메뉴 건너뛰기




Volumn 64, Issue 4, 2009, Pages 649-654

A hybrid genetic-neural model for predicting protein structural classes

Author keywords

Amino acid composition; Artificial neural networks; Genetic algorithm; Sequence parameters

Indexed keywords


EID: 70349753153     PISSN: 00063088     EISSN: 13369563     Source Type: Journal    
DOI: 10.2478/s11756-009-0125-4     Document Type: Article
Times cited : (1)

References (48)
  • 1
    • 0015859467 scopus 로고
    • Principles that govern the folding of protein chains
    • Anfinsen C.B. 1973. Principles that govern the folding of protein chains. Science 181: 223-230.
    • (1973) Science , vol.181 , pp. 223-230
    • Anfinsen, C.B.1
  • 2
    • 2942601555 scopus 로고    scopus 로고
    • Suport vector machines for predicting protein structural class
    • Cai Y.D., Liu X.J., Xu X.U. & Zhou G.P. 2001. Suport vector machines for predicting protein structural class. BMC Bioinformat. 2: 3-7.
    • (2001) BMC Bioinformat. , vol.2 , pp. 3-7
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.U.3    Zhou, G.P.4
  • 3
    • 0033809190 scopus 로고    scopus 로고
    • Prediction of protein structural classes by neural network
    • Cai Y.D. & Zhou G.P. 2000. Prediction of protein structural classes by neural network. Biochimie 82: 783-785.
    • (2000) Biochimie , vol.82 , pp. 783-785
    • Cai, Y.D.1    Zhou, G.P.2
  • 5
    • 0031733057 scopus 로고    scopus 로고
    • Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces
    • Chan H.P. 1998. Computerized analysis of mammographic microcalcifications in morphological and texture feature spaces. Med. Phys. 25: 2007-2019.
    • (1998) Med. Phys. , vol.25 , pp. 2007-2019
    • Chan, H.P.1
  • 6
    • 33748287103 scopus 로고    scopus 로고
    • Predicting protein structural class with pseudoamino acid composition and support vector machine fusion network
    • Chen C. 2006a. Predicting protein structural class with pseudoamino acid composition and support vector machine fusion network. Anal. Biochem. 357: 116-121.
    • (2006) Anal. Biochem. , vol.357 , pp. 116-121
    • Chen, C.1
  • 7
    • 33750475941 scopus 로고    scopus 로고
    • Using pseudo-amino acid composition and support vector machine to predict protein structural class
    • Chen C.Y. 2006b. Using pseudo-amino acid composition and support vector machine to predict protein structural class. J. Theor. Biol. 243: 444-448.
    • (2006) J. Theor. Biol. , vol.243 , pp. 444-448
    • Chen, C.Y.1
  • 8
    • 46449128812 scopus 로고    scopus 로고
    • Prediction of protein structural class using novel evolutionary collocation-based sequence representation
    • Chen K., Lukasz A. & Ruan J. 2008. Prediction of protein structural class using novel evolutionary collocation-based sequence representation. J. Comput. Chem. 29: 1596-1604.
    • (2008) J. Comput. Chem. , vol.29 , pp. 1596-1604
    • Chen, K.1    Lukasz, A.2    Ruan, J.3
  • 9
    • 0029051959 scopus 로고
    • A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space
    • Chou K.C. 1995. A novel approach to predicting protein structural classes in a (20-1)-D amino acid composition space. Proteins 21: 319-344.
    • (1995) Proteins , vol.21 , pp. 319-344
    • Chou, K.C.1
  • 10
    • 0033554601 scopus 로고    scopus 로고
    • A key driving force in determination of protein structural classes
    • Chou K.C. 1999. A key driving force in determination of protein structural classes. Biochem. Biophys. Res. Commun. 264: 216-224.
    • (1999) Biochem. Biophys. Res. Commun. , vol.264 , pp. 216-224
    • Chou, K.C.1
  • 11
    • 0034285487 scopus 로고    scopus 로고
    • Prediction of protein structural classes and subcellular locations
    • Chou K.C. 2000. Prediction of protein structural classes and subcellular locations. Curr. Protein Pept. Sci. 1: 171-208.
    • (2000) Curr. Protein Pept. Sci. , vol.1 , pp. 171-208
    • Chou, K.C.1
  • 12
    • 26844545834 scopus 로고    scopus 로고
    • Progress in protein structural class prediction and its impact to bioinformatics and proteomics
    • Chou K.C. 2005. Progress in protein structural class prediction and its impact to bioinformatics and proteomics. Curr. Protein Pept. Sci. 6: 423-436.
    • (2005) Curr. Protein Pept. Sci. , vol.6 , pp. 423-436
    • Chou, K.C.1
  • 13
    • 0031928664 scopus 로고    scopus 로고
    • Domain structural class prediction
    • Chou K.C. & Maggiora G.M., 1998. Domain structural class prediction. Protein Eng. 11: 523-538.
    • (1998) Protein Eng. , vol.11 , pp. 523-538
    • Chou, K.C.1    Maggiora, G.M.2
  • 14
    • 0028121983 scopus 로고
    • Predicting protein folding types by distance functions that make allowances for amino acid interactions
    • Chou K.C. & Zhang C.T. 1994. Predicting protein folding types by distance functions that make allowances for amino acid interactions. J. Biol. Chem. 269: 22014-22020.
    • (1994) J. Biol. Chem. , vol.269 , pp. 22014-22020
    • Chou, K.C.1    Zhang, C.T.2
  • 15
    • 0015987426 scopus 로고
    • Prediction of protein conformation
    • Chou P.Y. & Fasman G.D. 1974. Prediction of protein conformation. Biochemistry 13: 222-245.
    • (1974) Biochemistry , vol.13 , pp. 222-245
    • Chou, P.Y.1    Fasman, G.D.2
  • 16
    • 33646568767 scopus 로고    scopus 로고
    • Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction
    • Du Q.S. 2006. Amino acid principal component analysis (AAPCA) and its applications in protein structural class prediction. J. Biomol. Struct. Dyn. 23: 635-640.
    • (2006) J. Biomol. Struct. Dyn. , vol.23 , pp. 635-640
    • Du, Q.S.1
  • 17
    • 22144470177 scopus 로고    scopus 로고
    • Boosting classifier for predicting protein domain structural class
    • Feng K.Y. 2005. Boosting classifier for predicting protein domain structural class. Biochem. Biophys. Res. Commun. 334: 213-217.
    • (2005) Biochem. Biophys. Res. Commun. , vol.334 , pp. 213-217
    • Feng, K.Y.1
  • 18
    • 39849091628 scopus 로고    scopus 로고
    • VirulentPred: A SVM based prediction method for virulent proteins in bacterial pathogens
    • Garg A. & Gupta D. 2008. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformat. 9: 62.
    • (2008) BMC Bioinformat. , vol.9 , pp. 62
    • Garg, A.1    Gupta, D.2
  • 19
    • 0017873321 scopus 로고
    • Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins
    • Garnier J., Osguthorpe D. & Robson B. 1978. Analysis of the accuracy and implications of simple methods for predicting the secondary structure of globular proteins. J. Mol. Biol. 120: 97-120.
    • (1978) J. Mol. Biol. , vol.120 , pp. 97-120
    • Garnier, J.1    Osguthorpe, D.2    Robson, B.3
  • 20
    • 70349731534 scopus 로고    scopus 로고
    • Goldberg D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, 432 pp
    • Goldberg D.E. 1989. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Publishing Company, 432 pp.
  • 21
    • 0031800191 scopus 로고    scopus 로고
    • Protein secondary structure prediction in different structural classes
    • Gromiha M.M. & Selvaraj S. 1998. Protein secondary structure prediction in different structural classes. Protein Eng. 11: 249-251.
    • (1998) Protein Eng. , vol.11 , pp. 249-251
    • Gromiha, M.M.1    Selvaraj, S.2
  • 22
    • 0030774720 scopus 로고    scopus 로고
    • Prediction of protein secondary structure using the 3D-1D compatibility algorithm
    • Ito M., Matsuo Y. & Nishikawa K. 1997. Prediction of protein secondary structure using the 3D-1D compatibility algorithm. Comput. Applic. Biosci. 13: 415-423.
    • (1997) Comput. Applic. Biosci. , vol.13 , pp. 415-423
    • Ito, M.1    Matsuo, Y.2    Nishikawa, K.3
  • 23
    • 34247622820 scopus 로고    scopus 로고
    • Novel two-stage hybrid neural discriminant model for predicting proteins structural classes
    • Jahandideh S., Abdolmalekia P., Jahandideh M. & Barzegari Asadabadi E. 2007a. Novel two-stage hybrid neural discriminant model for predicting proteins structural classes. Biophys. Chem. 128: 87-93.
    • (2007) Biophys. Chem. , vol.128 , pp. 87-93
    • Jahandideh, S.1    Abdolmalekia, P.2    Jahandideh, M.3    Barzegari Asadabadi, E.4
  • 24
    • 33751276215 scopus 로고    scopus 로고
    • Novel hybrid method for the evaluation of parameters contributing in determination of protein structural classes
    • Jahandideh S., Abdolmalekia P., Jahandideh M. & Sadat Hayatshahia S.H. 2007b. Novel hybrid method for the evaluation of parameters contributing in determination of protein structural classes. J. Theor. Biol. 244: 275-281.
    • (2007) J. Theor. Biol. , vol.244 , pp. 275-281
    • Jahandideh, S.1    Abdolmalekia, P.2    Jahandideh, M.3    Sadat Hayatshahia, S.H.4
  • 25
    • 0029804192 scopus 로고    scopus 로고
    • Protein secondary structure prediction based on position-specific scoring matrices
    • King R.D. & Sternberg M.J.E. 1996. Protein secondary structure prediction based on position-specific scoring matrices. Protein Sci. 5: 2298-2310.
    • (1996) Protein Sci. , vol.5 , pp. 2298-2310
    • King, R.D.1    Sternberg, M.J.E.2
  • 26
    • 0017309766 scopus 로고
    • Structural patterns in globular proteins
    • Levitt M. & Chothia C. 1976. Structural patterns in globular proteins. Nature 261: 552-557.
    • (1976) Nature , vol.261 , pp. 552-557
    • Levitt, M.1    Chothia, C.2
  • 27
    • 0016772212 scopus 로고
    • Comparison of the predicted and observed secondary structure of T4 phage lysozyme
    • Mathew B.W. 1975. Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochim. Biophys. Acta 405: 442-451.
    • (1975) Biochim. Biophys. Acta , vol.405 , pp. 442-451
    • Mathew, B.W.1
  • 28
    • 0027217392 scopus 로고
    • Cross-validation of protein structural class prediction using statistical clusturing and neural networks
    • Metfessel B.A., Saurugger P.N., Connelly D.P. & Rich S.S. 1993. Cross-validation of protein structural class prediction using statistical clusturing and neural networks. Protein Sci. 2: 1171-1182.
    • (1993) Protein Sci. , vol.2 , pp. 1171-1182
    • Metfessel, B.A.1    Saurugger, P.N.2    Connelly, D.P.3    Rich, S.S.4
  • 29
    • 0028961335 scopus 로고
    • SCOP: A structural classification of proteins database for the investigation of sequences and structures
    • Murzin A.G., Brenner S.E., Hubbard T. & Chothia C. 1995. SCOP: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol. 247: 536-540.
    • (1995) J. Mol. Biol. , vol.247 , pp. 536-540
    • Murzin, A.G.1    Brenner, S.E.2    Hubbard, T.3    Chothia, C.4
  • 30
    • 0020820579 scopus 로고
    • Classification of proteins into groups based on amino acid composition and other characters
    • Nishikawa K., Kubota Y. & Ooi T. 1983a. Classification of proteins into groups based on amino acid composition and other characters. J. Biochem. 94: 981-995.
    • (1983) J. Biochem. , vol.94 , pp. 981-995
    • Nishikawa, K.1    Kubota, Y.2    Ooi, T.3
  • 31
    • 0020817034 scopus 로고
    • Classification of the proteins into groups based on amino acid composition and other characters grouping into four types
    • Nishikawa K., Kubota Y. & Ooi T. 1983b. Classification of the proteins into groups based on amino acid composition and other characters grouping into four types. J. Biochem. 94: 997-1007.
    • (1983) J. Biochem. , vol.94 , pp. 997-1007
    • Nishikawa, K.1    Kubota, Y.2    Ooi, T.3
  • 32
    • 0020132173 scopus 로고
    • Correlation of amino acid composition of a protein to its structural and biological characters
    • Nishikawa K. & Ooi T. 1982. Correlation of amino acid composition of a protein to its structural and biological characters. J. Biochem. 91: 1821-1824.
    • (1982) J. Biochem. , vol.91 , pp. 1821-1824
    • Nishikawa, K.1    Ooi, T.2
  • 33
    • 33646393287 scopus 로고    scopus 로고
    • Predicting protein structural class with AdaBoost learner
    • Niu B. 2006. Predicting protein structural class with AdaBoost learner. Protein Peptide Lett. 13: 489-492.
    • (2006) Protein Peptide Lett. , vol.13 , pp. 489-492
    • Niu, B.1
  • 35
    • 9944229509 scopus 로고    scopus 로고
    • Standardization for image characteristics in telemammography using genetic and nonlinear algorithms, Comput
    • Qian W. 2005. Standardization for image characteristics in telemammography using genetic and nonlinear algorithms, Comput. Biol. Med. 35: 183-196.
    • (2005) Biol. Med. , vol.35 , pp. 183-196
    • Qian, W.1
  • 36
    • 0037422619 scopus 로고    scopus 로고
    • Automatic classification of protein structure by using Gauss integrals
    • Rogen P. & Fain B. 2003. Automatic classification of protein structure by using Gauss integrals. Proc. Natl. Acad. Sci. USA 100: 119-124.
    • (2003) Proc. Natl. Acad. Sci. USA , vol.100 , pp. 119-124
    • Rogen, P.1    Fain, B.2
  • 37
    • 25144464662 scopus 로고    scopus 로고
    • Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem
    • Randall S.S. 2006. Knowledge discovery using a neural network simultaneous optimization algorithm on a real world classification problem. Eur. J. Oper. Res. 168: 1009-1018.
    • (2006) Eur. J. Oper. Res. , vol.168 , pp. 1009-1018
    • Randall, S.S.1
  • 38
    • 0028300741 scopus 로고
    • Combining evolutionary information and neural networks to predict protein secondary structure
    • Rost B. & Sander C. 1994. Combining evolutionary information and neural networks to predict protein secondary structure. Proteins 19: 55-72.
    • (1994) Proteins , vol.19 , pp. 55-72
    • Rost, B.1    Sander, C.2
  • 39
    • 0027765576 scopus 로고
    • The limits of protein secondary structure prediction accuracy from multiple sequence alignment
    • Russell R.B. & Barton G.J. 1993. The limits of protein secondary structure prediction accuracy from multiple sequence alignment. J. Mol. Biol. 234: 951-957.
    • (1993) J. Mol. Biol. , vol.234 , pp. 951-957
    • Russell, R.B.1    Barton, G.J.2
  • 40
    • 22144498433 scopus 로고    scopus 로고
    • Using supervised fuzzy clustering to predict protein structural classes
    • Shenet H.B. 2005. Using supervised fuzzy clustering to predict protein structural classes. Biochem. Biophys. Res. Commun. 334: 577-581.
    • (2005) Biochem. Biophys. Res. Commun. , vol.334 , pp. 577-581
    • Shenet, H.B.1
  • 41
    • 46049118177 scopus 로고    scopus 로고
    • AAIndexLoc: Predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices
    • Tantoso E. & Li K.B. 2008. AAIndexLoc: predicting subcellular localization of proteins based on a new representation of sequences using amino acid indices. Amino Acids 35: 345-353.
    • (2008) Amino Acids , vol.35 , pp. 345-353
    • Tantoso, E.1    Li, K.B.2
  • 42
    • 27144503667 scopus 로고    scopus 로고
    • A hybrid genetic algorithm-neural network strategy for simulation optimization
    • Wang L. 2005. A hybrid genetic algorithm-neural network strategy for simulation optimization. Appl. Math. Comput. 170: 1329-1343.
    • (2005) Appl. Math. Comput. , vol.170 , pp. 1329-1343
    • Wang, L.1
  • 43
    • 33644889341 scopus 로고    scopus 로고
    • Using pseudo amino acid composition to predict protein structural classes: Approached with complexity measure factor
    • Xiao X.S. 2006. Using pseudo amino acid composition to predict protein structural classes: approached with complexity measure factor. J. Comput. Chem. 27: 478-482.
    • (2006) J. Comput. Chem. , vol.27 , pp. 478-482
    • Xiao, X.S.1
  • 44
    • 47549084414 scopus 로고    scopus 로고
    • Using grey dynamic modeling and pseudo amino acid components to predict protein structural classes
    • Xiao X., Li W.Z. & Chou K.C. 2008a. Using grey dynamic modeling and pseudo amino acid components to predict protein structural classes. J. Comput. Chem. 29: 2018-2024.
    • (2008) J. Comput. Chem. , vol.29 , pp. 2018-2024
    • Xiao, X.1    Li, W.Z.2    Chou, K.C.3
  • 45
    • 51349105695 scopus 로고    scopus 로고
    • Predicting protein structural classes with pseudo amino acid composition: An approach using geometric moments of cellular automaton image
    • Xiao X., Wang P. & Chou K.C. 2008b. Predicting protein structural classes with pseudo amino acid composition: an approach using geometric moments of cellular automaton image. J. Theor. Biol. 254: 691-696.
    • (2008) J. Theor. Biol. , vol.254 , pp. 691-696
    • Xiao, X.1    Wang, P.2    Chou, K.C.3
  • 46
    • 0027199670 scopus 로고
    • Protein secondary structure prediction using nearest-neighbor methods
    • Yi T.M. & Lander E.S. 1993. Protein secondary structure prediction using nearest-neighbor methods. J. Mol. Biol. 232: 1117-1129.
    • (1993) J. Mol. Biol. , vol.232 , pp. 1117-1129
    • Yi, T.M.1    Lander, E.S.2
  • 47
    • 54749084166 scopus 로고    scopus 로고
    • An intriguing controversy over protein structural class prediction
    • Zhou G.P. 1998. An intriguing controversy over protein structural class prediction. J. Protein Chem. 17: 729-738.
    • (1998) J. Protein Chem. , vol.17 , pp. 729-738
    • Zhou, G.P.1
  • 48
    • 17444397485 scopus 로고    scopus 로고
    • Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection
    • Zhang, P. 2005. Neural vs. statistical classifier in conjunction with genetic algorithm based feature selection. Pattern Recogn. Lett. 26: 909-919.
    • (2005) Pattern Recogn. Lett. , vol.26 , pp. 909-919
    • Zhang, P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.