|
Volumn 30, Issue 14, 2009, Pages 2248-2254
|
Multiple classifier integration for the prediction of protein structural classes
|
Author keywords
Amino acid compositions; Minimum redundancy maximum relevance; Multiple classifier integration; Protein structural class; Weka
|
Indexed keywords
ALGORITHM SELECTION;
AMINO ACID COMPOSITIONS;
ARTIFICIAL NEURAL NETWORK;
BASIC TRAINING;
BIOLOGICAL DATA;
CLASSIFICATION ALGORITHM;
CLASSIFICATION RESULTS;
DATA SETS;
FEATURE SELECTION;
INDIVIDUAL CLASSIFIERS;
INTEGRATION STRATEGY;
MACHINE LEARNING ALGORITHMS;
MACHINE-LEARNING;
MAJORITY VOTE;
MAJORITY VOTING;
MINIMUM REDUNDANCY MAXIMUM RELEVANCE;
MULTIPLE CLASSIFIER COMBINATION;
MULTIPLE CLASSIFIER INTEGRATION;
MULTIPLE CLASSIFIERS;
PREDICTION AND ANALYSIS;
SAN FRANCISCO;
SINGLE MACHINES;
SOFTWARE TOOL;
STRUCTURAL CLASS;
SUPERVISED CLASSIFIERS;
TEST SETS;
WEB SERVERS;
WEKA;
AMINATION;
AMINES;
AMINO ACIDS;
CHARACTER RECOGNITION;
CLASSIFIERS;
DATA MINING;
INTEGRATION;
MACHINE TOOLS;
NEURAL NETWORKS;
ORGANIC ACIDS;
QUALITY ASSURANCE;
REDUNDANCY;
ROBOT LEARNING;
STATISTICAL TESTS;
VOTING MACHINES;
LEARNING ALGORITHMS;
PROTEIN;
ALGORITHM;
ARTICLE;
CHEMISTRY;
COMPUTER SIMULATION;
FACTUAL DATABASE;
PROTEIN CONFORMATION;
ALGORITHMS;
COMPUTER SIMULATION;
DATABASES, FACTUAL;
PROTEIN CONFORMATION;
PROTEINS;
|
EID: 70349466390
PISSN: 01928651
EISSN: 1096987X
Source Type: Journal
DOI: 10.1002/jcc.21230 Document Type: Article |
Times cited : (47)
|
References (25)
|