메뉴 건너뛰기




Volumn 16, Issue 12, 2009, Pages 1671-1688

The accurate prediction of protein family from amino acid sequence by measuring features of sequence fragments

Author keywords

Prediction; Protein family; Protein feature; Recognition; Sequence

Indexed keywords

PROTEIN;

EID: 75149194967     PISSN: 10665277     EISSN: None     Source Type: Journal    
DOI: 10.1089/cmb.2008.0115     Document Type: Article
Times cited : (15)

References (21)
  • 1
    • 24044435942 scopus 로고    scopus 로고
    • Reducing multiclass to binary: A unifying approach for margin classifiers
    • Allwein, E.L., Schapire, R.E., and Singer, Y. 2001. Reducing multiclass to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113-141.
    • (2001) J. Mach. Learn. Res. , vol.1 , pp. 113-141
    • Allwein, E.L.1    Schapire, R.E.2    Singer, Y.3
  • 2
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen, B.C. 1973. Principles that govern the folding of protein chains. Science 181, 223-230.
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, B.C.1
  • 3
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • Baldi, P., Brunak, S., Chauvin, Y., et al. 2000. Assessing the accuracy of prediction algorithms for classification: an overview. Bioinformatics 16, 412-424.
    • (2000) Bioinformatics , vol.16 , pp. 412-424
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3
  • 4
    • 0028011075 scopus 로고
    • Hidden Markov models of biological primary sequence information
    • Baldi. P., Chauvin, Y., Hunkapiller, T., et al. 1994. Hidden Markov models of biological primary sequence information. Proc. Natl. Acad. Sci. USA 91, 1059-1063.
    • (1994) Proc. Natl. Acad. Sci. USA , vol.91 , pp. 1059-1063
    • Baldi., P.1    Chauvin, Y.2    Hunkapiller, T.3
  • 6
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C., and Vapnik, V. 1995. Support-vector networks. Mach. Learn. 20, 273-297.
    • (1995) Mach. Learn , vol.20 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 7
    • 84949776468 scopus 로고    scopus 로고
    • Network performance assessment for neurofuzzy data modeling
    • Liu X., Cohen P. and Berthold M. eds. Springer-Verlag, New York
    • Gunn, S.R., Brown, M., and Bossley, K.M. 1997. Network performance assessment for neurofuzzy data modeling, 313- 324. In: Liu, X., Cohen, P. and Berthold, M. eds. Advances in Intelligent Data Analysis. Reasoning about Data. Springer-Verlag, New York.
    • (1997) Advances in Intelligent Data Analysis. Reasoning about Data , pp. 313-324
    • Gunn, S.R.1    Brown, M.2    Bossley, K.M.3
  • 8
    • 0026458378 scopus 로고
    • Amino acid substitution matrices from protein blocks
    • Henikoff, S., and Henikoff, J.G. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89, 10915-10919.
    • (1992) Proc. Natl. Acad. Sci. USA , vol.89 , pp. 10915-10919
    • Henikoff, S.1    Henikoff, J.G.2
  • 9
    • 30744476239 scopus 로고    scopus 로고
    • Generalized Bradley-Terry models and multi-class probability estimates
    • Huang, T.-K., Weng, R.C., and Lin, C.-J. 2006. Generalized Bradley-Terry models and multi-class probability estimates. J. Mach. Learn. Res. 7, 85-115.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 85-115
    • Huang, T.-K.1    Weng, R.C.2    Lin, C.-J.3
  • 10
    • 0036166451 scopus 로고    scopus 로고
    • Classifying g-protein coupled receptors with support vector machines
    • Karchin, R., Karplus, K., and Haussler, D. 2002. Classifying g-protein coupled receptors with support vector machines. Bioinformatics 18, 147-159.
    • (2002) Bioinformatics , vol.18 , pp. 147-159
    • Karchin, R.1    Karplus, K.2    Haussler, D.3
  • 11
    • 0037822222 scopus 로고    scopus 로고
    • Asymptotic behaviours of support vector machines with gaussian kernel
    • Keerthi, S.S., and Lin, C.J. 2003. Asymptotic behaviours of support vector machines with gaussian kernel. Neural Comput. 15, 1667-1689.
    • (2003) Neural Comput. , vol.15 , pp. 1667-1689
    • Keerthi, S.S.1    Lin, C.J.2
  • 12
    • 0028181441 scopus 로고
    • Hidden Markov models in computational biology
    • Krogh, A., Brown, M., Mian, I., et al. 1994. Hidden Markov models in computational biology. J. Mol. Biol. 235, 1501-1531.
    • (1994) J. Mol. Biol. , vol.235 , pp. 1501-1531
    • Krogh, A.1    Brown, M.2    Mian, I.3
  • 13
    • 0036130770 scopus 로고    scopus 로고
    • Classification of G-protein coupled receptors by alignment independent extraction of principal chemical properties of primary amino acid sequences
    • Lapinsh, M., Gutcaits, A., Prusis, P., et al. 2002. Classification of G-protein coupled receptors by alignment independent extraction of principal chemical properties of primary amino acid sequences. Protein Sci. 11, 795-805.
    • (2002) Protein Sci. , vol.11 , pp. 795-805
    • Lapinsh, M.1    Gutcaits, A.2    Prusis, P.3
  • 15
    • 0014757386 scopus 로고
    • A general method applicable to the search for similarities in the amino acid sequence of two proteins
    • Needle, S.B., and Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48, 443-453.
    • (1970) J. Mol. Biol. , vol.48 , pp. 443-453
    • Needle, S.B.1    Wunsch, C.D.2
  • 16
    • 0003243224 scopus 로고    scopus 로고
    • Probabilities for SV machine
    • Smola A., Bartlett P., Scholkopf B., et al., eds. The MIT Press, Cambridge, MA
    • Platt, J.C. 2000. Probabilities for SV machine, 61-74. In: Smola, A., Bartlett, P., Scholkopf, B., et al., eds. Advances in Large Margin Classifiers. The MIT Press, Cambridge, MA.
    • (2000) Advances in Large Margin Classifiers , pp. 61-74
    • Platt, J.C.1
  • 17
    • 25444526090 scopus 로고    scopus 로고
    • A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile hidden Markov models
    • Sgourakis, N.G., Bagos, P.G., Papasaikas, P.K., et al. 2005. A method for the prediction of GPCRs coupling specificity to G-proteins using refined profile hidden Markov models. BMC Bioinform. 6, 104-115.
    • (2005) BMC Bioinform , vol.6 , pp. 104-115
    • Sgourakis, N.G.1    Bagos, P.G.2    Papasaikas, P.K.3
  • 18
    • 22744437666 scopus 로고    scopus 로고
    • A sequence alignment-independent method for protein classification
    • Vries, J.K., Munshi, R., Tobi, D., et al. 2004. A sequence alignment-independent method for protein classification. Appl. Bioinform. 3, 137-148.
    • (2004) Appl. Bioinform , vol.3 , pp. 137-148
    • Vries, J.K.1    Munshi, R.2    Tobi, D.3
  • 19
    • 0842330093 scopus 로고    scopus 로고
    • The iPro Class integrated database for protein functional analysis
    • Wu, C.H., Huang, H., Nikolskaya, A., et al. 2004a. The iProClass integrated database for protein functional analysis. Comput. Biol. Chem. 28, 87-96.
    • (2004) Comput. Biol. Chem. , vol.28 , pp. 87-96
    • Wu, C.H.1    Huang, H.2    Nikolskaya, A.3
  • 20
    • 9144231826 scopus 로고    scopus 로고
    • PIRSF: Family classification system at the Protein Information Resource
    • Wu, C.H., Nikolskaya, A., Huang, H., et al. 2004b. PIRSF: family classification system at the Protein Information Resource. Nucleic Acids Res. 32, D112-D114.
    • (2004) Nucleic Acids Res. , vol.32
    • Wu, C.H.1    Nikolskaya, A.2    Huang, H.3
  • 21
    • 51349159085 scopus 로고    scopus 로고
    • Probability estimates for multi-class classification by pairwise coupling
    • Wu, T.-F., Lin, C.-J., and Weng, R.C. 2004c. Probability estimates for multi-class classification by pairwise coupling. J. Mach. Learn. Res. 5,975-1005.
    • (2004) J. Mach. Learn. Res. , vol.5 , pp. 975-1005
    • Wu, T.-F.1    Lin, C.-J.2    Weng, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.