0: Organizing 10 million protein sequences in a compact hierarchical family tree
    • Rappoport N, Karsenty S, Stern A, Linial N, Linial M. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Research. 2012; 40: D313-D320.
    • (2012) Nucleic Acids Research , vol.40
    • Rappoport, N.1    Karsenty, S.2    Stern, A.3    Linial, N.4    Linial, M.5
  • 43
    • 0030801002 scopus 로고    scopus 로고
    • Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs
    • Altschul S, Madden T, Schaffer A, et al. Gapped Blast and Psi-Blast: A New Generation of Protein Database Search Programs. Nucleic Acids Research. 1997; 25: 3389-3402.
    • (1997) Nucleic Acids Research , vol.25 , pp. 3389-3402
    • Altschul, S.1    Madden, T.2    Schaffer, A.3
  • 44
    • 0012293533 scopus 로고    scopus 로고
    • Homology Induction: The use of machine learning to improve sequence similarity searches
    • Karwath A, King R. Homology Induction: the use of machine learning to improve sequence similarity searches. BMC Bioinformatics. 2002; 3: 11.
    • (2002) BMC Bioinformatics , vol.3 , pp. 11
    • Karwath, A.1    King, R.2
  • 45
    • 0028429573 scopus 로고
    • Inductive logic programming: Theory and methods
    • Muggleton S, De Raedt L. Inductive logic programming: Theory and methods. Journal of Logic Programming. 1994; 19/20: 629-679.
    • (1994) Journal of Logic Programming , vol.19 , Issue.20 , pp. 629-679
    • Muggleton, S.1    de Raedt, L.2
  • 46
    • 40749093745 scopus 로고    scopus 로고
    • SVM-HUSTLE-An iterative semi-supervised machine learning approach for pairwise protein remote homology detection
    • Shah AR, Oehmen CS, Webb-Robertson B. SVM-HUSTLE-An iterative semi-supervised machine learning approach for pairwise protein remote homology detection. Bioinformatics. 2008; 24(6): 783-790.
    • (2008) Bioinformatics , vol.24 , Issue.6 , pp. 783-790
    • Shah, A.R.1    Oehmen, C.S.2    Webb-Robertson, B.3
  • 47
    • 77952309493 scopus 로고    scopus 로고
    • Physicochemical property distributions for accurate and rapid pairwise protein homology detection
    • Webb-Robertson BJ, Ratuiste K, Oehmen C. Physicochemical property distributions for accurate and rapid pairwise protein homology detection. BMC Bioinformatics. 2010; 11(1): 145.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 145
    • Webb-Robertson, B.J.1    Ratuiste, K.2    Oehmen, C.3
  • 48
    • 79958759599 scopus 로고    scopus 로고
    • Analysis of protein function and its prediction from amino acid sequence
    • Clark WT, Radivojac P. Analysis of protein function and its prediction from amino acid sequence. Proteins: Structure, Function, and Bioinformatics. 2011; 79(7): 2086-2096.
    • (2011) Proteins: Structure Function, and Bioinformatics , vol.79 , Issue.7 , pp. 2086-2096
    • Clark, W.T.1    Radivojac, P.2
  • 49
    • 77957945532 scopus 로고    scopus 로고
    • GOPred: GO Molecular Function Prediction by Combined Classifiers
    • Sara OS, Atalay V, Cetin-Atalay R. GOPred: GO Molecular Function Prediction by Combined Classifiers. PLoS ONE. 2010; 5(8): e12382.
    • (2010) PLoS ONE , vol.5 , Issue.8
    • Sara, O.S.1    Atalay, V.2    Cetin-Atalay, R.3
  • 51
    • 0000120520 scopus 로고    scopus 로고
    • ProDom: Automated clustering of homologous domains
    • Servant F, Bru C, Carrere S, et al. ProDom: Automated clustering of homologous domains. Briefings in Bioinformatics. 2002; 3(3): 246-251.
    • (2002) Briefings In Bioinformatics , vol.3 , Issue.3 , pp. 246-251
    • Servant, F.1    Bru, C.2    Carrere, S.3
  • 52
    • 26244437278 scopus 로고    scopus 로고
    • Protein Family Clustering for Structural Genomics
    • Yan Y, Moult J. Protein Family Clustering for Structural Genomics. Journal of Molecular Biology. 2005; 353(3): 744-759.
    • (2005) Journal of Molecular Biology , vol.353 , Issue.3 , pp. 744-759
    • Yan, Y.1    Moult, J.2
  • 53
    • 0036529479 scopus 로고    scopus 로고
    • An efficient algorithm for large-scale detection of protein families
    • Enright AJ, Van Dongen S, Ouzounis CA. An efficient algorithm for large-scale detection of protein families. Nucleic Acids Research. 2002; 30(7): 1575-1584.
    • (2002) Nucleic Acids Research , vol.30 , Issue.7 , pp. 1575-1584
    • Enright, A.J.1    van Dongen, S.2    Ouzounis, C.A.3
  • 54
    • 0141519279 scopus 로고    scopus 로고
    • OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes
    • Li L, Stoeckert CJ, Roos DS. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Research. 2003; 13(9): 2178-2189.
    • (2003) Genome Research , vol.13 , Issue.9 , pp. 2178-2189
    • Li, L.1    Stoeckert, C.J.2    Roos, D.S.3
  • 55
    • 0033965852 scopus 로고    scopus 로고
    • ProtoMap: Automatic classification of protein sequences and hierarchy of protein families
    • Yona G, Linial N, Linial M. ProtoMap: automatic classification of protein sequences and hierarchy of protein families. Nucleic Acids Research. 2000; 28(1): 49-55.
    • (2000) Nucleic Acids Research , vol.28 , Issue.1 , pp. 49-55
    • Yona, G.1    Linial, N.2    Linial, M.3
  • 56
    • 84859778326 scopus 로고    scopus 로고
    • Highquality sequence clustering guided by network topology and multiple alignment likelihood
    • Miele V, Penel S, Daubin V, Picard F, Kahn D, Duret L. Highquality sequence clustering guided by network topology and multiple alignment likelihood. Bioinformatics. 2012; 28(8): 1078-1085.
    • (2012) Bioinformatics , vol.28 , Issue.8 , pp. 1078-1085
    • Miele, V.1    Penel, S.2    Daubin, V.3    Picard, F.4    Kahn, D.5    Duret, L.6
  • 57
    • 77950430912 scopus 로고    scopus 로고
    • SCPS: A fast implementation of a spectral method for detecting protein families on a genome-wide scale
    • Nepusz T, Sasidharan R, Paccanaro A. SCPS: a fast implementation of a spectral method for detecting protein families on a genome-wide scale. BMC Bioinformatics. 2010; 11(1): 120.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 120
    • Nepusz, T.1    Sasidharan, R.2    Paccanaro, A.3
  • 58
    • 79551607374 scopus 로고    scopus 로고
    • Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution
    • Apeltsin L, Morris JH, Babbitt PC, Ferrin TE. Improving the quality of protein similarity network clustering algorithms using the network edge weight distribution. Bioinformatics. 2011; 27(3): 326-333.
    • (2011) Bioinformatics , vol.27 , Issue.3 , pp. 326-333
    • Apeltsin, L.1    Morris, J.H.2    Babbitt, P.C.3    Ferrin, T.E.4
  • 59
    • 32644443138 scopus 로고    scopus 로고
    • Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes
    • Uchiyama I. Hierarchical clustering algorithm for comprehensive orthologous-domain classification in multiple genomes. Nucleic Acids Research. 2006; 34(2): 647-658.
    • (2006) Nucleic Acids Research , vol.34 , Issue.2 , pp. 647-658
    • Uchiyama, I.1
  • 61
    • 0001899680 scopus 로고    scopus 로고
    • The metric space of proteinscomparative study of clustering algorithms
    • Sasson O, Linial N, Linial M. The metric space of proteinscomparative study of clustering algorithms. Bioinformatics. 2002; 18(suppl 1): S14-S21.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Sasson, O.1    Linial, N.2    Linial, M.3
  • 62
    • 27644494405 scopus 로고    scopus 로고
    • Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks
    • Ma Q, Chirn GW, Cai R, Szustakowski J, Nirmala N. Clustering protein sequences with a novel metric transformed from sequence similarity scores and sequence alignments with neural networks. BMC Bioinformatics. 2005; 6(1): 242.
    • (2005) BMC Bioinformatics , vol.6 , Issue.1 , pp. 242
    • Ma, Q.1    Chirn, G.W.2    Cai, R.3    Szustakowski, J.4    Nirmala, N.5
  • 63
    • 33748430331 scopus 로고    scopus 로고
    • Exploiting homogeneity in protein sequence clusters for construction of protein family hierarchies
    • Chen C, Chung W, Su C. Exploiting homogeneity in protein sequence clusters for construction of protein family hierarchies. Pattern Recognition. 2006; 39(12): 2356-2369.
    • (2006) Pattern Recognition , vol.39 , Issue.12 , pp. 2356-2369
    • Chen, C.1    Chung, W.2    Su, C.3
  • 65
    • 65549168659 scopus 로고    scopus 로고
    • Partitioning clustering algorithms for protein sequence data sets
    • Fayech S, Essoussi N, Limam M. Partitioning clustering algorithms for protein sequence data sets. BioData Mining. 2009; 2(1): 3.
    • (2009) BioData Mining , vol.2 , Issue.1 , pp. 3
    • Fayech, S.1    Essoussi, N.2    Limam, M.3
  • 66
    • 0031743421 scopus 로고    scopus 로고
    • Profile hidden Markov models
    • Eddy S. Profile hidden Markov models. Bioinformatics. 1998; 14: 755-763.
    • (1998) Bioinformatics , vol.14 , pp. 755-763
    • Eddy, S.1
  • 67
    • 0031715982 scopus 로고    scopus 로고
    • Protein structure alignment by incremental combinatorial extension (CE) of the optimal path
    • Shindyalov I, Bourne P. Protein structure alignment by incremental combinatorial extension (CE) of the optimal path. Protein Engineering. 1998; 11(9): 739-747.
    • (1998) Protein Engineering , vol.11 , Issue.9 , pp. 739-747
    • Shindyalov, I.1    Bourne, P.2
  • 68
    • 0027440362 scopus 로고
    • Protein Structure Comparison by Alignment of Distance Matrices
    • Holm L, Sander C. Protein Structure Comparison by Alignment of Distance Matrices. Journal of Molecular Biology. 1993; 233(1): 123-138.
    • (1993) Journal of Molecular Biology , vol.233 , Issue.1 , pp. 123-138
    • Holm, L.1    Sander, C.2
  • 69
    • 0028838717 scopus 로고
    • Threading a database of protein cores
    • Madej T, Gibrat J, Bryant S. Threading a database of protein cores. Proteins. 1995; 23(3): 356-369.
    • (1995) Proteins , vol.23 , Issue.3 , pp. 356-369
    • Madej, T.1    Gibrat, J.2    Bryant, S.3
  • 70
    • 85187883933 scopus 로고    scopus 로고
    • Improving model construction of profile HMMs for remote homology detection through structural alignment
    • Bernardes J, Davila A, Costa V, Zaverucha G. Improving model construction of profile HMMs for remote homology detection through structural alignment. BMC Bioinformatics. 2007; 435: 1-12.
    • (2007) BMC Bioinformatics , vol.435 , pp. 1-12
    • Bernardes, J.1    Davila, A.2    Costa, V.3    Zaverucha, G.4
  • 71
    • 33646483032 scopus 로고    scopus 로고
    • The Abundance of Short Proteins in the Mammalian Proteome
    • Frith MC, Forrest AR, Nourbakhsh E, et al. The Abundance of Short Proteins in the Mammalian Proteome. PLoS Genetic. 2006; 2(4): e52.
    • (2006) PLoS Genetic , vol.2 , Issue.4
    • Frith, M.C.1    Forrest, A.R.2    Nourbakhsh, E.3
  • 72
    • 0029387830 scopus 로고
    • Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition
    • Wu C, Berry M, Shivakumar S, McLarty J. Neural Networks for Full-Scale Protein Sequence Classification: Sequence Encoding with Singular Value Decomposition. Machine Learning. 1995; 21: 177-193.
    • (1995) Machine Learning , vol.21 , pp. 177-193
    • Wu, C.1    Berry, M.2    Shivakumar, S.3    McLarty, J.4
  • 74
    • 0035882573 scopus 로고    scopus 로고
    • PRED-CLASS: Cascading neural networks for generalized protein classification and genome-wide applications. Proteins: Structure
    • Pasquier C, Promponas VJ, Hamodrakas SJ. PRED-CLASS: Cascading neural networks for generalized protein classification and genome-wide applications. Proteins: Structure, Function, and Bioinformatics. 2001; 44(3): 361-369.
    • (2001) Function, and Bioinformatics , vol.44 , Issue.3 , pp. 361-369
    • Pasquier, C.1    Promponas, V.J.2    Hamodrakas, S.J.3
  • 75
    • 13444292042 scopus 로고    scopus 로고
    • Motif-Based Protein Sequence Classification Using Neural Networks
    • Blekas K, Fotiadis DI, Likas A. Motif-Based Protein Sequence Classification Using Neural Networks. Journal of Computational Biology. 2005; 12(1): 64-82.
    • (2005) Journal of Computational Biology , vol.12 , Issue.1 , pp. 64-82
    • Blekas, K.1    Fotiadis, D.I.2    Likas, A.3
  • 76
    • 0029933832 scopus 로고    scopus 로고
    • Motif Identification Neural Design For Rapid And Sensitive Protein Family Search
    • Hsi-Lien CW, Wu CH, lien Chen H, ju Lo C, Mclarty JW. Motif Identification Neural Design For Rapid And Sensitive Protein Family Search. CABIOS. 1996; 12: 109-118.
    • (1996) CABIOS , vol.12 , pp. 109-118
    • Hsi-Lien, C.W.1    Wu, C.H.2    Lien Chen, H.3    Ju Lo, C.4    McLarty, J.W.5
  • 77
    • 34547871261 scopus 로고    scopus 로고
    • Fast model-based protein homology detection without alignment
    • Hochreiter S, Heusel M, Obermayer K. Fast model-based protein homology detection without alignment. Bioinformatics. 2007; 23(14): 1728-1736.
    • (2007) Bioinformatics , vol.23 , Issue.14 , pp. 1728-1736
    • Hochreiter, S.1    Heusel, M.2    Obermayer, K.3
  • 79
    • 23844474057 scopus 로고    scopus 로고
    • Neural networks for protein classification
    • Weinert W, Lopes H. Neural networks for protein classification. Appl Bioinformatics. 2004; 3: 41-48.
    • (2004) Appl Bioinformatics , vol.3 , pp. 41-48
    • Weinert, W.1    Lopes, H.2
  • 80
    • 33750304849 scopus 로고    scopus 로고
    • Gene function classification using Bayesian models with hierarchy-based priors
    • Shahbaba B, Neal R. Gene function classification using Bayesian models with hierarchy-based priors. BMC Bioinformatics. 2006; 7(1): 448.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 448
    • Shahbaba, B.1    Neal, R.2
  • 81
    • 3042621436 scopus 로고    scopus 로고
    • Prediction of Saccharomyces cerevisiae protein functional class from functional domain composition
    • Cai Y, Doig AJ. Prediction of Saccharomyces cerevisiae protein functional class from functional domain composition. Bioinformatics. 2004; 20(8): 1292-1300.
    • (2004) Bioinformatics , vol.20 , Issue.8 , pp. 1292-1300
    • Cai, Y.1    Doig, A.J.2
  • 83
    • 1542714925 scopus 로고    scopus 로고
    • Mismatch String Kernels for Discriminative Protein Classification
    • Leslie C, Eskin E, Cohen A, Weston J, Noble W. Mismatch String Kernels for Discriminative Protein Classification. Bioinformatics. 2004; 20: 467-476.
    • (2004) Bioinformatics , vol.20 , pp. 467-476
    • Leslie, C.1    Eskin, E.2    Cohen, A.3    Weston, J.4    Noble, W.5
  • 84
    • 22544448378 scopus 로고    scopus 로고
    • Profile-based string kernels for remote homology detection and motif extraction
    • Kuang R, Ie E, Wang K, et al. Profile-based string kernels for remote homology detection and motif extraction. Journal of bioinformatics and computational biology. 2005; 3: 527-550.
    • (2005) Journal of Bioinformatics and Computational Biology , vol.3 , pp. 527-550
    • Kuang, R.1    Ie, E.2    Wang, K.3
  • 85
    • 33748682730 scopus 로고    scopus 로고
    • Remote homology detection based on oligomer distances
    • Lingner T, Meinicke P. Remote homology detection based on oligomer distances. Bioinformatics. 2006; 22: 2224-2231.
    • (2006) Bioinformatics , vol.22 , pp. 2224-2231
    • Lingner, T.1    Meinicke, P.2
  • 86
    • 4944225083 scopus 로고    scopus 로고
    • Remote homology detection: A motif based approach
    • Ben-Hur A, Brutlag D. Remote homology detection: a motif based approach. Bioinformatics. 2003; 19(suppl 1): i26-i33.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Brutlag, D.2
  • 87
    • 33846947543 scopus 로고    scopus 로고
    • Motif kernel generated by genetic programming improves remote homology and fold detection
    • Handstad T, Hestnes A, Saetrom P. Motif kernel generated by genetic programming improves remote homology and fold detection. BMC Bioinformatics. 2007; 8(1): 23.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 23
    • Handstad, T.1    Hestnes, A.2    Saetrom, P.3
  • 88
    • 0344033670 scopus 로고    scopus 로고
    • Efficient remote homology detection using local structure
    • Hou Y, Hsu W, Lee ML, Bystroff C. Efficient remote homology detection using local structure. Bioinformatics. 2003; 19(17): 2294-2301.
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2294-2301
    • Hou, Y.1    Hsu, W.2    Lee, M.L.3    Bystroff, C.4
  • 89
    • 6344261961 scopus 로고    scopus 로고
    • Remote homolog detection using local sequence-structure correlations. Proteins
    • Hou Y, Hsu W, Lee ML, Bystroff C. Remote homolog detection using local sequence-structure correlations. Proteins: Structure, Function, and Bioinformatics. 2004; 57(3): 518-530.
    • (2004) Structure, Function, and Bioinformatics , vol.57 , Issue.3 , pp. 518-530
    • Hou, Y.1    Hsu, W.2    Lee, M.L.3    Bystroff, C.4
  • 91
    • 0742287001 scopus 로고    scopus 로고
    • Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships
    • Liao L, Noble WS. Combining Pairwise Sequence Similarity and Support Vector Machines for Detecting Remote Protein Evolutionary and Structural Relationships. Journal of Computational Biology. 2004; 10: 857-868.
    • (2004) Journal of Computational Biology , vol.10 , pp. 857-868
    • Liao, L.1    Noble, W.S.2
  • 92
    • 37249054511 scopus 로고    scopus 로고
    • When Less Is More: Improving Classification of Protein Families with a Minimal Set of Global Features
    • vol. 4645 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg
    • Varshavsky R, Fromer M, Man A, Linial M. When Less Is More: Improving Classification of Protein Families with a Minimal Set of Global Features. In: Algorithms in Bioinformatics. vol. 4645 of Lecture Notes in Computer Science. Springer Berlin / Heidelberg; 2007. p. 12-24.
    • (2007) Algorithms In Bioinformatics , pp. 12-24
    • Varshavsky, R.1    Fromer, M.2    Man, A.3    Linial, M.4
  • 93
    • 75149194967 scopus 로고    scopus 로고
    • The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments
    • Huixiao H, Qilong H, Roger P, et al. The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments. Journal of Computational Biology. 2009; 16(12): 1671-1688.
    • (2009) Journal of Computational Biology , vol.16 , Issue.12 , pp. 1671-1688
    • Huixiao, H.1    Qilong, H.2    Roger, P.3
  • 94
  • 95
    • 79955564229 scopus 로고    scopus 로고
    • Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine
    • Mohabatkar H, Beigi MM, Esmaeili A. Prediction of GABA(A) receptor proteins using the concept of Chou's pseudo-amino acid composition and support vector machine. Journal of Theoretical Biology. 2011; 281(1): 18-23.
    • (2011) Journal of Theoretical Biology , vol.281 , Issue.1 , pp. 18-23
    • Mohabatkar, H.1    Beigi, M.M.2    Esmaeili, A.3
  • 96
    • 34247112742 scopus 로고    scopus 로고
    • Simple alignment-free methods for protein classification: A case study from G-protein-coupled receptors
    • Strope PK, Moriyama EN. Simple alignment-free methods for protein classification: A case study from G-protein-coupled receptors. Genomics. 2007; 89(5): 602-612.
    • (2007) Genomics , vol.89 , Issue.5 , pp. 602-612
    • Strope, P.K.1    Moriyama, E.N.2
  • 97
    • 78650649704 scopus 로고    scopus 로고
    • Prediction of Enzyme Subfamily Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad Feature
    • Wang Y, Wang X, Yang Z, Deng N. Prediction of Enzyme Subfamily Class via Pseudo Amino Acid Composition by Incorporating the Conjoint Triad Feature. Protein and Peptide Letters. 2010; 17(11): 1441-1449.
    • (2010) Protein and Peptide Letters , vol.17 , Issue.11 , pp. 1441-1449
    • Wang, Y.1    Wang, X.2    Yang, Z.3    Deng, N.4
  • 98
    • 79953093817 scopus 로고    scopus 로고
    • A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models
    • Bernardes J, Carbone A, Zaverucha G. A discriminative method for family-based protein remote homology detection that combines inductive logic programming and propositional models. BMC Bioinformatics. 2011; 12: 83.
    • (2011) BMC Bioinformatics , vol.12 , pp. 83
    • Bernardes, J.1    Carbone, A.2    Zaverucha, G.3
  • 99
    • 0041736652 scopus 로고    scopus 로고
    • Protein function classification via support vector machine approach
    • Cai C, Wang W, Sun L, Chen Y. Protein function classification via support vector machine approach. Mathematical Biosciences. 2003; 185: 111-122.
    • (2003) Mathematical Biosciences , vol.185 , pp. 111-122
    • Cai, C.1    Wang, W.2    Sun, L.3    Chen, Y.4
  • 100
    • 0042622243 scopus 로고    scopus 로고
    • SVM-Prot: Web-based support vector machine software for functional classification of a protein from its primary sequence
    • Cai C, Han L, Ji Z, Chen X, Chen Y. SVM-Prot: web-based support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Research. 2003; 31(13): 3692-3697.
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3692-3697
    • Cai, C.1    Han, L.2    Ji, Z.3    Chen, X.4    Chen, Y.5
  • 101
    • 1442275650 scopus 로고    scopus 로고
    • Enzyme family classification by support vector machines. Proteins: Structure
    • Cai CZ, Han LY, Ji ZL, Chen YZ. Enzyme family classification by support vector machines. Proteins: Structure, Function, and Bioinformatics. 2004; 55(1): 66-76.
    • (2004) Function, and Bioinformatics , vol.55 , Issue.1 , pp. 66-76
    • Cai, C.Z.1    Han, L.Y.2    Ji, Z.L.3    Chen, Y.Z.4
  • 102
    • 49749089288 scopus 로고    scopus 로고
    • CyclinPred: A SVMBased Method for Predicting Cyclin Protein Sequences
    • Kalita MK, Nandal UK, Pattnaik A, et al. CyclinPred: A SVMBased Method for Predicting Cyclin Protein Sequences. PLoS ONE. 2008; 3(7): e2605.
    • (2008) PLoS ONE , vol.3 , Issue.7
    • Kalita, M.K.1    Nandal, U.K.2    Pattnaik, A.3
  • 103
    • 78751591575 scopus 로고    scopus 로고
    • Wavelet images and Chou's pseudo amino acid composition for protein classification
    • Nanni L, Brahnam S, Lumini A. Wavelet images and Chou's pseudo amino acid composition for protein classification. Amino Acids. 2011; p. 443-451.
    • (2011) Amino Acids , pp. 443-451
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 105
    • 0038038642 scopus 로고    scopus 로고
    • Using a mixture of probabilistic decision trees for direct prediction of protein function. In: Proceedings of the seventh annual international conference on Research in computational molecular biology. RECOMB '03
    • Syed U, Yona G. Using a mixture of probabilistic decision trees for direct prediction of protein function. In: Proceedings of the seventh annual international conference on Research in computational molecular biology. RECOMB '03. ACM; 2003. p. 289-300.
    • ACM , vol.2003 , pp. 289-300
    • Syed, U.1    Yona, G.2
  • 107
    • 66549127733 scopus 로고    scopus 로고
    • Improving classification in protein structure databases using text mining
    • Koussounadis A, Redfern O, Jones D. Improving classification in protein structure databases using text mining. BMC Bioinformatics. 2009; 10(1): 129.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 129
    • Koussounadis, A.1    Redfern, O.2    Jones, D.3
  • 108
    • 77953934865 scopus 로고    scopus 로고
    • High performance set of PseAAC and sequence based descriptors for protein classification
    • Nanni L, Brahnam S, Lumini A. High performance set of PseAAC and sequence based descriptors for protein classification. Journal of Theoretical Biology. 2010; 266(1): 1-10.
    • (2010) Journal of Theoretical Biology , vol.266 , Issue.1 , pp. 1-10
    • Nanni, L.1    Brahnam, S.2    Lumini, A.3
  • 109
    • 35348973511 scopus 로고    scopus 로고
    • EzyPred: A top-down approach for predicting enzyme functional classes and subclasses
    • Shen H, Chou K. EzyPred: A top-down approach for predicting enzyme functional classes and subclasses. Biochemical and Biophysical Research Communications. 2007; 364(1): 53-59.
    • (2007) Biochemical and Biophysical Research Communications , vol.364 , Issue.1 , pp. 53-59
    • Shen, H.1    Chou, K.2
  • 110
    • 0042121304 scopus 로고    scopus 로고
    • LOC3D: Annotate sub-cellular localization for protein structures
    • Nair R, Rost B. LOC3D: annotate sub-cellular localization for protein structures. Nucleic Acids Research. 2003; 31(13): 3337-3340.
    • (2003) Nucleic Acids Research , vol.31 , Issue.13 , pp. 3337-3340
    • Nair, R.1    Rost, B.2
  • 111
    • 70349254021 scopus 로고    scopus 로고
    • Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins
    • Millar AH, Carrie C, Pogson B, Whelan J. Exploring the Function-Location Nexus: Using Multiple Lines of Evidence in Defining the Subcellular Location of Plant Proteins. The Plant Cell Online. 2009; 21(6): 1625-1631.
    • (2009) The Plant Cell Online , vol.21 , Issue.6 , pp. 1625-1631
    • Millar, A.H.1    Carrie, C.2    Pogson, B.3    Whelan, J.4
  • 112
    • 0141515750 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs
    • Park K, Kanehisa M. Prediction of protein subcellular locations by support vector machines using compositions of amino acids and amino acid pairs. Bioinformatics. 2003; 19(13): 1656-1663.
    • (2003) Bioinformatics , vol.19 , Issue.13 , pp. 1656-1663
    • Park, K.1    Kanehisa, M.2
  • 113
    • 0037195776 scopus 로고    scopus 로고
    • Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location
    • Chou K, Cai Y. Using Functional Domain Composition and Support Vector Machines for Prediction of Protein Subcellular Location. Journal of Biological Chemistry. 2002; 277(48): 45765-45769.
    • (2002) Journal of Biological Chemistry , vol.277 , Issue.48 , pp. 45765-45769
    • Chou, K.1    Cai, Y.2
  • 114
    • 79952846620 scopus 로고    scopus 로고
    • Predicting protein subcellular localization by pseudo amino acid composition with a segment-weighted and features-combined approach
    • Wang W, Geng X, Dou Y, Liu T, Zheng X. Predicting protein subcellular localization by pseudo amino acid composition with a segment-weighted and features-combined approach. Protein and Peptide Letters. 2011; 18(5): 480-487.
    • (2011) Protein and Peptide Letters , vol.18 , Issue.5 , pp. 480-487
    • Wang, W.1    Geng, X.2    Dou, Y.3    Liu, T.4    Zheng, X.5
  • 115
    • 80052988268 scopus 로고    scopus 로고
    • Predicting apoptosis protein subcellular location with PseAAC by incorporating tripeptide composition
    • Liao B, Jiang J, Zeng Q, Zhu W. Predicting apoptosis protein subcellular location with PseAAC by incorporating tripeptide composition. Protein and Peptide Letters. 2011; 18(11): 1086-1092.
    • (2011) Protein and Peptide Letters , vol.18 , Issue.11 , pp. 1086-1092
    • Liao, B.1    Jiang, J.2    Zeng, Q.3    Zhu, W.4
  • 116
    • 78650178724 scopus 로고    scopus 로고
    • Prediction of subcellular location of mycobacterial protein using feature selection techniques
    • Lin H, Ding H, Guo F, Huang J. Prediction of subcellular location of mycobacterial protein using feature selection techniques. Molecular Diversity. 2010; 14: 667-671.
    • (2010) Molecular Diversity , vol.14 , pp. 667-671
    • Lin, H.1    Ding, H.2    Guo, F.3    Huang, J.4
  • 117
    • 47249153247 scopus 로고    scopus 로고
    • Predicting Protein Subcellular Location Using Chou's Pseudo Amino Acid Composition and Improved Hybrid Approach
    • Li F, Li Q. Predicting Protein Subcellular Location Using Chou's Pseudo Amino Acid Composition and Improved Hybrid Approach. Protein and Peptide Letters. 2008; 15(6): 612.
    • (2008) Protein and Peptide Letters , vol.15 , Issue.6 , pp. 612
    • Li, F.1    Li, Q.2
  • 118
    • 84862759124 scopus 로고    scopus 로고
    • Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: Approach from amino acid substitution matrix and auto covariance transformation
    • Yu X, Zheng X, Liu T, Dou Y, Wang J. Predicting subcellular location of apoptosis proteins with pseudo amino acid composition: approach from amino acid substitution matrix and auto covariance transformation. Amino Acids. 2012; 42: 1619-1625.
    • (2012) Amino Acids , vol.42 , pp. 1619-1625
    • Yu, X.1    Zheng, X.2    Liu, T.3    Dou, Y.4    Wang, J.5
  • 119
    • 0035672036 scopus 로고    scopus 로고
    • Support vector machines for prediction of protein subcellular location by incorporating quasisequence-order effect
    • Cai Y, Liu X, Xu X, Chou K. Support vector machines for prediction of protein subcellular location by incorporating quasisequence-order effect. Journal of Cellular Biochemistry. 2002; 84(2): 343-348.
    • (2002) Journal of Cellular Biochemistry , vol.84 , Issue.2 , pp. 343-348
    • Cai, Y.1    Liu, X.2    Xu, X.3    Chou, K.4
  • 120
    • 27644504110 scopus 로고    scopus 로고
    • A novel representation of protein sequences for prediction of subcellular location using support vector machines
    • Matsuda S, Vert JP, Saigo H, Ueda N, Toh H, Akutsu T. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Science. 2005; 14(11): 2804-2813.
    • (2005) Protein Science , vol.14 , Issue.11 , pp. 2804-2813
    • Matsuda, S.1    Vert, J.P.2    Saigo, H.3    Ueda, N.4    Toh, H.5    Akutsu, T.6
  • 124
    • 37249082479 scopus 로고    scopus 로고
    • Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs
    • Zou L, Wang Z, Huang J. Prediction of Subcellular Localization of Eukaryotic Proteins Using Position-Specific Profiles and Neural Network with Weighted Inputs. Journal of Genetics and Genomics. 2007; 34(12): 1080-1087.
    • (2007) Journal of Genetics and Genomics , vol.34 , Issue.12 , pp. 1080-1087
    • Zou, L.1    Wang, Z.2    Huang, J.3
  • 125
    • 0036006486 scopus 로고    scopus 로고
    • Artificial neural network model for predicting protein subcellular location
    • Cai Y, Liu X, Chou K. Artificial neural network model for predicting protein subcellular location. Computers & Chemistry. 2002; 26(2): 179-182.
    • (2002) Computers & Chemistry , vol.26 , Issue.2 , pp. 179-182
    • Cai, Y.1    Liu, X.2    Chou, K.3
  • 126
    • 80053937952 scopus 로고    scopus 로고
    • SCLpred: Protein subcellular localization prediction by N-to-1 neural networks
    • Mooney C, Wang Y, Pollastri G. SCLpred: protein subcellular localization prediction by N-to-1 neural networks. Bioinformatics. 2011; 27(20): 2812-2819.
    • (2011) Bioinformatics , vol.27 , Issue.20 , pp. 2812-2819
    • Mooney, C.1    Wang, Y.2    Pollastri, G.3
  • 128
    • 77949956719 scopus 로고    scopus 로고
    • Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method
    • T W, J Y. Predicting subcellular localization of gram-negative bacterial proteins by linear dimensionality reduction method. Protein and Peptide Letters. 2010; 17(1): 32-37.
    • (2010) Protein and Peptide Letters , vol.17 , Issue.1 , pp. 32-37
  • 129
    • 43549087105 scopus 로고    scopus 로고
    • Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: An approach by approximate entropy
    • Jiang X, Wei R, Zhang T, Gu Q. Using the concept of Chou's pseudo amino acid composition to predict apoptosis proteins subcellular location: an approach by approximate entropy. Protein and Peptide Letters. 2008; 15(4): 392-396.
    • (2008) Protein and Peptide Letters , vol.15 , Issue.4 , pp. 392-396
    • Jiang, X.1    Wei, R.2    Zhang, T.3    Gu, Q.4
  • 130
    • 67650757436 scopus 로고    scopus 로고
    • A complexity-based method for predicting protein subcellular location
    • Zheng X, Liu T, Wang J. A complexity-based method for predicting protein subcellular location. Amino Acids. 2009; 37: 427-433.
    • (2009) Amino Acids , vol.37 , pp. 427-433
    • Zheng, X.1    Liu, T.2    Wang, J.3
  • 131
    • 0347093598 scopus 로고    scopus 로고
    • Prediction of protein subcellular locations using fuzzy k-NN method
    • Huang Y, Li Y. Prediction of protein subcellular locations using fuzzy k-NN method. Bioinformatics. 2004; 20(1): 21-28.
    • (2004) Bioinformatics , vol.20 , Issue.1 , pp. 21-28
    • Huang, Y.1    Li, Y.2
  • 132
    • 77951665965 scopus 로고    scopus 로고
    • Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection
    • Gu Q, Ding YS, Jiang XY, Zhang TL. Prediction of subcellular location apoptosis proteins with ensemble classifier and feature selection. Amino Acids. 2010; 38: 975-983.
    • (2010) Amino Acids , vol.38 , pp. 975-983
    • Gu, Q.1    Ding, Y.S.2    Jiang, X.Y.3    Zhang, T.L.4
  • 133
    • 84856376845 scopus 로고    scopus 로고
    • An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity
    • Li L, Zhang Y, Zou L, Li C, Yu B. An Ensemble Classifier for Eukaryotic Protein Subcellular Location Prediction Using Gene Ontology Categories and Amino Acid Hydrophobicity. PLoS ONE. 2012; 7(1): e31057.
    • (2012) PLoS ONE , vol.7 , Issue.1
    • Li, L.1    Zhang, Y.2    Zou, L.3    Li, C.4    Yu, B.5
  • 134
    • 77957297596 scopus 로고    scopus 로고
    • Virus-mPLoc: A fusion classifier for viral protein subcellular location prediction by incorporating multiple sites
    • Shen H, Chou K. Virus-mPLoc: a fusion classifier for viral protein subcellular location prediction by incorporating multiple sites. Journal of Biomolecular Structure & Dynamics. 2010; 28: 175-186.
    • (2010) Journal of Biomolecular Structure & Dynamics , vol.28 , pp. 175-186
    • Shen, H.1    Chou, K.2
  • 135
    • 33747197197 scopus 로고    scopus 로고
    • Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest Neighbor Classifiers
    • Chou K, Shen HB. Predicting Eukaryotic Protein Subcellular Location by Fusing Optimized Evidence-Theoretic K-Nearest Neighbor Classifiers. Journal of Proteome Research. 2006; 5(8): 1888-1897.
    • (2006) Journal of Proteome Research , vol.5 , Issue.8 , pp. 1888-1897
    • Chou, K.1    Shen, H.B.2
  • 136
    • 0029307876 scopus 로고
    • A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics
    • Denoeux T. A k-nearest neighbor classification rule based on Dempster-Shafer theory. Systems, Man and Cybernetics, IEEE Transactions on. 1995; 25(5): 804-813.
    • (1995) IEEE Transactions On , vol.25 , Issue.5 , pp. 804-813
    • Denoeux, T.1
  • 137
    • 33846605183 scopus 로고    scopus 로고
    • Large-scale plant protein subcellular location prediction
    • Chou K, Shen HB. Large-scale plant protein subcellular location prediction. Journal of Cellular Biochemistry. 2007; 100(3): 665-678.
    • (2007) Journal of Cellular Biochemistry , vol.100 , Issue.3 , pp. 665-678
    • Chou, K.1    Shen, H.B.2
  • 138
    • 49749132014 scopus 로고    scopus 로고
    • Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine
    • Zhou X, Chen C, Li Z, Zou X. Improved prediction of subcellular location for apoptosis proteins by the dual-layer support vector machine. Amino Acids. 2008; 35: 383-388.
    • (2008) Amino Acids , vol.35 , pp. 383-388
    • Zhou, X.1    Chen, C.2    Li, Z.3    Zou, X.4
  • 139
    • 12744279642 scopus 로고    scopus 로고
    • Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes
    • Chou K. Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes. Bioinformatics. 2005; 21(1): 10-19.
    • (2005) Bioinformatics , vol.21 , Issue.1 , pp. 10-19
    • Chou, K.1
  • 140
    • 33749646840 scopus 로고    scopus 로고
    • GNBSL: A new integrative system to predict the subcellular location for Gram-negative bacteria proteins
    • Guo J, Lin Y, Liu X. GNBSL: A new integrative system to predict the subcellular location for Gram-negative bacteria proteins. Proteomics. 2006; 6(19): 5099-5105.
    • (2006) Proteomics , vol.6 , Issue.19 , pp. 5099-5105
    • Guo, J.1    Lin, Y.2    Liu, X.3
  • 141
    • 33746717455 scopus 로고    scopus 로고
    • Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains
    • Bulashevska A, Eils R. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains. BMC Bioinformatics. 2006; 7(1): 298.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 298
    • Bulashevska, A.1    Eils, R.2
  • 142
    • 79959741759 scopus 로고    scopus 로고
    • CE-PLoc: An ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition
    • Khan A, Majid A, Hayat M. CE-PLoc: An ensemble classifier for predicting protein subcellular locations by fusing different modes of pseudo amino acid composition. Computational Biology and Chemistry. 2011; 35(4): 218-229.
    • (2011) Computational Biology and Chemistry , vol.35 , Issue.4 , pp. 218-229
    • Khan, A.1    Majid, A.2    Hayat, M.3
  • 143
    • 37849032668 scopus 로고    scopus 로고
    • Unite and conquer': Enhanced prediction of protein subcellular localization by integrating multiple specialized tools
    • Shen Y, Burger G. Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools. BMC Bioinformatics. 2007; 8(1): 420.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 420
    • Shen, Y.1    Burger, G.2
  • 144
    • 0017309766 scopus 로고
    • Structural patterns in globular proteins
    • Levitt M, Chothia C. Structural patterns in globular proteins. Nature. 1976; 261(5561): 552-558.
    • (1976) Nature , vol.261 , Issue.5561 , pp. 552-558
    • Levitt, M.1    Chothia, C.2
  • 145
    • 33645741221 scopus 로고    scopus 로고
    • Improvement of domain linker prediction by incorporating loop-length-dependent characteristics
    • Tanaka T, Yokoyama S, Kuroda Y. Improvement of domain linker prediction by incorporating loop-length-dependent characteristics. Peptide Science. 2006; 84(2): 161-168.
    • (2006) Peptide Science , vol.84 , Issue.2 , pp. 161-168
    • Tanaka, T.1    Yokoyama, S.2    Kuroda, Y.3
  • 148
    • 3042810008 scopus 로고    scopus 로고
    • Sequence-based prediction of protein domains
    • Liu J, Rost B. Sequence-based prediction of protein domains. Nucleic Acids Research. 2004; 32(12): 3522-3530.
    • (2004) Nucleic Acids Research , vol.32 , Issue.12 , pp. 3522-3530
    • Liu, J.1    Rost, B.2
  • 149
    • 0036288851 scopus 로고    scopus 로고
    • Characterization and prediction of linker sequences of multi-domain proteins by a neural network
    • Miyazaki S, Kuroda Y, Yokoyama S. Characterization and prediction of linker sequences of multi-domain proteins by a neural network. Journal of Structural and Functional Genomics. 2002; 2: 37-51.
    • (2002) Journal of Structural and Functional Genomics , vol.2 , pp. 37-51
    • Miyazaki, S.1    Kuroda, Y.2    Yokoyama, S.3
  • 150
    • 3142680264 scopus 로고    scopus 로고
    • Automatic prediction of protein domains from sequence information using a hybrid learning system
    • Nagarajan N, Yona G. Automatic prediction of protein domains from sequence information using a hybrid learning system. Bioinformatics. 2004; 20(9): 1335-1360.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1335-1360
    • Nagarajan, N.1    Yona, G.2
  • 151
    • 33745101459 scopus 로고    scopus 로고
    • DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks
    • Cheng J, Sweredoski M, Baldi P. DOMpro: Protein Domain Prediction Using Profiles, Secondary Structure, Relative Solvent Accessibility, and Recursive Neural Networks. Data Mining and Knowledge Discovery. 2006; 13: 1-10.
    • (2006) Data Mining and Knowledge Discovery , vol.13 , pp. 1-10
    • Cheng, J.1    Sweredoski, M.2    Baldi, P.3
  • 153
    • 67650898274 scopus 로고    scopus 로고
    • Ab initio and homology based prediction of protein domains by recursive neural networks
    • Walsh I, Martin A, Mooney C, Rubagotti E, Vullo A, Pollastri G. Ab initio and homology based prediction of protein domains by recursive neural networks. BMC Bioinformatics. 2009; 10(1): 195.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 195
    • Walsh, I.1    Martin, A.2    Mooney, C.3    Rubagotti, E.4    Vullo, A.5    Pollastri, G.6
  • 154
    • 17844363963 scopus 로고    scopus 로고
    • PPRODO: Prediction of protein domain boundaries using neural networks. Proteins: Structure
    • Sim J, Kim SY, Lee J. PPRODO: Prediction of protein domain boundaries using neural networks. Proteins: Structure, Function, and Bioinformatics. 2005; 59(3): 627-632.
    • (2005) Function, and Bioinformatics , vol.59 , Issue.3 , pp. 627-632
    • Sim, J.1    Kim, S.Y.2    Lee, J.3
  • 155
    • 40549099733 scopus 로고    scopus 로고
    • Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins
    • Ye L, Liu T, Wu Z, Zhou R. Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins: Structure, Function, and Bioinformatics. 2008; 71(1): 300-307.
    • (2008) Structure, Function, and Bioinformatics , vol.71 , Issue.1 , pp. 300-307
    • Ye, L.1    Liu, T.2    Wu, Z.3    Zhou, R.4
  • 156
    • 41949117705 scopus 로고    scopus 로고
    • Improved general regression network for protein domain boundary prediction
    • Yoo P, Sikder A, Zhou B, Zomaya A. Improved general regression network for protein domain boundary prediction. BMC Bioinformatics. 2008; 9(Suppl 1): S12.
    • (2008) BMC Bioinformatics , vol.9 , Issue.SUPPL. 1
    • Yoo, P.1    Sikder, A.2    Zhou, B.3    Zomaya, A.4
  • 157
    • 0037460953 scopus 로고    scopus 로고
    • DomCut: Prediction of inter-domain linker regions in amino acid sequences
    • Suyama M, Ohara O. DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics. 2003; 19(5): 673-674.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 673-674
    • Suyama, M.1    Ohara, O.2
  • 158
    • 60149103898 scopus 로고    scopus 로고
    • Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics
    • Ebina T, Toh H, Kuroda Y. Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics. Peptide Science. 2009; 92(1): 1-8.
    • (2009) Peptide Science , vol.92 , Issue.1 , pp. 1-8
    • Ebina, T.1    Toh, H.2    Kuroda, Y.3
  • 159
    • 33947385412 scopus 로고    scopus 로고
    • Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index
    • Sikder A, Zomaya A. Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index. BMC Bioinformatics. 2006; 7(Suppl 5): S6.
    • (2006) BMC Bioinformatics , vol.7 , Issue.SUPPL. 5
    • Sikder, A.1    Zomaya, A.2
  • 160
    • 77956938868 scopus 로고    scopus 로고
    • DomSVR: Domain boundary prediction with support vector regression from sequence information alone
    • Chen P, Liu C, Burge L, et al. DomSVR: domain boundary prediction with support vector regression from sequence information alone. Amino Acids. 2010; 39: 713-726.
    • (2010) Amino Acids , vol.39 , pp. 713-726
    • Chen, P.1    Liu, C.2    Burge, L.3
  • 162
    • 79951527638 scopus 로고    scopus 로고
    • DROP: An SVM domain linker predictor trained with optimal features selected by random forest
    • Ebina T, Toh H, Kuroda Y. DROP: an SVM domain linker predictor trained with optimal features selected by random forest. Bioinformatics. 2011; 27(4): 487-494.
    • (2011) Bioinformatics , vol.27 , Issue.4 , pp. 487-494
    • Ebina, T.1    Toh, H.2    Kuroda, Y.3
  • 165
    • 0032932490 scopus 로고    scopus 로고
    • From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions
    • Zhang B, Rychlewski L, Pawlowski K, Fetrow JS, Skolnick J, Godzik A. From fold predictions to function predictions: Automation of functional site conservation analysis for functional genome predictions. Protein Science. 1999; 8(5): 1104-1115.
    • (1999) Protein Science , vol.8 , Issue.5 , pp. 1104-1115
    • Zhang, B.1    Rychlewski, L.2    Pawlowski, K.3    Fetrow, J.S.4    Skolnick, J.5    Godzik, A.6
  • 166
    • 3042681902 scopus 로고    scopus 로고
    • ConSeq: The identification of functionally and structurally important residues in protein sequences
    • Berezin C, Glaser F, Rosenberg J, et al. ConSeq: the identification of functionally and structurally important residues in protein sequences. Bioinformatics. 2004; 20(8): 1322-1324.
    • (2004) Bioinformatics , vol.20 , Issue.8 , pp. 1322-1324
    • Berezin, C.1    Glaser, F.2    Rosenberg, J.3
  • 167
    • 58149278887 scopus 로고    scopus 로고
    • Structural descriptor database: A new tool for sequence-based functional site prediction
    • Bernardes J, Fernandez J, Vasconcelos A. Structural descriptor database: a new tool for sequence-based functional site prediction. BMC Bioinformatics. 2008; 9(1): 492.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 492
    • Bernardes, J.1    Fernandez, J.2    Vasconcelos, A.3
  • 169
    • 0141506120 scopus 로고    scopus 로고
    • Characterizing proteolytic cleavage site activity using bio-basis function neural networks
    • Thomson R, Hodgman TC, Yang ZR, Doyle AK. Characterizing proteolytic cleavage site activity using bio-basis function neural networks. Bioinformatics. 2003; 19(14): 1741-1747.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1741-1747
    • Thomson, R.1    Hodgman, T.C.2    Yang, Z.R.3    Doyle, A.K.4
  • 170
    • 0037407113 scopus 로고    scopus 로고
    • Reliable prediction of T-cell epitopes using neural networks with novel sequence representations
    • Nielsen M, Lundegaard C, Worning P, et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Science. 2003; 12(5): 1007-1017.
    • (2003) Protein Science , vol.12 , Issue.5 , pp. 1007-1017
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3
  • 171
    • 0042674397 scopus 로고    scopus 로고
    • Using A Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes
    • Gutteridge A, Bartlett GJ, Thornton JM. Using A Neural Network and Spatial Clustering to Predict the Location of Active Sites in Enzymes. Journal of Molecular Biology. 2003; 330(4): 719-734.
    • (2003) Journal of Molecular Biology , vol.330 , Issue.4 , pp. 719-734
    • Gutteridge, A.1    Bartlett, G.J.2    Thornton, J.M.3
  • 173
    • 0344405703 scopus 로고    scopus 로고
    • Prediction of Catalytic Residues in Enzymes Based on Known Tertiary Structure, Stability Profile, and Sequence Conservation
    • Ota M, Kinoshita K, Nishikawa K. Prediction of Catalytic Residues in Enzymes Based on Known Tertiary Structure, Stability Profile, and Sequence Conservation. Journal of Molecular Biology. 2003; 327(5): 1053-1064.
    • (2003) Journal of Molecular Biology , vol.327 , Issue.5 , pp. 1053-1064
    • Ota, M.1    Kinoshita, K.2    Nishikawa, K.3
  • 174
    • 33746950964 scopus 로고    scopus 로고
    • Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties
    • Petrova N, Wu C. Prediction of catalytic residues using Support Vector Machine with selected protein sequence and structural properties. BMC Bioinformatics. 2006; 7(1): 312.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 312
    • Petrova, N.1    Wu, C.2
  • 175
    • 79955716853 scopus 로고    scopus 로고
    • Structure-based identification of catalytic residues. Proteins: Structure
    • Yahalom R, Reshef D, Wiener A, et al. Structure-based identification of catalytic residues. Proteins: Structure, Function, and Bioinformatics. 2011; 79(6): 1952-1963.
    • (2011) Function, and Bioinformatics , vol.79 , Issue.6 , pp. 1952-1963
    • Yahalom, R.1    Reshef, D.2    Wiener, A.3
  • 178
    • 34548133728 scopus 로고    scopus 로고
    • Predicting functionally important residues from sequence conservation
    • Capra JA, Singh M. Predicting functionally important residues from sequence conservation. Bioinformatics. 2007; 23(15): 1875-1882.
    • (2007) Bioinformatics , vol.23 , Issue.15 , pp. 1875-1882
    • Capra, J.A.1    Singh, M.2
  • 179
    • 78449287914 scopus 로고    scopus 로고
    • Prediction of catalytic residues based on an overlapping amino acid classification
    • Dou Y, Zheng X, Yang J, Wang J. Prediction of catalytic residues based on an overlapping amino acid classification. Amino Acids. 2010; 39: 1353-1361.
    • (2010) Amino Acids , vol.39 , pp. 1353-1361
    • Dou, Y.1    Zheng, X.2    Yang, J.3    Wang, J.4
  • 181
    • 53749083563 scopus 로고    scopus 로고
    • Accurate sequence-based prediction of catalytic residues
    • Zhang T, Zhang H, Chen K, Shen S, Ruan J, Kurgan L. Accurate sequence-based prediction of catalytic residues. Bioinformatics. 2008; 24(20): 2329-2338.
    • (2008) Bioinformatics , vol.24 , Issue.20 , pp. 2329-2338
    • Zhang, T.1    Zhang, H.2    Chen, K.3    Shen, S.4    Ruan, J.5    Kurgan, L.6
  • 182
    • 38649108457 scopus 로고    scopus 로고
    • Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines
    • Tong W, Williams RJ, Wei Y, Murga LF, Ko J, Ondrechen MJ. Enhanced performance in prediction of protein active sites with THEMATICS and support vector machines. Protein Science. 2008; 17(2): 333-341.
    • (2008) Protein Science , vol.17 , Issue.2 , pp. 333-341
    • Tong, W.1    Williams, R.J.2    Wei, Y.3    Murga, L.F.4    Ko, J.5    Ondrechen, M.J.6
  • 183
    • 59149090849 scopus 로고    scopus 로고
    • Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties
    • Tong W, Wei Y, Murga LF, Ondrechen MJ, Williams RJ. Partial Order Optimum Likelihood (POOL): Maximum Likelihood Prediction of Protein Active Site Residues Using 3D Structure and Sequence Properties. PLoS Comput Biol. 2009; 5(1): e1000266.
    • (2009) PLoS Comput Biol , vol.5 , Issue.1
    • Tong, W.1    Wei, Y.2    Murga, L.F.3    Ondrechen, M.J.4    Williams, R.J.5
  • 184
    • 0026636320 scopus 로고
    • A correlation-coefficient method to predicting protein-structural classes from amino acid compositions
    • Chou K, Zhang C. A correlation-coefficient method to predicting protein-structural classes from amino acid compositions. European Journal of Biochemistry. 1992; 207(2): 429-433.
    • (1992) European Journal of Biochemistry , vol.207 , Issue.2 , pp. 429-433
    • Chou, K.1    Zhang, C.2
  • 185
    • 76649141763 scopus 로고    scopus 로고
    • Prediction of protein structural classes for low-homology sequences based on predicted secondary structure
    • Yang J, Peng Z, Chen X. Prediction of protein structural classes for low-homology sequences based on predicted secondary structure. BMC Bioinformatics. 2010; 11(Suppl 1): S9.
    • (2010) BMC Bioinformatics , vol.11 , Issue.SUPPL. 1
    • Yang, J.1    Peng, Z.2    Chen, X.3
  • 186
    • 0022777472 scopus 로고
    • Prediction of protein structural class from the amino acid sequence
    • Klein P, Delisi C. Prediction of protein structural class from the amino acid sequence. Biopolymers. 1986; 25(9): 1659-1672.
    • (1986) Biopolymers , vol.25 , Issue.9 , pp. 1659-1672
    • Klein, P.1    Delisi, C.2
  • 187
    • 0027080161 scopus 로고
    • An optimization approach to predicting protein structural class from amino acid composition
    • Zhang C, Chou K. An optimization approach to predicting protein structural class from amino acid composition. Protein Science. 1992; 1(3): 401-408.
    • (1992) Protein Science , vol.1 , Issue.3 , pp. 401-408
    • Zhang, C.1    Chou, K.2
  • 189
    • 2942601555 scopus 로고    scopus 로고
    • Support Vector Machines for predicting protein structural class
    • Cai Y, Liu X, Xu X, Zhou G. Support Vector Machines for predicting protein structural class. BMC Bioinformatics. 2001; 2(1): 3.
    • (2001) BMC Bioinformatics , vol.2 , Issue.1 , pp. 3
    • Cai, Y.1    Liu, X.2    Xu, X.3    Zhou, G.4
  • 190
    • 45649085108 scopus 로고    scopus 로고
    • Predicting protein structural class by SVM with class-wise optimized features and decision probabilities
    • Anand A, Pugalenthi G, Suganthan P. Predicting protein structural class by SVM with class-wise optimized features and decision probabilities. Journal of Theoretical Biology. 2008; 253(2): 375-380.
    • (2008) Journal of Theoretical Biology , vol.253 , Issue.2 , pp. 375-380
    • Anand, A.1    Pugalenthi, G.2    Suganthan, P.3
  • 191
    • 44349134514 scopus 로고    scopus 로고
    • SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences
    • Kurgan L, Cios K, Chen K. SCPRED: Accurate prediction of protein structural class for sequences of twilight-zone similarity with predicting sequences. BMC Bioinformatics. 2008; 9(1): 226.
    • (2008) BMC Bioinformatics , vol.9 , Issue.1 , pp. 226
    • Kurgan, L.1    Cios, K.2    Chen, K.3
  • 192
    • 80054684286 scopus 로고    scopus 로고
    • Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features
    • Dai Q, Wu L, Li L. Improving protein structural class prediction using novel combined sequence information and predicted secondary structural features. Journal of Computational Chemistry. 2011; 32(16): 3393-3398.
    • (2011) Journal of Computational Chemistry , vol.32 , Issue.16 , pp. 3393-3398
    • Dai, Q.1    Wu, L.2    Li, L.3
  • 193
    • 84863389371 scopus 로고    scopus 로고
    • Predicting Protein Structural Class by Incorporating Patterns of Over-Represented kmers into the General form of Chou's PseAAC
    • Qin Y, Wang C, Yu X, Zhu J, Liu T, Zheng X. Predicting Protein Structural Class by Incorporating Patterns of Over-Represented kmers into the General form of Chou's PseAAC. Protein and Peptide Letters. 2012; 19(4): 388-397.
    • (2012) Protein and Peptide Letters , vol.19 , Issue.4 , pp. 388-397
    • Qin, Y.1    Wang, C.2    Yu, X.3    Zhu, J.4    Liu, T.5    Zheng, X.6
  • 194
    • 78649324596 scopus 로고    scopus 로고
    • A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction
    • Sahu SS, Panda G. A novel feature representation method based on Chou's pseudo amino acid composition for protein structural class prediction. Computational Biology and Chemistry. 2010; 34(5): 320-327.
    • (2010) Computational Biology and Chemistry , vol.34 , Issue.5 , pp. 320-327
    • Sahu, S.S.1    Panda, G.2
  • 195
    • 51349105695 scopus 로고    scopus 로고
    • Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image
    • Xiao X, Wang P, Chou K. Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image. Journal of Theoretical Biology. 2008; 254(3): 691-696.
    • (2008) Journal of Theoretical Biology , vol.254 , Issue.3 , pp. 691-696
    • Xiao, X.1    Wang, P.2    Chou, K.3
  • 196
    • 36448935288 scopus 로고    scopus 로고
    • Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes
    • Zhang T, Ding Y. Using pseudo amino acid composition and binary-tree support vector machines to predict protein structural classes. Amino Acids. 2007; 33(4): 623-629.
    • (2007) Amino Acids , vol.33 , Issue.4 , pp. 623-629
    • Zhang, T.1    Ding, Y.2
  • 197
    • 33750475941 scopus 로고    scopus 로고
    • Using pseudo-amino acid composition and support vector machine to predict protein structural class
    • Chen C, Tian Y, Zou X, Cai P, Mo J. Using pseudo-amino acid composition and support vector machine to predict protein structural class. Journal of Theoretical Biology. 2006; 243(3): 444-448.
    • (2006) Journal of Theoretical Biology , vol.243 , Issue.3 , pp. 444-448
    • Chen, C.1    Tian, Y.2    Zou, X.3    Cai, P.4    Mo, J.5
  • 198
    • 84862763274 scopus 로고    scopus 로고
    • Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles
    • Liu T, Geng X, Zheng X, Li R, Wang J. Accurate prediction of protein structural class using auto covariance transformation of PSI-BLAST profiles. Amino Acids. 2012; 42(6): 2243-2249.
    • (2012) Amino Acids , vol.42 , Issue.6 , pp. 2243-2249
    • Liu, T.1    Geng, X.2    Zheng, X.3    Li, R.4    Wang, J.5
  • 199
    • 84865383117 scopus 로고    scopus 로고
    • Using principal component analysis and support vector machine to predict protein structural class for lowsimilarity sequences via PSSM
    • Zhang S, Ye F, Yuan X. Using principal component analysis and support vector machine to predict protein structural class for lowsimilarity sequences via PSSM. Journal of Biomolecular Structure and Dynamics. 2012; 29(6): 1138-1146.
    • (2012) Journal of Biomolecular Structure and Dynamics , vol.29 , Issue.6 , pp. 1138-1146
    • Zhang, S.1    Ye, F.2    Yuan, X.3
  • 200
    • 77957124553 scopus 로고    scopus 로고
    • Prediction of protein structural class for low-similarity sequences using support vector machine and PSIBLAST profile
    • Liu T, Zheng X, Wang J. Prediction of protein structural class for low-similarity sequences using support vector machine and PSIBLAST profile. Biochimie. 2010; 92(10): 1330-1334.
    • (2010) Biochimie , vol.92 , Issue.10 , pp. 1330-1334
    • Liu, T.1    Zheng, X.2    Wang, J.3
  • 201
    • 46449128812 scopus 로고    scopus 로고
    • Prediction of protein structural class using novel evolutionary collocation-based sequence representation
    • Chen K, Kurgan LA, Ruan J. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. Journal of Computational Chemistry. 2008; 29(10): 1596-1604.
    • (2008) Journal of Computational Chemistry , vol.29 , Issue.10 , pp. 1596-1604
    • Chen, K.1    Kurgan, L.A.2    Ruan, J.3
  • 202
    • 84862812419 scopus 로고    scopus 로고
    • A novel protein structural classes prediction method based on predicted secondary structure
    • Ding S, Zhang S, Li Y, Wang T. A novel protein structural classes prediction method based on predicted secondary structure. Biochimie. 2012; 94(5): 1166-1171.
    • (2012) Biochimie , vol.94 , Issue.5 , pp. 1166-1171
    • Ding, S.1    Zhang, S.2    Li, Y.3    Wang, T.4
  • 203
    • 84863864586 scopus 로고    scopus 로고
    • Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences
    • Ahmadi Adl A, Nowzari-Dalini A, Xue B, Uversky VN, Qian X. Accurate prediction of protein structural classes using functional domains and predicted secondary structure sequences. Journal of Biomolecular Structure and Dynamics. 2012; 29(6): 1127-1137.
    • (2012) Journal of Biomolecular Structure and Dynamics , vol.29 , Issue.6 , pp. 1127-1137
    • Ahmadi Adl, A.1    Nowzari-Dalini, A.2    Xue, B.3    Uversky, V.N.4    Qian, X.5
  • 204
    • 79960352702 scopus 로고    scopus 로고
    • SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids
    • Mohammad T, Nagarajaram H. SVM-based method for protein structural class prediction using secondary structural content and structural information of amino acids. Journal of Bioinformatics and Computational Biology. 2011; 9(4): 489-502.
    • (2011) Journal of Bioinformatics and Computational Biology , vol.9 , Issue.4 , pp. 489-502
    • Mohammad, T.1    Nagarajaram, H.2
  • 205
    • 77956623830 scopus 로고    scopus 로고
    • A high-accuracy protein structural class prediction algorithm using predicted secondary structural information
    • Liu T, Jia C. A high-accuracy protein structural class prediction algorithm using predicted secondary structural information. Journal of Theoretical Biology. 2010; 267(3): 272-275.
    • (2010) Journal of Theoretical Biology , vol.267 , Issue.3 , pp. 272-275
    • Liu, T.1    Jia, C.2
  • 206
    • 3843117638 scopus 로고    scopus 로고
    • Predicting protein structural class by functional domain composition
    • Chou K, Cai YD. Predicting protein structural class by functional domain composition. Biochemical and Biophysical Research Communications. 2004; 321(4): 1007-1009.
    • (2004) Biochemical and Biophysical Research Communications , vol.321 , Issue.4 , pp. 1007-1009
    • Chou, K.1    Cai, Y.D.2
  • 207
    • 77956141361 scopus 로고    scopus 로고
    • An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments
    • Washington, DC, USA: IEEE Computer Society
    • Arai H, Tochio N, Kato T, Kigawa T, Yamamura M. An Accurate Prediction Method for Protein Structural Class from Signal Patterns of NMR Spectra in the Absence of Chemical Shift Assignments. In: Proceedings of the 2010 IEEE International Conference on Bioinformatics and Bioengineering. Washington, DC, USA: IEEE Computer Society; 2010. p. 32-37.
    • (2010) Proceedings of the 2010 IEEE International Conference On Bioinformatics and Bioengineering , pp. 32-37
    • Arai, H.1    Tochio, N.2    Kato, T.3    Kigawa, T.4    Yamamura, M.5
  • 208
    • 0033809190 scopus 로고    scopus 로고
    • Prediction of protein structural classes by neural network
    • Cai Y, Zhou G. Prediction of protein structural classes by neural network. Biochimie. 2000 01; 82: 1-3.
    • (2000) Biochimie , vol.1 , Issue.82 , pp. 1-3
    • Cai, Y.1    Zhou, G.2
  • 209
    • 70349753153 scopus 로고    scopus 로고
    • A hybrid genetic-neural model for predicting protein structural classes
    • Jahandideh S, Hoseini S, Jahandideh M, Davoodi M. A hybrid genetic-neural model for predicting protein structural classes. Biologia. 2009; 64: 649-654.
    • (2009) Biologia , vol.64 , pp. 649-654
    • Jahandideh, S.1    Hoseini, S.2    Jahandideh, M.3    Davoodi, M.4
  • 210
    • 34247622820 scopus 로고    scopus 로고
    • Novel two-stage hybrid neural discriminant model for predicting proteins structural classes
    • Jahandideh S, Abdolmaleki P, Jahandideh M, Asadabadi EB. Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophysical Chemistry. 2007; 128(1): 87-93.
    • (2007) Biophysical Chemistry , vol.128 , Issue.1 , pp. 87-93
    • Jahandideh, S.1    Abdolmaleki, P.2    Jahandideh, M.3    Asadabadi, E.B.4
  • 211
    • 0033151954 scopus 로고    scopus 로고
    • Recognition of a protein fold in the context of the SCOP classification. Proteins
    • Dubchak I, Muchnik I, Mayor C, Dralyuk I, Kim S. Recognition of a protein fold in the context of the SCOP classification. Proteins: Structure, Function and Genetics. 1999; 35(4): 401-407.
    • (1999) Structure, Function and Genetics , vol.35 , Issue.4 , pp. 401-407
    • Dubchak, I.1    Muchnik, I.2    Mayor, C.3    Dralyuk, I.4    Kim, S.5
  • 212
    • 0034141493 scopus 로고    scopus 로고
    • How good is prediction of protein structural class by the component-coupled method?
    • Wang Z, Yuan Z. How good is prediction of protein structural class by the component-coupled method? Proteins: Structure, Function, and Bioinformatics. 2000; 38(2): 165-175.
    • (2000) Proteins: Structure, Function, and Bioinformatics , vol.38 , Issue.2 , pp. 165-175
    • Wang, Z.1    Yuan, Z.2
  • 213
    • 36348994911 scopus 로고    scopus 로고
    • Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern
    • Zhang T, Ding Y, Chou K. Prediction protein structural classes with pseudo-amino acid composition: Approximate entropy and hydrophobicity pattern. Journal of Theoretical Biology. 2008; 250(1): 186-193.
    • (2008) Journal of Theoretical Biology , vol.250 , Issue.1 , pp. 186-193
    • Zhang, T.1    Ding, Y.2    Chou, K.3
  • 214
    • 77950588824 scopus 로고    scopus 로고
    • An information-theoretic approach to the prediction of protein structural class
    • Zheng X, Li C, Wang J. An information-theoretic approach to the prediction of protein structural class. Journal of Computational Chemistry. 2010; 31(6): 1201-1206.
    • (2010) Journal of Computational Chemistry , vol.31 , Issue.6 , pp. 1201-1206
    • Zheng, X.1    Li, C.2    Wang, J.3
  • 215
    • 77951667432 scopus 로고    scopus 로고
    • Prediction of protein structural class using a complexity-based distance measure
    • Liu T, Zheng X, Wang J. Prediction of protein structural class using a complexity-based distance measure. Amino Acids. 2010; 38(3): 721-728.
    • (2010) Amino Acids , vol.38 , Issue.3 , pp. 721-728
    • Liu, T.1    Zheng, X.2    Wang, J.3
  • 216
    • 75049084860 scopus 로고    scopus 로고
    • An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition
    • Wu J, Li M, Yu L, Wang C. An Ensemble Classifier of Support Vector Machines Used to Predict Protein Structural Classes by Fusing Auto Covariance and Pseudo-Amino Acid Composition. The Protein Journal. 2010; 29: 62-67.
    • (2010) The Protein Journal , vol.29 , pp. 62-67
    • Wu, J.1    Li, M.2    Yu, L.3    Wang, C.4
  • 217
    • 70349466390 scopus 로고    scopus 로고
    • Multiple classifier integration for the prediction of protein structural classes
    • Chen L, Lu L, Feng K, et al. Multiple classifier integration for the prediction of protein structural classes. Journal of Computational Chemistry. 2009; 30(14): 2248-2254.
    • (2009) Journal of Computational Chemistry , vol.30 , Issue.14 , pp. 2248-2254
    • Chen, L.1    Lu, L.2    Feng, K.3
  • 220
    • 33845338429 scopus 로고    scopus 로고
    • Using Bagging classifier to predict protein domain structural class
    • Dong L, Yuan Y, Cai Y. Using Bagging classifier to predict protein domain structural class. Journal of Biomolecular Structure and Dynamics. 2006; 24(3): 239-242.
    • (2006) Journal of Biomolecular Structure and Dynamics , vol.24 , Issue.3 , pp. 239-242
    • Dong, L.1    Yuan, Y.2    Cai, Y.3
  • 221
    • 33646393287 scopus 로고    scopus 로고
    • Predicting protein structural class with AdaBoost learner
    • Niu B, Cai Y, Lu W, Li G, Chou K. Predicting protein structural class with AdaBoost learner. Protein and Peptide Letters. 2006; 13(5): 489-492.
    • (2006) Protein and Peptide Letters , vol.13 , Issue.5 , pp. 489-492
    • Niu, B.1    Cai, Y.2    Lu, W.3    Li, G.4    Chou, K.5
  • 222
    • 28444439947 scopus 로고    scopus 로고
    • Using LogitBoost classifier to predict protein structural classes
    • Cai Y, Feng K, Lu W, Chou K. Using LogitBoost classifier to predict protein structural classes. Journal of Theoretical Biology. 2006; 238(1): 172-176.
    • (2006) Journal of Theoretical Biology , vol.238 , Issue.1 , pp. 172-176
    • Cai, Y.1    Feng, K.2    Lu, W.3    Chou, K.4
  • 223
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology. 1970; 48(3): 443-453.
    • (1970) Journal of Molecular Biology , vol.48 , Issue.3 , pp. 443-453
    • Needleman, S.B.1    Wunsch, C.D.2
  • 224
    • 0035703313 scopus 로고    scopus 로고
    • Fold recognition from sequence comparisons. Proteins: Structure
    • Koretke KK, Russell RB, Lupas AN. Fold recognition from sequence comparisons. Proteins: Structure, Function, and Bioinformatics. 2001; 45(S5): 68-75.
    • (2001) Function, and Bioinformatics , vol.45 , Issue.S5 , pp. 68-75
    • Koretke, K.K.1    Russell, R.B.2    Lupas, A.N.3
  • 225
    • 0345827718 scopus 로고    scopus 로고
    • Using evolutionary information for the query and target improves fold recognition. Proteins: Structure
    • Wallner B, Fang H, Ohlson T, Frey-Skott J, Elofsson A. Using evolutionary information for the query and target improves fold recognition. Proteins: Structure, Function, and Bioinformatics. 2004; 54(2): 342-350.
    • (2004) Function, and Bioinformatics , vol.54 , Issue.2 , pp. 342-350
    • Wallner, B.1    Fang, H.2    Ohlson, T.3    Frey-Skott, J.4    Elofsson, A.5
  • 226
    • 0034328688 scopus 로고    scopus 로고
    • 3D-1D threading methods for protein fold recognition
    • David R, Korenberg M, Hunter I. 3D-1D threading methods for protein fold recognition. Pharmacogenomics. 2000; 1(4): 445-455.
    • (2000) Pharmacogenomics , vol.1 , Issue.4 , pp. 445-455
    • David, R.1    Korenberg, M.2    Hunter, I.3
  • 228
    • 84864409371 scopus 로고    scopus 로고
    • Recursive Neural Networks for Predicting Protein Folds from Their Pseudo Amino Acid Composition
    • Mishra P, Pandey PN. Recursive Neural Networks for Predicting Protein Folds from Their Pseudo Amino Acid Composition. Advanced Science Letters. 2012; 11(1): 63-66.
    • (2012) Advanced Science Letters , vol.11 , Issue.1 , pp. 63-66
    • Mishra, P.1    Pandey, P.N.2
  • 229
    • 33646405841 scopus 로고    scopus 로고
    • K-Local Hyperplane Distance Nearest-Neighbor Algorithm and Protein Fold Recognition
    • Okun O. K-Local Hyperplane Distance Nearest-Neighbor Algorithm and Protein Fold Recognition. Pattern Recognition and Image Analysis. 2006; 16(1): 19-22.
    • (2006) Pattern Recognition and Image Analysis , vol.16 , Issue.1 , pp. 19-22
    • Okun, O.1
  • 230
    • 34447648188 scopus 로고    scopus 로고
    • SVM-Fold: A tool for discriminative multi-class protein fold and superfamily recognition
    • Melvin I, Ie E, Kuang R, Weston J, Noble W, Leslie C. SVM-Fold: a tool for discriminative multi-class protein fold and superfamily recognition. BMC Bioinformatics. 2007; 8(Suppl 4): S2.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 4
    • Melvin, I.1    Ie, E.2    Kuang, R.3    Weston, J.4    Noble, W.5    Leslie, C.6
  • 232
    • 36949013631 scopus 로고    scopus 로고
    • Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs
    • Shamim MTA, Anwaruddin M, Nagarajaram HA. Support Vector Machine-based classification of protein folds using the structural properties of amino acid residues and amino acid residue pairs. Bioinformatics. 2007; 23(24): 3320-3327.
    • (2007) Bioinformatics , vol.23 , Issue.24 , pp. 3320-3327
    • Shamim, M.T.A.1    Anwaruddin, M.2    Nagarajaram, H.A.3
  • 233
    • 70349985248 scopus 로고    scopus 로고
    • A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation
    • Dong Q, Zhou S, Guan J. A new taxonomy-based protein fold recognition approach based on autocross-covariance transformation. Bioinformatics. 2009; 25(20): 2655-2662.
    • (2009) Bioinformatics , vol.25 , Issue.20 , pp. 2655-2662
    • Dong, Q.1    Zhou, S.2    Guan, J.3
  • 234
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • Ding C, Dubchak I. Multi-class protein fold recognition using support vector machines and neural networks. Bioinformatics. 2001; 17(4): 349-358.
    • (2001) Bioinformatics , vol.17 , Issue.4 , pp. 349-358
    • Ding, C.1    Dubchak, I.2
  • 236
    • 84862605679 scopus 로고    scopus 로고
    • C L. Improved method for predicting protein fold patterns with ensemble classifiers
    • Chen W, Liu X, Huang Y, Jiang Y, Zou Q, C L. Improved method for predicting protein fold patterns with ensemble classifiers. Genetics and Molecular Research. 2012; 11(1): 174-181.
    • (2012) Genetics and Molecular Research , vol.11 , Issue.1 , pp. 174-181
    • Chen, W.1    Liu, X.2    Huang, Y.3    Jiang, Y.4    Zou, Q.5
  • 237
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold pattern recognition
    • Shen H, Chou K. Ensemble classifier for protein fold pattern recognition. Bioinformatics. 2006; 22(14): 1717-1722.
    • (2006) Bioinformatics , vol.22 , Issue.14 , pp. 1717-1722
    • Shen, H.1    Chou, K.2
  • 238
    • 34147094355 scopus 로고    scopus 로고
    • Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: Comparison with high-throughput experimental data
    • Yellaboina S, Goyal K, Mande SC. Inferring genome-wide functional linkages in E. coli by combining improved genome context methods: Comparison with high-throughput experimental data. Genome Research. 2007; 17(4): 527-535.
    • (2007) Genome Research , vol.17 , Issue.4 , pp. 527-535
    • Yellaboina, S.1    Goyal, K.2    Mande, S.C.3
  • 239
    • 51649096656 scopus 로고    scopus 로고
    • Phylogenetic profiles reveal evolutionary relationships within the "twilight zone" of sequence similarity
    • Chang G, Hong Y, Ko K, et al. Phylogenetic profiles reveal evolutionary relationships within the "twilight zone" of sequence similarity. Proceedings of the National Academy of Sciences. 2008; 105(36): 13474-13479.
    • (2008) Proceedings of the National Academy of Sciences , vol.105 , Issue.36 , pp. 13474-13479
    • Chang, G.1    Hong, Y.2    Ko, K.3
  • 240
    • 0042889111 scopus 로고    scopus 로고
    • Identification of functional links between genes using phylogenetic profiles
    • Wu J, Kasif S, DeLisi C. Identification of functional links between genes using phylogenetic profiles. Bioinformatics. 2003; 19(12): 1524-1530.
    • (2003) Bioinformatics , vol.19 , Issue.12 , pp. 1524-1530
    • Wu, J.1    Kasif, S.2    Delisi, C.3
  • 241
    • 0041358614 scopus 로고    scopus 로고
    • Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages
    • Date SV, Marcotte EM. Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages. Nature Biotechnology. 2003; 21(9): 1055-1062.
    • (2003) Nature Biotechnology , vol.21 , Issue.9 , pp. 1055-1062
    • Date, S.V.1    Marcotte, E.M.2
  • 242
    • 79953689634 scopus 로고    scopus 로고
    • Computational Bacterial Genome-Wide Analysis of Phylogenetic Profiles Reveals Potential Virulence Genes of Streptococcus agalactiae
    • Lin FPY, Lan R, Sintchenko V, Gilbert GL, Kong F, Coiera E. Computational Bacterial Genome-Wide Analysis of Phylogenetic Profiles Reveals Potential Virulence Genes of Streptococcus agalactiae. PLoS ONE. 2011; 6(4): e17964.
    • (2011) PLoS ONE , vol.6 , Issue.4
    • Lin, F.P.Y.1    Lan, R.2    Sintchenko, V.3    Gilbert, G.L.4    Kong, F.5    Coiera, E.6
  • 243
    • 61449137850 scopus 로고    scopus 로고
    • Modeling adaptive kernels from probabilistic phylogenetic trees
    • Nicotra L, Micheli A. Modeling adaptive kernels from probabilistic phylogenetic trees. Artificial Intelligence in Medicine. 2009; 45(2-3): 125-134.
    • (2009) Artificial Intelligence In Medicine , vol.45 , Issue.2-3 , pp. 125-134
    • Nicotra, L.1    Micheli, A.2
  • 244
    • 11244331236 scopus 로고    scopus 로고
    • A tree kernel to analyse phylogenetic profiles
    • Vert J. A tree kernel to analyse phylogenetic profiles. Bioinformatics. 2002; 18(suppl 1): S276-S284.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Vert, J.1
  • 246
    • 0034730140 scopus 로고    scopus 로고
    • Singular value decomposition for genome-wide expression data processing and modeling
    • Alter O, Brown PO, Botstein D. Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences. 2000; 97(18): 10101-10106.
    • (2000) Proceedings of the National Academy of Sciences , vol.97 , Issue.18 , pp. 10101-10106
    • Alter, O.1    Brown, P.O.2    Botstein, D.3
  • 247
    • 0033027794 scopus 로고    scopus 로고
    • Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation
    • Tamayo P, Slonim D, Mesirov J, et al. Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences. 1999; 96(6): 2907-2912.
    • (1999) Proceedings of the National Academy of Sciences , vol.96 , Issue.6 , pp. 2907-2912
    • Tamayo, P.1    Slonim, D.2    Mesirov, J.3
  • 248
    • 0042863923 scopus 로고    scopus 로고
    • Analysis of gene expression data using self-organizing maps
    • Toronen P, Kolehmainen M, Wong G, Castren E. Analysis of gene expression data using self-organizing maps. FEBS Letters. 1999; 451(2): 142-146.
    • (1999) FEBS Letters , vol.451 , Issue.2 , pp. 142-146
    • Toronen, P.1    Kolehmainen, M.2    Wong, G.3    Castren, E.4
  • 249
    • 0036791318 scopus 로고    scopus 로고
    • Analysis and visualization of gene expression data using Self-Organizing Maps
    • Nikkila J, Toronen P, Kaski S, Venna J, Castren E, Wong G. Analysis and visualization of gene expression data using Self-Organizing Maps. Neural Networks. 2002; 15(8-9): 953-966.
    • (2002) Neural Networks , vol.15 , Issue.8-9 , pp. 953-966
    • Nikkila, J.1    Toronen, P.2    Kaski, S.3    Venna, J.4    Castren, E.5    Wong, G.6
  • 250
    • 0035108235 scopus 로고    scopus 로고
    • A hierarchical unsupervised growing neural network for clustering gene expression patterns
    • Herrero J, Valencia A, Dopazo J. A hierarchical unsupervised growing neural network for clustering gene expression patterns. Bioinformatics. 2001; 17(2): 126-136.
    • (2001) Bioinformatics , vol.17 , Issue.2 , pp. 126-136
    • Herrero, J.1    Valencia, A.2    Dopazo, J.3
  • 252
    • 0036852181 scopus 로고    scopus 로고
    • Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons
    • Mateos A, Dopazo J, Jansen R, Tu Y, Gerstein M, Stolovitzky G. Systematic Learning of Gene Functional Classes From DNA Array Expression Data by Using Multilayer Perceptrons. Genome Research. 2002; 12(11): 1703-1715.
    • (2002) Genome Research , vol.12 , Issue.11 , pp. 1703-1715
    • Mateos, A.1    Dopazo, J.2    Jansen, R.3    Tu, Y.4    Gerstein, M.5    Stolovitzky, G.6
  • 253
    • 67650898284 scopus 로고    scopus 로고
    • Incorporating functional interrelationships into protein function prediction algorithms
    • Pandey G, Myers C, Kumar V. Incorporating functional interrelationships into protein function prediction algorithms. BMC Bioinformatics. 2009; 10(1): 142.
    • (2009) BMC Bioinformatics , vol.10 , Issue.1 , pp. 142
    • Pandey, G.1    Myers, C.2    Kumar, V.3
  • 254
    • 0035369531 scopus 로고    scopus 로고
    • Protein-protein interaction maps: A lead towards cellular functions
    • Legrain P, Wojcik J, Gauthier JM. Protein-protein interaction maps: a lead towards cellular functions. Trends in Genetics. 2001; 17(6): 346-352.
    • (2001) Trends In Genetics , vol.17 , Issue.6 , pp. 346-352
    • Legrain, P.1    Wojcik, J.2    Gauthier, J.M.3
  • 255
    • 0038135024 scopus 로고    scopus 로고
    • Computational analyses of high-throughput proteinprotein interaction data
    • Chen Y, Xu D. Computational analyses of high-throughput proteinprotein interaction data. Current Protein and Peptide Science. 2003; 4(3): 159-181.
    • (2003) Current Protein and Peptide Science , vol.4 , Issue.3 , pp. 159-181
    • Chen, Y.1    Xu, D.2
  • 258
    • 0033669189 scopus 로고    scopus 로고
    • A network of protein-protein interactions in yeast
    • Schwikowski B, Uetz P, Fields S. A network of protein-protein interactions in yeast. Nature Biotechnology. 2000; 18(12): 1257-1261.
    • (2000) Nature Biotechnology , vol.18 , Issue.12 , pp. 1257-1261
    • Schwikowski, B.1    Uetz, P.2    Fields, S.3
  • 259
    • 33745619564 scopus 로고    scopus 로고
    • Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions
    • Chua H, Sung W, Wong L. Exploiting indirect neighbours and topological weight to predict protein function from protein-protein interactions. Bioinformatics. 2006; 22(13): 1623-1630.
    • (2006) Bioinformatics , vol.22 , Issue.13 , pp. 1623-1630
    • Chua, H.1    Sung, W.2    Wong, L.3
  • 260
    • 0038699587 scopus 로고    scopus 로고
    • Global protein function prediction from protein-protein interaction networks
    • Vazquez A, Flammini A, Maritan A, Vespignani A. Global protein function prediction from protein-protein interaction networks. Nature Biotechnology. 2003; 21(6): 697-700.
    • (2003) Nature Biotechnology , vol.21 , Issue.6 , pp. 697-700
    • Vazquez, A.1    Flammini, A.2    Maritan, A.3    Vespignani, A.4
  • 261
    • 29144442904 scopus 로고    scopus 로고
    • Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps
    • Nabieva E, Jim K, Agarwal A, Chazelle B, Singh M. Wholeproteome prediction of protein function via graph-theoretic analysis of interaction maps. Bioinformatics. 2005; 21(suppl 1): i302-i310.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Nabieva, E.1    Jim, K.2    Agarwal, A.3    Chazelle, B.4    Singh, M.5
  • 262
    • 2942552459 scopus 로고    scopus 로고
    • An automated method for finding molecular complexes in large protein interaction networks
    • Bader G, Hogue C. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics. 2003; 4(1): 2.
    • (2003) BMC Bioinformatics , vol.4 , Issue.1 , pp. 2
    • Bader, G.1    Hogue, C.2
  • 263
    • 0032482432 scopus 로고    scopus 로고
    • Collective dynamics of small-worldnetworks
    • Watts DJ, Strogatz SH. Collective dynamics of small-worldnetworks. Nature. 1998; 393(6684): 440-442.
    • (1998) Nature , vol.393 , Issue.6684 , pp. 440-442
    • Watts, D.J.1    Strogatz, S.H.2
  • 264
    • 0142059836 scopus 로고    scopus 로고
    • Protein complexes and functional modules in molecular networks
    • Spirin V, Mirny LA. Protein complexes and functional modules in molecular networks. Proceedings of the National Academy of Sciences. 2003; 100(21): 12123-12128.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.21 , pp. 12123-12128
    • Spirin, V.1    Mirny, L.A.2
  • 265
    • 0000521616 scopus 로고    scopus 로고
    • Superparamagnetic Clustering of Data
    • Blatt M, Wiseman S, Domany E. Superparamagnetic Clustering of Data. Phys Rev Lett. 1996; 76: 3251-3254.
    • (1996) Phys Rev Lett , vol.76 , pp. 3251-3254
    • Blatt, M.1    Wiseman, S.2    Domany, E.3
  • 266
    • 0346156102 scopus 로고    scopus 로고
    • Detection of functional modules from protein interaction networks. Proteins: Structure
    • Pereira-Leal JB, Enright AJ, Ouzounis CA. Detection of functional modules from protein interaction networks. Proteins: Structure, Function, and Bioinformatics. 2004; 54(1): 49-57.
    • (2004) Function, and Bioinformatics , vol.54 , Issue.1 , pp. 49-57
    • Pereira-Leal, J.B.1    Enright, A.J.2    Ouzounis, C.A.3
  • 267
    • 0034515528 scopus 로고    scopus 로고
    • A clustering algorithm based on graph connectivity
    • Hartuv E, Shamir R. A clustering algorithm based on graph connectivity. Information Processing Letters. 2000; 76(4-6): 175-181.
    • (2000) Information Processing Letters , vol.76 , Issue.4-6 , pp. 175-181
    • Hartuv, E.1    Shamir, R.2
  • 268
    • 0000411214 scopus 로고
    • Tabu Search-Part I
    • Glover F. Tabu Search-Part I. ORSA Journal on Computing. 1989; 1(3): 190-206.
    • (1989) ORSA Journal On Computing , vol.1 , Issue.3 , pp. 190-206
    • Glover, F.1
  • 269
    • 10244264813 scopus 로고    scopus 로고
    • Protein complex prediction via costbased clustering
    • King A, Przulj N, Jurisica I. Protein complex prediction via costbased clustering. Bioinformatics. 2004; 20(17): 3013-3020.
    • (2004) Bioinformatics , vol.20 , Issue.17 , pp. 3013-3020
    • King, A.1    Przulj, N.2    Jurisica, I.3
  • 270
    • 0242268461 scopus 로고    scopus 로고
    • Predicting protein functions from redundancies in large-scale protein interaction networks
    • Samanta MP, Liang S. Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences. 2003; 100(22): 12579-12583.
    • (2003) Proceedings of the National Academy of Sciences , vol.100 , Issue.22 , pp. 12579-12583
    • Samanta, M.P.1    Liang, S.2
  • 271
    • 33645832853 scopus 로고    scopus 로고
    • Systems-level analyses identify extensive coupling among gene expression machines
    • Maciag K, Altschuler SJ, Slack MD, et al. Systems-level analyses identify extensive coupling among gene expression machines. Mol Syst Biol. 2006; 2.
    • (2006) Mol Syst Biol , pp. 2
    • Maciag, K.1    Altschuler, S.J.2    Slack, M.D.3
  • 273
    • 13844264514 scopus 로고    scopus 로고
    • Iterative Cluster Analysis of Protein Interaction Data
    • Arnau V, Mars S, Marin I. Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics. 2005; 21(3): 364-378.
    • (2005) Bioinformatics , vol.21 , Issue.3 , pp. 364-378
    • Arnau, V.1    Mars, S.2    Marin, I.3
  • 274
    • 1442329655 scopus 로고    scopus 로고
    • Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network
    • Brun C, Chevenet F, Martin D, Wojcik J, Guénoche A, Jacq B. Functional classification of proteins for the prediction of cellular function from a protein-protein interaction network. Genome biology. 2003; 5(1).
    • (2003) Genome Biology , vol.5 , Issue.1
    • Brun, C.1    Chevenet, F.2    Martin, D.3    Wojcik, J.4    Guénoche, A.5    Jacq, B.6
  • 275
    • 77951667947 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from sequence using correlation coefficient and highquality interaction dataset
    • Shi M, Xia J, Li X, Huang D. Predicting protein-protein interactions from sequence using correlation coefficient and highquality interaction dataset. Amino Acids. 2010; 38: 891-899.
    • (2010) Amino Acids , vol.38 , pp. 891-899
    • Shi, M.1    Xia, J.2    Li, X.3    Huang, D.4
  • 277
    • 33846868175 scopus 로고    scopus 로고
    • Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices
    • Craig R, Liao L. Phylogenetic tree information aids supervised learning for predicting protein-protein interaction based on distance matrices. BMC Bioinformatics. 2007; 8(1): 6.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 6
    • Craig, R.1    Liao, L.2
  • 278
    • 47149118685 scopus 로고    scopus 로고
    • Large-scale Protein-Protein Interaction prediction using novel kernel methods
    • Chen X, Han B, Fang J, Haasl RJ. Large-scale Protein-Protein Interaction prediction using novel kernel methods. Int J Data Min Bioinformatics. 2008; 2(2): 145-156.
    • (2008) Int J Data Min Bioinformatics , vol.2 , Issue.2 , pp. 145-156
    • Chen, X.1    Han, B.2    Fang, J.3    Haasl, R.J.4
  • 279
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics. 2004; 20(suppl 1): i363-i370.
    • (2004) Bioinformatics , vol.20 , Issue.SUPPL. 1
    • Yamanishi, Y.1    Vert, J.P.2    Kanehisa, M.3
  • 280
    • 24744435534 scopus 로고    scopus 로고
    • Kernel methods for predicting proteinprotein interactions
    • Ben-Hur A, Noble WS. Kernel methods for predicting proteinprotein interactions. Bioinformatics. 2005; 21(suppl 1): i38-i46.
    • (2005) Bioinformatics , vol.21 , Issue.SUPPL. 1
    • Ben-Hur, A.1    Noble, W.S.2
  • 282
    • 33750695625 scopus 로고    scopus 로고
    • Prediction of Protein Interaction with Neural Network-Based Feature Association Rule Mining
    • vol. 4234 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg
    • Eom J, Zhang B. Prediction of Protein Interaction with Neural Network-Based Feature Association Rule Mining. In: Neural Information Processing. vol. 4234 of Lecture Notes in Computer Science. Springer Berlin/Heidelberg; 2006. p. 30-39.
    • (2006) Neural Information Processing , pp. 30-39
    • Eom, J.1    Zhang, B.2
  • 283
    • 4644306020 scopus 로고    scopus 로고
    • Analyzing protein function on a genomic scale: The importance of gold-standard positives and negatives for network prediction
    • Jansen R, Gerstein M. Analyzing protein function on a genomic scale: the importance of gold-standard positives and negatives for network prediction. Current Opinion in Microbiology. 2004; 7(5): 535-545.
    • (2004) Current Opinion In Microbiology , vol.7 , Issue.5 , pp. 535-545
    • Jansen, R.1    Gerstein, M.2
  • 284
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • Zhang L, Wong S, King O, Roth F. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics. 2004; 5(1): 38.
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 38
    • Zhang, L.1    Wong, S.2    King, O.3    Roth, F.4
  • 285
    • 39049191929 scopus 로고    scopus 로고
    • Struct2Net: Integrating Structure into Protein-Protein Interaction Prediction
    • Singh R, Xu J, Berger B. Struct2Net: Integrating Structure into Protein-Protein Interaction Prediction. Pacific Symposium on Biocomputing. 2006; p. 403-414.
    • (2006) Pacific Symposium On Biocomputing , pp. 403-414
    • Singh, R.1    Xu, J.2    Berger, B.3
  • 286
    • 13244265581 scopus 로고    scopus 로고
    • Information assessment on predicting protein-protein interactions
    • Lin N, Wu B, Jansen R, Gerstein M, Zhao H. Information assessment on predicting protein-protein interactions. BMC Bioinformatics. 2004; 5(1): 154.
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 154
    • Lin, N.1    Wu, B.2    Jansen, R.3    Gerstein, M.4    Zhao, H.5
  • 287
    • 15944418607 scopus 로고    scopus 로고
    • Random forest similarity for protein-protein interaction prediction from multiple sources
    • Qi Y, Klein-Seetharaman J, Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symposium on Biocomputing. 2005; 10: 531-542.
    • (2005) Pacific Symposium On Biocomputing , vol.10 , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 288
    • 33646018046 scopus 로고    scopus 로고
    • Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure
    • Qi Y, Bar-Joseph Z, Klein-Seetharaman J. Evaluation of different biological data and computational classification methods for use in protein interaction prediction. Proteins: Structure, Function, and Bioinformatics. 2006; 63(3): 490-500.
    • (2006) Function, and Bioinformatics , vol.63 , Issue.3 , pp. 490-500
    • Qi, Y.1    Bar-Joseph, Z.2    Klein-Seetharaman, J.3
  • 289
    • 18444390875 scopus 로고    scopus 로고
    • Prediction of Human Protein Function from Post-translational Modifications and Localization Features
    • Jensen LJ, Gupta R, Blom N, et al. Prediction of Human Protein Function from Post-translational Modifications and Localization Features. Journal of Molecular Biology. 2002; 319(5): 1257-1265.
    • (2002) Journal of Molecular Biology , vol.319 , Issue.5 , pp. 1257-1265
    • Jensen, L.J.1    Gupta, R.2    Blom, N.3
  • 291
    • 0242458810 scopus 로고    scopus 로고
    • Order, Disorder, and Flexibility: Prediction from Protein Sequence
    • Iakoucheva LM, Dunker AK. Order, Disorder, and Flexibility: Prediction from Protein Sequence. Structure. 2003; 11(11): 1316-1317.
    • (2003) Structure , vol.11 , Issue.11 , pp. 1316-1317
    • Iakoucheva, L.M.1    Dunker, A.K.2
  • 292
    • 84864437522 scopus 로고    scopus 로고
    • CombFunc: Predicting protein function using heterogeneous data sources
    • Wass MN, Barton G, Sternberg MJE. CombFunc: predicting protein function using heterogeneous data sources. Nucleic Acids Research. 2012; 40(W1): W466-W470.
    • (2012) Nucleic Acids Research , vol.40 , Issue.W1
    • Wass, M.N.1    Barton, G.2    Sternberg, M.J.E.3
  • 293
    • 0026692226 scopus 로고
    • Stacked generalization
    • Wolpert D. Stacked generalization. Neural Networks. 1992; 5(2): 241-259.
    • (1992) Neural Networks , vol.5 , Issue.2 , pp. 241-259
    • Wolpert, D.1
  • 294
    • 79952821145 scopus 로고    scopus 로고
    • Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction
    • Ré M, Valentini G. Simple ensemble methods are competitive with state-of-the-art data integration methods for gene function prediction. Journal of Machine Learning Research-Proceedings Track. 2010; 8: 98-111.
    • (2010) Journal of Machine Learning Research-Proceedings Track , vol.8 , pp. 98-111
    • Ré, M.1    Valentini, G.2
  • 295
    • 0034830461 scopus 로고    scopus 로고
    • Decision templates for multiple classifier fusion: An experimental comparison
    • Kuncheva L, Bezdek J, Duin R. Decision templates for multiple classifier fusion: an experimental comparison. Pattern Recognition. 2001; 34: 299-314.
    • (2001) Pattern Recognition , vol.34 , pp. 299-314
    • Kuncheva, L.1    Bezdek, J.2    Duin, R.3
  • 296
    • 47549108100 scopus 로고    scopus 로고
    • Predicting gene function in a hierarchical context with an ensemble of classifiers
    • Guan Y, Myers C, Hess D, Barutcuoglu Z, Caudy A, Troyanskaya O. Predicting gene function in a hierarchical context with an ensemble of classifiers. Genome Biology. 2008; 9(Suppl 1): S3.
    • (2008) Genome Biology , vol.9 , Issue.SUPPL. 1
    • Guan, Y.1    Myers, C.2    Hess, D.3    Barutcuoglu, Z.4    Caudy, A.5    Troyanskaya, O.6
  • 297
  • 298
    • 79952831194 scopus 로고    scopus 로고
    • True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction. Computational Biology and Bioinformatics
    • Valentini G. True Path Rule Hierarchical Ensembles for Genome-Wide Gene Function Prediction. Computational Biology and Bioinformatics, IEEE/ACM Transactions on. 2011; 8(3): 832-847.
    • (2011) IEEE/ACM Transactions On , vol.8 , Issue.3 , pp. 832-847
    • Valentini, G.1
  • 304
    • 33645901213 scopus 로고    scopus 로고
    • Diffusion Kernel-Based Logistic Regression Models for Protein Function Prediction
    • Lee H, Tu Z, Deng M, Sun F, Chen T. Diffusion Kernel-Based Logistic Regression Models for Protein Function Prediction. OMICS: A Journal of Integrative Biology. 2006; 10(1): 40-55.
    • (2006) OMICS: A Journal of Integrative Biology , vol.10 , Issue.1 , pp. 40-55
    • Lee, H.1    Tu, Z.2    Deng, M.3    Sun, F.4    Chen, T.5
  • 305
    • 33646001111 scopus 로고    scopus 로고
    • Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach
    • Jaimovich A, Elidan G, Margalit H, Friedman N. Towards an Integrated Protein-Protein Interaction Network: A Relational Markov Network Approach. Journal of Computational Biology. 2006; 13(2): 145-164.
    • (2006) Journal of Computational Biology , vol.13 , Issue.2 , pp. 145-164
    • Jaimovich, A.1    Elidan, G.2    Margalit, H.3    Friedman, N.4
  • 307
    • 55449131589 scopus 로고    scopus 로고
    • Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data
    • Nariai N, Kolaczyk ED, Kasif S. Probabilistic Protein Function Prediction from Heterogeneous Genome-Wide Data. PLoS ONE. 2007; 2(3): e337.
    • (2007) PLoS ONE , vol.2 , Issue.3
    • Nariai, N.1    Kolaczyk, E.D.2    Kasif, S.3
  • 308
    • 0038014879 scopus 로고    scopus 로고
    • Co-clustering of biological networks and gene expression data
    • Hanisch D, Zien A, Zimmer R, Lengauer T. Co-clustering of biological networks and gene expression data. Bioinformatics. 2002; 18(suppl 1): S145-S154.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL. 1
    • Hanisch, D.1    Zien, A.2    Zimmer, R.3    Lengauer, T.4
  • 309
    • 0345305369 scopus 로고    scopus 로고
    • Functional modules by relating protein interaction networks and gene expression
    • Tornow S, Mewes HW. Functional modules by relating protein interaction networks and gene expression. Nucleic Acids Research. 2003; 31(21): 6283-6289.
    • (2003) Nucleic Acids Research , vol.31 , Issue.21 , pp. 6283-6289
    • Tornow, S.1    Mewes, H.W.2
  • 311
    • 34547840226 scopus 로고    scopus 로고
    • Annotating gene function by combining expression data with a modular gene network
    • Shiga M, Takigawa I, Mamitsuka H. Annotating gene function by combining expression data with a modular gene network. Bioinformatics. 2007; 23(13): i468-i478.
    • (2007) Bioinformatics , vol.23 , Issue.13
    • Shiga, M.1    Takigawa, I.2    Mamitsuka, H.3
  • 313
    • 79959619604 scopus 로고    scopus 로고
    • Proteins with neomorphic moonlighting functions in disease
    • Jeffery C. Proteins with neomorphic moonlighting functions in disease. IUBMB Life. 2011; 63(7): 489-494.
    • (2011) IUBMB Life , vol.63 , Issue.7 , pp. 489-494
    • Jeffery, C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.