메뉴 건너뛰기




Volumn 63, Issue 3, 2006, Pages 490-500

Evaluation of different biological data and computational classification methods for use in protein interaction prediction

Author keywords

High throughput data; Joint learning; Protein protein interaction

Indexed keywords

ACCURACY; ANALYTIC METHOD; ARTICLE; CLASSIFICATION; DATA ANALYSIS; GENE EXPRESSION; INFORMATION PROCESSING; PREDICTION; PRIORITY JOURNAL; PROTEIN PROTEIN INTERACTION; YEAST;

EID: 33646018046     PISSN: 08873585     EISSN: 10970134     Source Type: Journal    
DOI: 10.1002/prot.20865     Document Type: Article
Times cited : (326)

References (35)
  • 1
    • 0036789265 scopus 로고    scopus 로고
    • Analyzing yeast protein-protein interaction data obtained from different sources
    • Bader GD, Hogue CW. Analyzing yeast protein-protein interaction data obtained from different sources. Nat Biotechnol 2003;20:991-997.
    • (2003) Nat Biotechnol , vol.20 , pp. 991-997
    • Bader, G.D.1    Hogue, C.W.2
  • 2
  • 8
    • 0036799752 scopus 로고    scopus 로고
    • Inferring domain-domain interactions from protein-protein interactions
    • Deng M, Mehta S, Sun F, Chen T. Inferring domain-domain interactions from protein-protein interactions. Genome Res 2002;12:1540-1548.
    • (2002) Genome Res , vol.12 , pp. 1540-1548
    • Deng, M.1    Mehta, S.2    Sun, F.3    Chen, T.4
  • 9
    • 0347473809 scopus 로고    scopus 로고
    • Gaining confidence in high-throughput protein interaction networks
    • Bader JS, Chaudhuri A, Rothberg JM, Chant J. Gaining confidence in high-throughput protein interaction networks. Nat Biotechnol 2004;22:78-85.
    • (2004) Nat Biotechnol , vol.22 , pp. 78-85
    • Bader, J.S.1    Chaudhuri, A.2    Rothberg, J.M.3    Chant, J.4
  • 10
    • 1842507531 scopus 로고    scopus 로고
    • A statistical framework for combining and interpreting proteomic datasets
    • Gilchrist MA, Salter LA, Wagner A. A statistical framework for combining and interpreting proteomic datasets. Bioinformatics 2004;20:689-700.
    • (2004) Bioinformatics , vol.20 , pp. 689-700
    • Gilchrist, M.A.1    Salter, L.A.2    Wagner, A.3
  • 12
    • 9444239213 scopus 로고    scopus 로고
    • A probabilistic functional network of yeast genes
    • Lee I, Date SV, Adai AT, Marcotte EM. A probabilistic functional network of yeast genes. Science 2004;306:1555-1558.
    • (2004) Science , vol.306 , pp. 1555-1558
    • Lee, I.1    Date, S.V.2    Adai, A.T.3    Marcotte, E.M.4
  • 13
    • 13244265581 scopus 로고    scopus 로고
    • Information assessment on predicting protein-protein interactions
    • Lin N, Wu B, Jansen R, Gerstein M, Zhao H. Information assessment on predicting protein-protein interactions. BMC Bioinformatics 2004;5:154.
    • (2004) BMC Bioinformatics , vol.5 , pp. 154
    • Lin, N.1    Wu, B.2    Jansen, R.3    Gerstein, M.4    Zhao, H.5
  • 14
    • 19544389868 scopus 로고    scopus 로고
    • Protein network inference from multiple genomic data: A supervised approach
    • Yamanishi Y, Vert JP, Kanehisa M. Protein network inference from multiple genomic data: a supervised approach. Bioinformatics 2004;20:363-370.
    • (2004) Bioinformatics , vol.20 , pp. 363-370
    • Yamanishi, Y.1    Vert, J.P.2    Kanehisa, M.3
  • 15
    • 2942541277 scopus 로고    scopus 로고
    • Predicting co-complexed protein pairs using genomic and proteomic data integration
    • Zhang L, Wong S, King OD, Roth FP. Predicting co-complexed protein pairs using genomic and proteomic data integration. BMC Bioinformatics 2004;5:38.
    • (2004) BMC Bioinformatics , vol.5 , pp. 38
    • Zhang, L.1    Wong, S.2    King, O.D.3    Roth, F.P.4
  • 16
    • 0036088133 scopus 로고    scopus 로고
    • DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions
    • Xenarios I, Salwinski L, Duan XJ, Higney P, Kim SM, Eisenberg D. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res 2002;30:303-305.
    • (2002) Nucleic Acids Res , vol.30 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3    Higney, P.4    Kim, S.M.5    Eisenberg, D.6
  • 17
    • 15944418607 scopus 로고    scopus 로고
    • Random forest similarity for protein-protein interaction prediction from multiple sources
    • Qi Y, Klein-Seetharaman J, Bar-Joseph Z. Random forest similarity for protein-protein interaction prediction from multiple sources. Pacific Symp Biocomput 2005;10:531-542.
    • (2005) Pacific Symp Biocomput , vol.10 , pp. 531-542
    • Qi, Y.1    Klein-Seetharaman, J.2    Bar-Joseph, Z.3
  • 18
    • 0037832188 scopus 로고    scopus 로고
    • Computational methods of analysis ofprotein-protein interactions
    • Salwinski L, Eisenberg D. Computational methods of analysis ofprotein-protein interactions. Curr Opin Struct Biol 2003;13:377-382.
    • (2003) Curr Opin Struct Biol , vol.13 , pp. 377-382
    • Salwinski, L.1    Eisenberg, D.2
  • 19
    • 0037432528 scopus 로고    scopus 로고
    • How reliable are experimental protein-protein interaction data
    • Sprinzak E, Sattath S, Margalit H. How reliable are experimental protein-protein interaction data. J Mol Biol 2003;327:919-923.
    • (2003) J Mol Biol , vol.327 , pp. 919-923
    • Sprinzak, E.1    Sattath, S.2    Margalit, H.3
  • 21
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa M, Goto S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000;28:27-30.
    • (2000) Nucleic Acids Res , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 23
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: Tool for the unification of biology
    • The Gene Ontology Consortium. Gene ontology: tool for the unification of biology. Nat Genet 2000;25:25-29.
    • (2000) Nat Genet , vol.25 , pp. 25-29
  • 28
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • Breiman L. Random forests. Machine Learn 2001;45:5-32.
    • (2001) Machine Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 31
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A. An introduction to variable and feature selection. J Machine Learn Res 2003;5:1157-1182.
    • (2003) J Machine Learn Res , vol.5 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.