메뉴 건너뛰기




Volumn 185, Issue 2, 2003, Pages 111-122

Protein function classification via support vector machine approach

Author keywords

Classification; Drug absorption protein; Drug distribution protein; Drug excretion protein; Drug metabolizing enzyme; Protein homodimer; RNA binding protein; Support vector machine

Indexed keywords

ABSORPTION; DIMERS; RNA;

EID: 0041736652     PISSN: 00255564     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0025-5564(03)00096-8     Document Type: Article
Times cited : (135)

References (46)
  • 1
    • 0035859030 scopus 로고    scopus 로고
    • The ins and outs of signalling
    • J. Downward, The ins and outs of signalling, Nature 411 (2001) 759.
    • (2001) Nature , vol.411 , pp. 759
    • Downward, J.1
  • 2
    • 0033787566 scopus 로고    scopus 로고
    • Metabolic networks: A signal-oriented approach to cellular models
    • J.W. Lengeler, Metabolic networks: a signal-oriented approach to cellular models, Biol. Chem. 381 (2000) 911.
    • (2000) Biol. Chem. , vol.381 , pp. 911
    • Lengeler, J.W.1
  • 3
    • 0030858706 scopus 로고    scopus 로고
    • RNA-binding proteins as regulators of gene expression
    • H. Siomi, G. Dreyfuss, RNA-binding proteins as regulators of gene expression, Curr. Opin. Genet. Dev. 7 (1997) 345.
    • (1997) Curr. Opin. Genet. Dev. , vol.7 , pp. 345
    • Siomi, H.1    Dreyfuss, G.2
  • 4
    • 0032727991 scopus 로고    scopus 로고
    • Themes in RNA-protein recognition
    • D.E. Draper, Themes in RNA-protein recognition, J. Mol. Biol. 293 (1999) 255.
    • (1999) J. Mol. Biol. , vol.293 , pp. 255
    • Draper, D.E.1
  • 6
    • 0032483312 scopus 로고    scopus 로고
    • Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T-1 ribonucleases
    • J.S. Fetrow, J. Skolnick, Method for prediction of protein function from sequence using the sequence-to-structure-to-function paradigm with application to glutaredoxins/thioredoxins and T-1 ribonucleases, J. Mol. Biol. 281 (1998) 949.
    • (1998) J. Mol. Biol. , vol.281 , pp. 949
    • Fetrow, J.S.1    Skolnick, J.2
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machine for pattern recognition
    • C.J.C. Burges, A tutorial on support vector machine for pattern recognition, Data Min. Knowl. Disc. 2 (1998) 121.
    • (1998) Data Min. Knowl. Disc. , vol.2 , pp. 121
    • Burges, C.J.C.1
  • 9
    • 0035023445 scopus 로고    scopus 로고
    • Predicting protein-protein interactions from primary structure
    • J.R. Bock, D.A. Gough, Predicting protein-protein interactions from primary structure, Bioinformatics 17 (2001) 455.
    • (2001) Bioinformatics , vol.17 , pp. 455
    • Bock, J.R.1    Gough, D.A.2
  • 10
    • 0035014847 scopus 로고    scopus 로고
    • Multi-class protein fold recognition using support vector machines and neural networks
    • C.H.Q. Ding, I. Dubchak, Multi-class protein fold recognition using support vector machines and neural networks, Bioinformatics 17 (2001) 349.
    • (2001) Bioinformatics , vol.17 , pp. 349
    • Ding, C.H.Q.1    Dubchak, I.2
  • 11
    • 0035995959 scopus 로고    scopus 로고
    • Support vector machines for the classification and prediction of β-turn types
    • Y.D. Cai, X.J. Liu, X.B. Xu, K.C. Chou, Support vector machines for the classification and prediction of β-turn types, J. Peptide Sci. 8 (2002) 297.
    • (2002) J. Peptide Sci. , vol.8 , pp. 297
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 12
    • 0037103004 scopus 로고    scopus 로고
    • Prediction of protein solvent accessibility using support vector machines
    • Z. Yuan, K. Burrage, J.S. Mattick, Prediction of protein solvent accessibility using support vector machines, Proteins 48 (2002) 566.
    • (2002) Proteins , vol.48 , pp. 566
    • Yuan, Z.1    Burrage, K.2    Mattick, J.S.3
  • 13
    • 0035957531 scopus 로고    scopus 로고
    • A novel method of protein secondary structure prediction with high segment overlap measure: Support vector machine approach
    • S.J. Hua, Z.R. Sun, A novel method of protein secondary structure prediction with high segment overlap measure: support vector machine approach, J. Mol. Biol. 308 (2001) 397.
    • (2001) J. Mol. Biol. , vol.308 , pp. 397
    • Hua, S.J.1    Sun, Z.R.2
  • 14
    • 0036007085 scopus 로고    scopus 로고
    • Prediction of protein structural classes by support vector machines
    • Y.D. Cai, X.J. Liu, X.B. Xu, K.C. Chou, Prediction of protein structural classes by support vector machines, Comput. Chem. 26 (2002) 293.
    • (2002) Comput. Chem. , vol.26 , pp. 293
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 15
    • 0042367634 scopus 로고    scopus 로고
    • Mining e-mail content for author identification forensics
    • O. de Vel, A. Anderson, M. Corney, G. Mohay, Mining e-mail content for author identification forensics, Sigmod Record 30 (2001) 55.
    • (2001) Sigmod Record , vol.30 , pp. 55
    • De Vel, O.1    Anderson, A.2    Corney, M.3    Mohay, G.4
  • 16
    • 0034825071 scopus 로고    scopus 로고
    • Support vector machine-based text detection in digital video
    • K.I. Kim, K. Jung, S.H. Park, H.J. Kim, Support vector machine-based text detection in digital video, Pattern Recogn. 34 (2001) 527.
    • (2001) Pattern Recogn. , vol.34 , pp. 527
    • Kim, K.I.1    Jung, K.2    Park, S.H.3    Kim, H.J.4
  • 18
    • 0042868698 scopus 로고    scopus 로고
    • Support vector machine active learning with applications to text classification
    • S. Tong, D. Koller, Support vector machine active learning with applications to text classification, J. Mach. Learn. Res. 2 (2001) 45.
    • (2001) J. Mach. Learn. Res. , vol.2 , pp. 45
    • Tong, S.1    Koller, D.2
  • 19
    • 84958760414 scopus 로고    scopus 로고
    • Multi-class SVM classifier based on pairwise coupling
    • Z.Y. Li, S.W. Tang, S.C. Yan, Multi-class SVM classifier based on pairwise coupling, Lect. Notes Comput. Sci. 2388 (2002) 321.
    • (2002) Lect. Notes Comput. Sci. , vol.2388 , pp. 321
    • Li, Z.Y.1    Tang, S.W.2    Yan, S.C.3
  • 20
    • 0041365886 scopus 로고    scopus 로고
    • Support vector machines for Thai phoneme recognition
    • N. Thubthong, B. Kijsirikul, Support vector machines for Thai phoneme recognition, Int. J. Uncertain. Fuzz. 9 (2001) 803.
    • (2001) Int. J. Uncertain. Fuzz. , vol.9 , pp. 803
    • Thubthong, N.1    Kijsirikul, B.2
  • 21
    • 23044533487 scopus 로고    scopus 로고
    • A temporal network of support vector machine classifiers for the recognition of visual speech
    • M. Gordan, C. Kotropoulos, I. Pitas, A temporal network of support vector machine classifiers for the recognition of visual speech, Lect. Notes Anal. Intell. 2308 (2002) 355.
    • (2002) Lect. Notes Anal. Intell. , vol.2308 , pp. 355
    • Gordan, M.1    Kotropoulos, C.2    Pitas, I.3
  • 23
    • 0346570969 scopus 로고    scopus 로고
    • Eyeglasses verification by support vector machine
    • C.Y. Wu, C. Liu, J. Zhou, Eyeglasses verification by support vector machine, Lect. Notes Comput. Sci. 2195 (2001) 1126.
    • (2001) Lect. Notes Comput. Sci. , vol.2195 , pp. 1126
    • Wu, C.Y.1    Liu, C.2    Zhou, J.3
  • 24
    • 0036680802 scopus 로고    scopus 로고
    • Facial feature detection and face recognition from 2D and 3D images
    • Y.J. Wang, C.S. Chua, Y.K. Ho, Facial feature detection and face recognition from 2D and 3D images, Pattern Recogn. Lett. 23 (2002) 1191.
    • (2002) Pattern Recogn. Lett. , vol.23 , pp. 1191
    • Wang, Y.J.1    Chua, C.S.2    Ho, Y.K.3
  • 27
    • 0033743654 scopus 로고    scopus 로고
    • Target classification via support vector machines
    • R.E. Karlsen, D.J. Gorsich, G.R. Gerhart, Target classification via support vector machines, Opt. Eng. 39 (2000) 704.
    • (2000) Opt. Eng. , vol.39 , pp. 704
    • Karlsen, R.E.1    Gorsich, D.J.2    Gerhart, G.R.3
  • 28
    • 0033719017 scopus 로고    scopus 로고
    • Synthetic aperture radar automatic target recognition with three strategies of learning and representation
    • Q. Zhao, J.C. Principe, V.L. Brennan, D.X. Xu, Z. Wang, Synthetic aperture radar automatic target recognition with three strategies of learning and representation, Opt. Eng. 39 (2000) 1230.
    • (2000) Opt. Eng. , vol.39 , pp. 1230
    • Zhao, Q.1    Principe, J.C.2    Brennan, V.L.3    Xu, D.X.4    Wang, Z.5
  • 29
    • 39449088098 scopus 로고    scopus 로고
    • Support vector machine as an efficient tool for high-dimensional data processing: Application to substorm forecasting
    • V.V. Gavrishchaka, S.B. Ganguli, Support vector machine as an efficient tool for high-dimensional data processing: application to substorm forecasting, J. Geophys. Res. 106 (2001) 29911.
    • (2001) J. Geophys. Res. , vol.106 , pp. 29911
    • Gavrishchaka, V.V.1    Ganguli, S.B.2
  • 30
    • 0036202123 scopus 로고    scopus 로고
    • Flood stage forecasting with support vector machines
    • S.Y. Liong, C. Sivapragasam, Flood stage forecasting with support vector machines, J. Am. Water Resour. As. 38 (2002) 173.
    • (2002) J. Am. Water Resour. As. , vol.38 , pp. 173
    • Liong, S.Y.1    Sivapragasam, C.2
  • 31
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer classification using support vector machines, Mach. Learn. 46 (2002) 389.
    • (2002) Mach. Learn. , vol.46 , pp. 389
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 32
    • 0036520144 scopus 로고    scopus 로고
    • Tumor markers and pattern recognition analysis: A new diagnostic tool for cancer
    • H.A. Fritsche, Tumor markers and pattern recognition analysis: a new diagnostic tool for cancer, J. Clin. Ligand Assay 25 (2002) 11.
    • (2002) J. Clin. Ligand Assay , vol.25 , pp. 11
    • Fritsche, H.A.1
  • 33
    • 0037134796 scopus 로고    scopus 로고
    • Identifying genes related to drug anticancer mechanisms using support vector machine
    • L. Bao, Z.R. Sun, Identifying genes related to drug anticancer mechanisms using support vector machine, FEBS Lett. 521 (2002) 109.
    • (2002) FEBS Lett. , vol.521 , pp. 109
    • Bao, L.1    Sun, Z.R.2
  • 34
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • S. Ramaswamy, P. Tamayo, R. Rifkin, et al., Multiclass cancer diagnosis using tumor gene expression signatures, Proc. Natl. Acad. Sci. USA 98 (2001) 15149.
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 15149
    • Ramaswamy, S.1    Tamayo, P.2    Rifkin, R.3
  • 36
    • 0033636139 scopus 로고    scopus 로고
    • Support vector machine classification and validation of cancer tissue samples using microarray expression data
    • T.S. Furey, N. Cristianini, N. Duffy, D.W. Bednarski, M. Schummer, D. Haussler, Support vector machine classification and validation of cancer tissue samples using microarray expression data, Bioinformatics 16 (2000) 906.
    • (2000) Bioinformatics , vol.16 , pp. 906
    • Furey, T.S.1    Cristianini, N.2    Duffy, N.3    Bednarski, D.W.4    Schummer, M.5    Haussler, D.6
  • 37
    • 0036100116 scopus 로고    scopus 로고
    • Learning gene functional classifications from multiple data types
    • P. Pavlidis, J. Weston, J.S. Cai, W.S. Noble, Learning gene functional classifications from multiple data types, J. Comput. Biol. 9 (2002) 401.
    • (2002) J. Comput. Biol. , vol.9 , pp. 401
    • Pavlidis, P.1    Weston, J.2    Cai, J.S.3    Noble, W.S.4
  • 39
    • 0034740222 scopus 로고    scopus 로고
    • Drug design by machine learning: Support vector machines for pharmaceutical data analysis
    • R. Burbidge, M. Trotter, B. Buxton, S. Holden, Drug design by machine learning: support vector machines for pharmaceutical data analysis, Comput. Chem. 26 (2001) 5.
    • (2001) Comput. Chem. , vol.26 , pp. 5
    • Burbidge, R.1    Trotter, M.2    Buxton, B.3    Holden, S.4
  • 40
    • 0037196307 scopus 로고    scopus 로고
    • Support vector machines for predicting HIV protease cleavage sites in protein
    • Y.D. Cai, X.J. Liu, X.B. Xu, K.C. Chou, Support vector machines for predicting HIV protease cleavage sites in protein, J. Comput. Chem. 23 (2002) 267.
    • (2002) J. Comput. Chem. , vol.23 , pp. 267
    • Cai, Y.D.1    Liu, X.J.2    Xu, X.B.3    Chou, K.C.4
  • 42
    • 0033931867 scopus 로고    scopus 로고
    • Assessing the accuracy of prediction algorithms for classification: An overview
    • P. Baldi, S. Brunak, Y. Chauvin, C.A.F. Anderson, H. Nielsen, Assessing the accuracy of prediction algorithms for classification: an overview, Bioinformatics 16 (2000) 412.
    • (2000) Bioinformatics , vol.16 , pp. 412
    • Baldi, P.1    Brunak, S.2    Chauvin, Y.3    Anderson, C.A.F.4    Nielsen, H.5
  • 43
    • 0036182825 scopus 로고    scopus 로고
    • Screening with tumor markers
    • J.E. Roulston, Screening with tumor markers, Mol. Biotechnol. 20 (2002) 153.
    • (2002) Mol. Biotechnol. , vol.20 , pp. 153
    • Roulston, J.E.1
  • 44
    • 0042367635 scopus 로고    scopus 로고
    • Support vector machine classification of physical and biological datasets
    • in press
    • C.Z. Cai, W.L. Wang, Y.Z. Chen, Support vector machine classification of physical and biological datasets, Int. J. Mod. Phys. C 14 (5) (2003) in press.
    • (2003) Int. J. Mod. Phys. C , vol.14 , Issue.5
    • Cai, C.Z.1    Wang, W.L.2    Chen, Y.Z.3
  • 46
    • 0036097638 scopus 로고    scopus 로고
    • Absorption, distribution metabolism, and excretion-associated protein database
    • L.Z. Sun, Z.L. Ji, X. Chen, J.F. Wang, Y.Z. Chen, Absorption, distribution metabolism, and excretion-associated protein database, Clin. Pharmacol. Ther. 71 (2002) 405, Available: 〈 http://xin.cz3.nus.edu.sg/group/admeap/admeap.asp〉.
    • (2002) Clin. Pharmacol. Ther. , vol.71 , pp. 405
    • Sun, L.Z.1    Ji, Z.L.2    Chen, X.3    Wang, J.F.4    Chen, Y.Z.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.