메뉴 건너뛰기




Volumn 27, Issue 4, 2011, Pages 487-494

DROP: An SVM domain linker predictor trained with optimal features selected by random forest

Author keywords

[No Author keywords available]

Indexed keywords

PROTEIN;

EID: 79951527638     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq700     Document Type: Article
Times cited : (58)

References (39)
  • 1
    • 0011542799 scopus 로고    scopus 로고
    • The Pfam protein families database
    • Bateman, A. et al. (2002) The Pfam protein families database. Nucleic Acids Res., 30, 276-280.
    • (2002) Nucleic Acids Res. , vol.30 , pp. 276-280
    • Bateman, A.1
  • 2
    • 0033768266 scopus 로고    scopus 로고
    • Target selection for structural genomics
    • Brenner, S.E. (2000) Target selection for structural genomics. Nat. Struct. Biol., 7 (Suppl.), 967-969.
    • (2000) Nat. Struct. Biol. , vol.7 , Issue.SUPPL. , pp. 967-969
    • Brenner, S.E.1
  • 3
    • 77951178609 scopus 로고    scopus 로고
    • Mathematical model for empirically optimizing large scale production of soluble protein domains
    • Chikayama, E. et al. (2010) Mathematical model for empirically optimizing large scale production of soluble protein domains. BMC Bioinformatics, 11, 113.
    • (2010) BMC Bioinformatics , vol.11 , pp. 113
    • Chikayama, E.1
  • 4
    • 0018110116 scopus 로고
    • Prediction of the secondary structure of proteins from their amino acid sequence
    • Chou, P.Y. and Fasman, G.D. (1978) Prediction of the secondary structure of proteins from their amino acid sequence. Adv. Enzymol. Relat. Areas Mol. Biol., 47, 45-148.
    • (1978) Adv. Enzymol. Relat. Areas Mol. Biol. , vol.47 , pp. 45-148
    • Chou, P.Y.1    Fasman, G.D.2
  • 5
    • 0033739529 scopus 로고    scopus 로고
    • Structural proteomics: prospects for high throughput sample preparation
    • Christendat, D. et al. (2000) Structural proteomics: prospects for high throughput sample preparation. Prog. Biophys. Mol. Biol., 73, 339-345.
    • (2000) Prog. Biophys. Mol. Biol. , vol.73 , pp. 339-345
    • Christendat, D.1
  • 6
    • 18744405418 scopus 로고    scopus 로고
    • Prediction of unfolded segments in a protein sequence based on amino acid composition
    • Coeytaux, K. and Poupon, A. (2005) Prediction of unfolded segments in a protein sequence based on amino acid composition. Bioinformatics, 21, 1891-1900.
    • (2005) Bioinformatics , vol.21 , pp. 1891-1900
    • Coeytaux, K.1    Poupon, A.2
  • 7
    • 21744461895 scopus 로고    scopus 로고
    • Armadillo: domain boundary prediction by amino acid composition
    • Dumontier, M. et al. (2005) Armadillo: domain boundary prediction by amino acid composition. J. Mol. Biol., 350, 1061-1073.
    • (2005) J. Mol. Biol. , vol.350 , pp. 1061-1073
    • Dumontier, M.1
  • 8
    • 60149103898 scopus 로고    scopus 로고
    • Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics
    • Ebina, T. et al. (2009) Loop-length-dependent SVM prediction of domain linkers for high-throughput structural proteomics. Biopolymers, 92, 1-8.
    • (2009) Biopolymers , vol.92 , pp. 1-8
    • Ebina, T.1
  • 9
    • 74249108517 scopus 로고    scopus 로고
    • Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8
    • Ezkurdia, I. et al. (2009) Assessment of domain boundary predictions and the prediction of intramolecular contacts in CASP8. Proteins, 77 (Suppl. 9), 196-209.
    • (2009) Proteins , vol.77 , Issue.SUPPL. 9 , pp. 196-209
    • Ezkurdia, I.1
  • 10
    • 7244231503 scopus 로고    scopus 로고
    • To be folded or to be unfolded?
    • Garbuzynskiy, S.O. et al. (2004) To be folded or to be unfolded? Protein Sci., 13, 2871-2877.
    • (2004) Protein Sci , vol.13 , pp. 2871-2877
    • Garbuzynskiy, S.O.1
  • 11
    • 0036878154 scopus 로고    scopus 로고
    • An analysis of protein domain linkers: their classification and role in protein folding
    • George, R.A. and Heringa, J. (2002) An analysis of protein domain linkers: their classification and role in protein folding. Protein Eng., 15, 871-879.
    • (2002) Protein Eng. , vol.15 , pp. 871-879
    • George, R.A.1    Heringa, J.2
  • 12
    • 23144467845 scopus 로고    scopus 로고
    • Scooby-domain: prediction of globular domains in protein sequence
    • George, R.A. et al. (2005) Scooby-domain: prediction of globular domains in protein sequence. Nucleic Acids Res., 33, W160-W163.
    • (2005) Nucleic Acids Res. , vol.33
    • George, R.A.1
  • 13
    • 34548567232 scopus 로고    scopus 로고
    • POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions
    • Hirose, S. et al. (2007) POODLE-L: a two-level SVM prediction system for reliably predicting long disordered regions. Bioinformatics, 23, 2046-2053.
    • (2007) Bioinformatics , vol.23 , pp. 2046-2053
    • Hirose, S.1
  • 14
    • 33645518215 scopus 로고    scopus 로고
    • Computer-aided NMR assay for detecting natively folded structural domains
    • Hondoh, T. et al. (2006) Computer-aided NMR assay for detecting natively folded structural domains. Protein Sci., 15, 871-883.
    • (2006) Protein Sci. , vol.15 , pp. 871-883
    • Hondoh, T.1
  • 15
    • 0346869047 scopus 로고    scopus 로고
    • Recent improvements to the PROSITE database
    • Hulo, N. et al. (2004) Recent improvements to the PROSITE database. Nucleic Acids Res., 32, D134-D137.
    • (2004) Nucleic Acids Res. , vol.32
    • Hulo, N.1
  • 16
    • 0002714543 scopus 로고    scopus 로고
    • Making large-Scale SVM learning practical
    • Schölkopf, B. et al. (eds). The MIT-Press, Cambridge, MA
    • Joachims, T. (1999) Making large-Scale SVM learning practical. In Schölkopf, B. et al. (eds) Advances in Kernel Methods - Support Vector Learning. The MIT-Press, Cambridge, MA.
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 17
    • 0033578684 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • Jones, D.T. (1999) Protein secondary structure prediction based on position-specific scoring matrices. J. Mol. Biol., 292, 195-202.
    • (1999) J. Mol. Biol. , vol.292 , pp. 195-202
    • Jones, D.T.1
  • 18
    • 0031889752 scopus 로고    scopus 로고
    • Domain assignment for protein structures using a consensus approach: characterization and analysis
    • Jones, S. et al. (1998) Domain assignment for protein structures using a consensus approach: characterization and analysis. Protein Sci., 7, 233-242.
    • (1998) Protein Sci. , vol.7 , pp. 233-242
    • Jones, S.1
  • 19
    • 34249321642 scopus 로고    scopus 로고
    • A decade of computing to traverse the labyrinth of protein domains
    • Joshi, R.R. (2007) A decade of computing to traverse the labyrinth of protein domains. Curr. Bioinfo., 2, 113.
    • (2007) Curr. Bioinfo. , vol.2 , pp. 113
    • Joshi, R.R.1
  • 20
    • 38549155006 scopus 로고    scopus 로고
    • AAindex: amino acid index database, progress report 2008
    • Kawashima, S. et al. (2008) AAindex: amino acid index database, progress report 2008. Nucleic Acids Res., 36, D202-D205.
    • (2008) Nucleic Acids Res. , vol.36
    • Kawashima, S.1
  • 21
    • 65249145330 scopus 로고    scopus 로고
    • Using genetic algorithms to select most predictive protein features
    • Kernytsky, A. and Rost, B. (2009) Using genetic algorithms to select most predictive protein features. Proteins, 75, 75-88.
    • (2009) Proteins , vol.75 , pp. 75-88
    • Kernytsky, A.1    Rost, B.2
  • 22
    • 0034493084 scopus 로고    scopus 로고
    • Automated search of natively folded protein fragments for high-throughput structure determination in structural genomics
    • Kuroda, Y. et al. (2000) Automated search of natively folded protein fragments for high-throughput structure determination in structural genomics. Protein Sci., 9, 2313-2321.
    • (2000) Protein Sci. , vol.9 , pp. 2313-2321
    • Kuroda, Y.1
  • 23
    • 0345040873 scopus 로고    scopus 로고
    • Classification and regression by randomForest
    • Liaw, A. andWiener, M. (2002) Classification and regression by randomForest. R news, 2, 18-22.
    • (2002) R news , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 24
    • 3042810008 scopus 로고    scopus 로고
    • Sequence-based prediction of protein domains
    • Liu, J. and Rost, B. (2004) Sequence-based prediction of protein domains. Nucleic Acids Res., 32, 3522-3530.
    • (2004) Nucleic Acids Res. , vol.32 , pp. 3522-3530
    • Liu, J.1    Rost, B.2
  • 25
    • 0036288851 scopus 로고    scopus 로고
    • Characterization and prediction of linker sequences of multidomain proteins by a neural network
    • Miyazaki, S. et al. (2002) Characterization and prediction of linker sequences of multidomain proteins by a neural network. J. Struct. Funct. Genomics, 2, 37-51.
    • (2002) J. Struct. Funct. Genomics , vol.2 , pp. 37-51
    • Miyazaki, S.1
  • 26
    • 33747099239 scopus 로고    scopus 로고
    • Identification of putative domain linkers by a neural network - application to a large sequence database
    • Miyazaki, S. et al. (2006) Identification of putative domain linkers by a neural network - application to a large sequence database. BMC Bioinformatics, 7, 323.
    • (2006) BMC Bioinformatics , vol.7 , pp. 323
    • Miyazaki, S.1
  • 27
    • 3142680264 scopus 로고    scopus 로고
    • Automatic prediction of protein domains from sequence information using a hybrid learning system
    • Nagarajan, N. and Yona, G. (2004) Automatic prediction of protein domains from sequence information using a hybrid learning system. Bioinformatics, 20, 1335-1360.
    • (2004) Bioinformatics , vol.20 , pp. 1335-1360
    • Nagarajan, N.1    Yona, G.2
  • 28
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Saeys, Y. et al. (2007) A review of feature selection techniques in bioinformatics. Bioinformatics, 23, 2507-2517.
    • (2007) Bioinformatics , vol.23 , pp. 2507-2517
    • Saeys, Y.1
  • 29
    • 0026342532 scopus 로고
    • Information-theoretical entropy as a measure of sequence variability
    • Shenkin, P.S. et al. (1991) Information-theoretical entropy as a measure of sequence variability. Proteins, 11, 297-313.
    • (1991) Proteins , vol.11 , pp. 297-313
    • Shenkin, P.S.1
  • 30
    • 17844363963 scopus 로고    scopus 로고
    • PPRODO: prediction of protein domain boundaries using neural networks
    • Sim, J. et al. (2005) PPRODO: prediction of protein domain boundaries using neural networks. Proteins, 59, 627-632.
    • (2005) Proteins , vol.59 , pp. 627-632
    • Sim, J.1
  • 31
    • 0037460953 scopus 로고    scopus 로고
    • DomCut: prediction of inter-domain linker regions in amino acid sequences
    • Suyama, M. and Ohara, O. (2003) DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics, 19, 673-674.
    • (2003) Bioinformatics , vol.19 , pp. 673-674
    • Suyama, M.1    Ohara, O.2
  • 32
    • 30344442775 scopus 로고    scopus 로고
    • Evaluation of domain prediction in CASP6
    • Tai, C.H. et al. (2005) Evaluation of domain prediction in CASP6. Proteins, 61 (Suppl. 7), 183-192.
    • (2005) Proteins , vol.61 , Issue.SUPPL. 7 , pp. 183-192
    • Tai, C.H.1
  • 33
    • 0242292025 scopus 로고    scopus 로고
    • Characteristics and prediction of domain linker sequences in multi-domain proteins
    • Tanaka, T. et al. (2003) Characteristics and prediction of domain linker sequences in multi-domain proteins. J. Struct. Funct. Genomics, 4, 79-85.
    • (2003) J. Struct. Funct. Genomics , vol.4 , pp. 79-85
    • Tanaka, T.1
  • 34
    • 33645741221 scopus 로고    scopus 로고
    • Improvement of domain linker prediction by incorporating looplength-dependent characteristics
    • Tanaka, T. et al. (2006) Improvement of domain linker prediction by incorporating looplength-dependent characteristics. Biopolymers, 84, 161-168.
    • (2006) Biopolymers , vol.84 , pp. 161-168
    • Tanaka, T.1
  • 35
    • 0036404537 scopus 로고    scopus 로고
    • A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase
    • Udwary, D.W. et al. (2002) A method for prediction of the locations of linker regions within large multifunctional proteins, and application to a type I polyketide synthase. J. Mol. Biol., 323, 585-598.
    • (2002) J. Mol. Biol. , vol.323 , pp. 585-598
    • Udwary, D.W.1
  • 36
    • 77951946371 scopus 로고    scopus 로고
    • A fast and automated solution for accurately resolving protein domain architectures
    • Yeats, C. et al. (2010) A fast and automated solution for accurately resolving protein domain architectures. Bioinformatics, 26, 745-751.
    • (2010) Bioinformatics , vol.26 , pp. 745-751
    • Yeats, C.1
  • 37
    • 40549099733 scopus 로고    scopus 로고
    • Sequence-based protein domain boundary prediction using BP neural network with various property profiles
    • Ye, L. et al. (2008) Sequence-based protein domain boundary prediction using BP neural network with various property profiles. Proteins, 71, 300-307.
    • (2008) Proteins , vol.71 , pp. 300-307
    • Ye, L.1
  • 38
    • 0033762813 scopus 로고    scopus 로고
    • Structural genomics projects in Japan
    • Yokoyama, S. et al. (2000) Structural genomics projects in Japan. Nat. Struct. Biol., 7 (Suppl.), 943-945.
    • (2000) Nat. Struct. Biol. , vol.7 , Issue.SUPPL. , pp. 943-945
    • Yokoyama, S.1
  • 39
    • 74249106219 scopus 로고    scopus 로고
    • I-TASSER: fully automated protein structure prediction in CASP8
    • Zhang, Y. (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins, 77 (Suppl. 9), 100-113.
    • (2009) Proteins , vol.77 , Issue.SUPPL. 9 , pp. 100-113
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.