메뉴 건너뛰기




Volumn 7, Issue SUPPL.5, 2006, Pages

Improving the performance of DomainDiscovery of protein domain boundary assignment using inter-domain linker index

Author keywords

[No Author keywords available]

Indexed keywords

DOMAIN IDENTIFICATION; POSITION SPECIFIC SCORING MATRIX; PROTEIN ANALYSIS; PROTEIN FUNCTIONS; PROTEIN STRUCTURES; SECONDARY STRUCTURES; SEQUENCE INFORMATIONS; SOLVENT ACCESSIBILITY; DATA SETS; DOMAIN BOUNDARY; INDEX VALUES; INTER-DOMAIN; MULTI-DOMAINS; PROTEIN DOMAINS; TARGET SEQUENCES; TRAINING DATASET;

EID: 33947385412     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-7-S5-S6     Document Type: Article
Times cited : (27)

References (23)
  • 1
    • 0037460953 scopus 로고    scopus 로고
    • DomCut: Prediction of inter-domain linker regions in amino acid sequences
    • SuPama M, Ohara O: DomCut: prediction of inter-domain linker regions in amino acid sequences. Bioinformatics 2003, 19(5):673-674.
    • (2003) Bioinformatics , vol.19 , Issue.5 , pp. 673-674
    • Suyama, M.1    Ohara, O.2
  • 2
    • 16644363065 scopus 로고    scopus 로고
    • Delineation of modular proteins: Domain boundary prediction from sequence information
    • Kong L, Ranganathan S: Delineation of modular proteins: Domain boundary prediction from sequence information. Briefings in Bioinformatics 2004, 5(2):179-192.
    • (2004) Briefings in Bioinformatics , vol.5 , Issue.2 , pp. 179-192
    • Kong, L.1    Ranganathan, S.2
  • 3
    • 33746338567 scopus 로고    scopus 로고
    • Partitioning Protein Structures into Domains: Why Is It so Difficult?
    • Holland TA, Veretnik S, Shindyalov IN, Bourne PE: Partitioning Protein Structures into Domains: Why Is It so Difficult? J Mol Biol 2006, 361(3):562-590.
    • (2006) J Mol Biol , vol.361 , Issue.3 , pp. 562-590
    • Holland, T.A.1    Veretnik, S.2    Shindyalov, I.N.3    Bourne, P.E.4
  • 5
    • 33947394299 scopus 로고    scopus 로고
    • Computational Methods for Domain Partitioning in Protein Structures"
    • in Edited by: Xu Y, Xu D, Liang J. Springer-Verlag
    • Veretnik S, Shindyalov IN: Computational Methods for Domain Partitioning in Protein Structures" in Computational Methods for Protein Structure and Modeling. Edited by: Xu Y, Xu D, Liang J. Springer-Verlag; 2006.
    • (2006) Computational Methods for Protein Structure and Modeling
    • Veretnik, S.1    Shindyalov, I.N.2
  • 6
    • 23144465987 scopus 로고    scopus 로고
    • SCRATCH: A protein structure and structural feature prediction server
    • (web server)
    • CheAg J, Randall AZ, Sweredoski MJ, Baldi P: SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 2005, 33(web server):w72-w76.
    • (2005) Nucleic Acids Res , vol.33
    • Cheng, J.1    Randall, A.Z.2    Sweredoski, M.J.3    Baldi, P.4
  • 7
    • 3042810008 scopus 로고    scopus 로고
    • Sequence-based prediction of protein domains
    • Liu J, Rost B: Sequence-based prediction of protein domains. Nucleic Acids Research 2004, 32(12):3522-3530.
    • (2004) Nucleic Acids Research , vol.32 , Issue.12 , pp. 3522-3530
    • Liu, J.1    Rost, B.2
  • 8
    • 0036306348 scopus 로고    scopus 로고
    • SnapDRAGON: A Method to Delineate Protein Structural Domains from Sequence Data
    • GeorgeARA, Heringa J: SnapDRAGON: a Method to Delineate Protein Structural Domains from Sequence Data. J Mol Biol 2002, 316:839-851.
    • (2002) J Mol Biol , vol.316 , pp. 839-851
    • George, R.A.1    Heringa, J.2
  • 9
    • 0036893072 scopus 로고    scopus 로고
    • Rapid protein domain assignment from amino acid sequence using predicted secondary structure
    • Marsden RL, McGuffin LJ, Jones DT: Rapid protein domain assignment from amino acid sequence using predicted secondary structure. Protein Science 2002, 11:2814-2824.
    • (2002) Protein Science , vol.11 , pp. 2814-2824
    • Marsden, R.L.1    McGuffin, L.J.2    Jones, D.T.3
  • 10
    • 3142680264 scopus 로고    scopus 로고
    • Automatic prediction of protein domains from sequence information using a hybrid learning system
    • Nagarajan N, Yona G: Automatic prediction of protein domains from sequence information using a hybrid learning system. Bioinformatics 2004, 20:1335-60.
    • (2004) Bioinformatics , vol.20 , pp. 1335-1360
    • Nagarajan, N.1    Yona, G.2
  • 11
    • 0037377548 scopus 로고    scopus 로고
    • Prediction of protein domain boundaries from sequence alone
    • Galzitskaya OV, Melnik BS: Prediction of protein domain boundaries from sequence alone. Protein Science 2003, 12:696-701.
    • (2003) Protein Science , vol.12 , pp. 696-701
    • Galzitskaya, O.V.1    Melnik, B.S.2
  • 12
    • 32144434539 scopus 로고    scopus 로고
    • SSEP-Domain: Protein domain prediction by alignment of secondary structure elements and profiles
    • Gewehr PE, Zimmer R: SSEP-Domain: protein domain prediction by alignment of secondary structure elements and profiles. Bioinformatics 2006, 22(2):181-187.
    • (2006) Bioinformatics , vol.22 , Issue.2 , pp. 181-187
    • Gewehr, J.E.1    Zimmer, R.2
  • 13
    • 21744461895 scopus 로고    scopus 로고
    • Armidillo: Doamin Boundary Prediction by Amino Acid Composition
    • Dumontier M, Feldman R, Yao HJ, Hogue CWV: Armidillo: Doamin Boundary Prediction by Amino Acid Composition. J Mol Biol 2005, 350:1061-1073.
    • (2005) J Mol Biol , vol.350 , pp. 1061-1073
    • Dumontier, M.1    Feldman, R.2    Yao, H.J.3    Hogue, C.W.V.4
  • 14
    • 17844363963 scopus 로고    scopus 로고
    • PRODO: Prediction of Protein Domain Boundaries using Neural Networks
    • Sim J, Kim S-Y, Lee J: PRODO: Prediction of Protein Domain Boundaries using Neural Networks. Proteins 2005, 59:627-632.
    • (2005) Proteins , vol.59 , pp. 627-632
    • Sim, J.1    Kim, S.-Y.2    Lee, J.3
  • 18
    • 0033753811 scopus 로고    scopus 로고
    • Domain size distributions can predict domain boundaries
    • Wheelan SJ, Marchler-Bauer A, Bryant SH: Domain size distributions can predict domain boundaries. Bioinformatics 2000, 16(7):613-618.
    • (2000) Bioinformatics , vol.16 , Issue.7 , pp. 613-618
    • Wheelan, S.J.1    Marchler-Bauer, A.2    Bryant, S.H.3
  • 20
    • 0036568279 scopus 로고    scopus 로고
    • Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles
    • Pollastri G, Przybylski D, Rost B, Baldi P: Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles. Proteins 2002, 47:228-235.
    • (2002) Proteins , vol.47 , pp. 228-235
    • Pollastri, G.1    Przybylski, D.2    Rost, B.3    Baldi, P.4
  • 21
    • 0036568293 scopus 로고    scopus 로고
    • Prediction of coordination number and relative solvent accessibility in proteins
    • Pollastri G, Baldi P, Fariselli P, Casadio R: Prediction of coordination number and relative solvent accessibility in proteins. Proteins 2002, 47:142-153.
    • (2002) Proteins , vol.47 , pp. 142-153
    • Pollastri, G.1    Baldi, P.2    Fariselli, P.3    Casadio, R.4
  • 22
    • 0003450542 scopus 로고
    • The Nature of Statistical Learning Theory
    • Vapnik V: The nature of statistical learning theory. 1995.
    • (1995)
    • Vapnik, V.1
  • 23
    • 0003798642 scopus 로고    scopus 로고
    • Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning
    • Edited by: B.S.a.C.B.a.A.S. MIT-Press
    • Joachims T: Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning. Edited by: B.S.a.C.B.a.A.S. MIT-Press; 1999.
    • (1999)
    • Joachims, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.