메뉴 건너뛰기




Volumn 9, Issue 5, 2013, Pages 422-428

Emerging role of JNK in insulin resistance

Author keywords

Autophagy; Endoplasmic reticulum stress; Inflammation; Insulin resistance; JNK; Mitochondrial dysfunction; Obesity; Oxidative stress

Indexed keywords

2,4 THIAZOLIDINEDIONE DERIVATIVE; CATECHIN; CYCLOSPORIN; EXENDIN 4; METFORMIN; STRESS ACTIVATED PROTEIN KINASE;

EID: 84882758157     PISSN: 15733998     EISSN: 18756417     Source Type: Journal    
DOI: 10.2174/15733998113099990074     Document Type: Review
Times cited : (40)

References (115)
  • 1
    • 33847754623 scopus 로고    scopus 로고
    • The JNK signal transduction pathway
    • Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Cell Biol 2007; 19: 142-9.
    • (2007) Curr Opin Cell Biol , vol.19 , pp. 142-149
    • Weston, C.R.1    Davis, R.J.2
  • 2
    • 0034751858 scopus 로고    scopus 로고
    • Serine phosphorylation of insulin receptor substrate-1: A novel target for the reversal of insulin resistance
    • Sykiotis GP, Papavassiliou AG. Serine phosphorylation of insulin receptor substrate-1: a novel target for the reversal of insulin resistance. Mol Endocrinol 2001; 15: 1864-9.
    • (2001) Mol Endocrinol , vol.15 , pp. 1864-1869
    • Sykiotis, G.P.1    Papavassiliou, A.G.2
  • 4
    • 70449724835 scopus 로고    scopus 로고
    • Cellular mechanisms of insulin resistance: Role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation
    • Tanti JF, Jager J. Cellular mechanisms of insulin resistance: role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 2009; 9: 753-62.
    • (2009) Curr Opin Pharmacol , vol.9 , pp. 753-762
    • Tanti, J.F.1    Jager, J.2
  • 5
    • 77956185248 scopus 로고    scopus 로고
    • CJun NH2-terminal kinase 1 (JNK1): Roles in metabolic regulation of insulin resistance
    • Sabio G, Davis RJ. cJun NH2-terminal kinase 1 (JNK1): roles in metabolic regulation of insulin resistance. Trends Biochem Sci 2010; 35: 490-6.
    • (2010) Trends Biochem Sci , vol.35 , pp. 490-496
    • Sabio, G.1    Davis, R.J.2
  • 7
    • 77951918926 scopus 로고    scopus 로고
    • Macrophages, inflammation, and insulin resistance
    • Olefsky JM, Glass CK. Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 2010; 72: 219-46.
    • (2010) Annu Rev Physiol , vol.72 , pp. 219-246
    • Olefsky, J.M.1    Glass, C.K.2
  • 9
    • 14644427890 scopus 로고    scopus 로고
    • Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB
    • Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NFkappaB. Nat Med 2005; 11: 183-90.
    • (2005) Nat Med , vol.11 , pp. 183-190
    • Cai, D.1    Yuan, M.2    Frantz, D.F.3
  • 10
    • 0030028606 scopus 로고    scopus 로고
    • The expression of TNF alpha by human muscle. Relationship to insulin resistance
    • Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle. Relationship to insulin resistance. J Clin Invest 1996; 97: 1111-6.
    • (1996) J Clin Invest , vol.97 , pp. 1111-1116
    • Saghizadeh, M.1    Ong, J.M.2    Garvey, W.T.3    Henry, R.R.4    Kern, P.A.5
  • 11
    • 0035979775 scopus 로고    scopus 로고
    • Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta
    • Yuan M, Konstantopoulos N, Lee J, et al. Reversal of obesity-and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science 2001; 293: 1673-7.
    • (2001) Science , vol.293 , pp. 1673-1677
    • Yuan, M.1    Konstantopoulos, N.2    Lee, J.3
  • 12
    • 0037153158 scopus 로고    scopus 로고
    • A central role for JNK in obesity and insulin resistance
    • Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-6.
    • (2002) Nature , vol.420 , pp. 333-336
    • Hirosumi, J.1    Tuncman, G.2    Chang, L.3
  • 13
    • 34347369726 scopus 로고    scopus 로고
    • Hypoglycemic action of thiazolidinediones/ peroxisome proliferator-activated receptor gamma by inhibition of the c-Jun NH2-terminal kinase pathway
    • Diaz-Delfin J, Morales M, Caelles C. Hypoglycemic action of thiazolidinediones/ peroxisome proliferator-activated receptor gamma by inhibition of the c-Jun NH2-terminal kinase pathway. Diabetes 2007; 56: 1865-71.
    • (2007) Diabetes , vol.56 , pp. 1865-1871
    • Diaz-Delfin, J.1    Morales, M.2    Caelles, C.3
  • 14
    • 34547602916 scopus 로고    scopus 로고
    • Loss-offunction mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance
    • Tsukumo DM, Carvalho-Filho MA, Carvalheira JB, et al. Loss-offunction mutation in Toll-like receptor 4 prevents diet-induced obesity and insulin resistance. Diabetes 2007; 56: 1986-98.
    • (2007) Diabetes , vol.56 , pp. 1986-1998
    • Tsukumo, D.M.1    Carvalho-Filho, M.A.2    Carvalheira, J.B.3
  • 16
    • 34250899722 scopus 로고    scopus 로고
    • Signal integration in the endoplasmic reticulum unfolded protein response
    • Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 2007; 8: 519-29.
    • (2007) Nat Rev Mol Cell Biol , vol.8 , pp. 519-529
    • Ron, D.1    Walter, P.2
  • 17
    • 5644231992 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes
    • Ozcan U, Cao Q, Yilmaz E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457-61.
    • (2004) Science , vol.306 , pp. 457-461
    • Ozcan, U.1    Cao, Q.2    Yilmaz, E.3
  • 18
    • 33748069813 scopus 로고    scopus 로고
    • Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes
    • Ozcan U, Yilmaz E, Ozcan L, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science 2006; 313: 1137-40.
    • (2006) Science , vol.313 , pp. 1137-1140
    • Ozcan, U.1    Yilmaz, E.2    Ozcan, L.3
  • 19
    • 39149104320 scopus 로고    scopus 로고
    • The role for endoplasmic reticulum stress in diabetes mellitus
    • Eizirik DL, Cardozo AK, Cnop M. The role for endoplasmic reticulum stress in diabetes mellitus. Endocr Rev 2008; 29: 42-61.
    • (2008) Endocr Rev , vol.29 , pp. 42-61
    • Eizirik, D.L.1    Cardozo, A.K.2    Cnop, M.3
  • 21
    • 0034723235 scopus 로고    scopus 로고
    • Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1
    • Urano F, Wang X, Bertolotti A, et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 2000; 287: 664-6.
    • (2000) Science , vol.287 , pp. 664-666
    • Urano, F.1    Wang, X.2    Bertolotti, A.3
  • 22
    • 0142059951 scopus 로고    scopus 로고
    • XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response
    • Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol 2003; 23: 7448-59.
    • (2003) Mol Cell Biol , vol.23 , pp. 7448-7459
    • Lee, A.H.1    Iwakoshi, N.N.2    Glimcher, L.H.3
  • 23
    • 52749091008 scopus 로고    scopus 로고
    • Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals
    • Boden G, Duan X, Homko C, et al. Increase in endoplasmic reticulum stress-related proteins and genes in adipose tissue of obese, insulin-resistant individuals. Diabetes 2008; 57: 2438-44.
    • (2008) Diabetes , vol.57 , pp. 2438-2444
    • Boden, G.1    Duan, X.2    Homko, C.3
  • 24
    • 62749178966 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss
    • Gregor MF, Yang L, Fabbrini E, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes 2009; 58: 693-700.
    • (2009) Diabetes , vol.58 , pp. 693-700
    • Gregor, M.F.1    Yang, L.2    Fabbrini, E.3
  • 25
    • 84878218164 scopus 로고    scopus 로고
    • Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress
    • Chan SM, Sun RQ, Zeng XY, et al. Activation of PPARalpha ameliorates hepatic insulin resistance and steatosis in high fructose-fed mice despite increased endoplasmic reticulum stress. Diabetes 2013; 62: 2095-105.
    • (2013) Diabetes , vol.62 , pp. 2095-2105
    • Chan, S.M.1    Sun, R.Q.2    Zeng, X.Y.3
  • 26
    • 34447625413 scopus 로고    scopus 로고
    • Metabolic stress in insulin's target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance
    • Eriksson JW. Metabolic stress in insulin's target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance. FEBS Lett 2007; 581: 3734-42.
    • (2007) FEBS Lett , vol.581 , pp. 3734-3742
    • Eriksson, J.W.1
  • 27
    • 79551470306 scopus 로고    scopus 로고
    • Oxidative stress, insulin signaling, and diabetes
    • Rains JL, Jain SK. Oxidative stress, insulin signaling, and diabetes. Free Radic Biol Med 2011; 50: 567-75.
    • (2011) Free Radic Biol Med , vol.50 , pp. 567-575
    • Rains, J.L.1    Jain, S.K.2
  • 28
    • 33645860825 scopus 로고    scopus 로고
    • Reactive oxygen species have a causal role in multiple forms of insulin resistance
    • Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 2006; 440: 944-8.
    • (2006) Nature , vol.440 , pp. 944-948
    • Houstis, N.1    Rosen, E.D.2    Lander, E.S.3
  • 29
    • 28844461131 scopus 로고    scopus 로고
    • Proposed mechanisms for the induction of insulin resistance by oxidative stress
    • Bloch-Damti A, Bashan N. Proposed mechanisms for the induction of insulin resistance by oxidative stress. Antioxid Redox Signal 2005; 7: 1553-67.
    • (2005) Antioxid Redox Signal , vol.7 , pp. 1553-1567
    • Bloch-Damti, A.1    Bashan, N.2
  • 30
    • 22044443268 scopus 로고    scopus 로고
    • The molecular basis for oxidative stress-induced insulin resistance
    • Evans JL, Maddux BA, Goldfine ID. The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 2005; 7: 1040-52.
    • (2005) Antioxid Redox Signal , vol.7 , pp. 1040-1052
    • Evans, J.L.1    Maddux, B.A.2    Goldfine, I.D.3
  • 32
    • 27444445460 scopus 로고    scopus 로고
    • JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes
    • Nguyen MT, Satoh H, Favelyukis S, et al. JNK and tumor necrosis factor-alpha mediate free fatty acid-induced insulin resistance in 3T3-L1 adipocytes. J Biol Chem 2005; 280: 35361-71.
    • (2005) J Biol Chem , vol.280 , pp. 35361-35371
    • Nguyen, M.T.1    Satoh, H.2    Favelyukis, S.3
  • 33
    • 33750823407 scopus 로고    scopus 로고
    • Saturated fatty acids inhibit induction of insulin gene transcription by JNKmediated phosphorylation of insulin-receptor substrates
    • Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNKmediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci U S A 2006; 103: 16454-9.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 16454-16459
    • Solinas, G.1    Naugler, W.2    Galimi, F.3    Lee, M.S.4    Karin, M.5
  • 34
    • 67649304876 scopus 로고    scopus 로고
    • Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria
    • Nakamura S, Takamura T, Matsuzawa-Nagata N, et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009; 284: 14809-18.
    • (2009) J Biol Chem , vol.284 , pp. 14809-14818
    • Nakamura, S.1    Takamura, T.2    Matsuzawa-Nagata, N.3
  • 35
    • 81055140936 scopus 로고    scopus 로고
    • Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes
    • Iwakami S, Misu H, Takeda T, et al. Concentration-dependent dual effects of hydrogen peroxide on insulin signal transduction in H4IIEC hepatocytes. PLoS One 2011; 6: e27401.
    • (2011) PLoS One , vol.6
    • Iwakami, S.1    Misu, H.2    Takeda, T.3
  • 36
    • 7044230885 scopus 로고    scopus 로고
    • Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide
    • Kaneto H, Nakatani Y, Miyatsuka T, et al. Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide. Nat Med 2004; 10: 1128-32.
    • (2004) Nat Med , vol.10 , pp. 1128-1132
    • Kaneto, H.1    Nakatani, Y.2    Miyatsuka, T.3
  • 37
    • 8544244943 scopus 로고    scopus 로고
    • Modulation of the JNK pathway in liver affects insulin resistance status
    • Nakatani Y, Kaneto H, Kawamori D, et al. Modulation of the JNK pathway in liver affects insulin resistance status. J Biol Chem 2004; 279: 45803-9.
    • (2004) J Biol Chem , vol.279 , pp. 45803-45809
    • Nakatani, Y.1    Kaneto, H.2    Kawamori, D.3
  • 38
    • 34547942526 scopus 로고    scopus 로고
    • Liver-specific knockdown of JNK1 up-regulates proliferator-activated receptor gamma coactivator 1 beta and increases plasma triglyceride despite reduced glucose and insulin levels in diet-induced obese mice
    • Yang R, Wilcox DM, Haasch DL, et al. Liver-specific knockdown of JNK1 up-regulates proliferator-activated receptor gamma coactivator 1 beta and increases plasma triglyceride despite reduced glucose and insulin levels in diet-induced obese mice. J Biol Chem 2007; 282: 22765-74.
    • (2007) J Biol Chem , vol.282 , pp. 22765-22774
    • Yang, R.1    Wilcox, D.M.2    Haasch, D.L.3
  • 39
    • 43849104298 scopus 로고    scopus 로고
    • Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signaling in fat-fed rats: Evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance
    • Vinayagamoorthi R, Bobby Z, Sridhar MG. Antioxidants preserve redox balance and inhibit c-Jun-N-terminal kinase pathway while improving insulin signaling in fat-fed rats: evidence for the role of oxidative stress on IRS-1 serine phosphorylation and insulin resistance. J Endocrinol 2008; 197: 287-96.
    • (2008) J Endocrinol , vol.197 , pp. 287-296
    • Vinayagamoorthi, R.1    Bobby, Z.2    Sridhar, M.G.3
  • 40
    • 84862846889 scopus 로고    scopus 로고
    • Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: The central role of oxidative stress
    • Wang X, Gu C, He W, et al. Glucose oxidase induces insulin resistance via influencing multiple targets in vitro and in vivo: The central role of oxidative stress. Biochimie 2012; 94: 1705-17.
    • (2012) Biochimie , vol.94 , pp. 1705-1717
    • Wang, X.1    Gu, C.2    He, W.3
  • 41
    • 11244320393 scopus 로고    scopus 로고
    • FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK
    • Essers MA, Weijzen S, de Vries-Smits AM, et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. Embo J 2004; 23: 4802-12.
    • (2004) Embo J , vol.23 , pp. 4802-4812
    • Essers, M.A.1    Weijzen, S.2    de Vries-Smits, A.M.3
  • 42
    • 50949102655 scopus 로고    scopus 로고
    • Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator- 1alpha in hepatic insulin resistance
    • Kumashiro N, Tamura Y, Uchida T, et al. Impact of oxidative stress and peroxisome proliferator-activated receptor gamma coactivator- 1alpha in hepatic insulin resistance. Diabetes 2008; 57: 2083-91.
    • (2008) Diabetes , vol.57 , pp. 2083-2091
    • Kumashiro, N.1    Tamura, Y.2    Uchida, T.3
  • 43
    • 79953210362 scopus 로고    scopus 로고
    • Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis
    • Fernandez-Marcos PJ, Auwerx J. Regulation of PGC-1alpha, a nodal regulator of mitochondrial biogenesis. Am J Clin Nutr 2011; 93: 884S-90.
    • (2011) Am J Clin Nutr , vol.93
    • Fernandez-Marcos, P.J.1    Auwerx, J.2
  • 44
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Herzig S, Long F, Jhala US, et al. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 2001; 413: 179-83.
    • (2001) Nature , vol.413 , pp. 179-183
    • Herzig, S.1    Long, F.2    Jhala, U.S.3
  • 45
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
    • Yoon JC, Puigserver P, Chen G, et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413: 131-8.
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1    Puigserver, P.2    Chen, G.3
  • 46
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3
    • Koo SH, Satoh H, Herzig S, et al. PGC-1 promotes insulin resistance in liver through PPAR-alpha-dependent induction of TRB-3. Nat Med 2004; 10: 530-4.
    • (2004) Nat Med , vol.10 , pp. 530-534
    • Koo, S.H.1    Satoh, H.2    Herzig, S.3
  • 47
    • 77956921023 scopus 로고    scopus 로고
    • The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways
    • Gao D, Nong S, Huang X, et al. The effects of palmitate on hepatic insulin resistance are mediated by NADPH Oxidase 3-derived reactive oxygen species through JNK and p38MAPK pathways. J Biol Chem 2010; 285: 29965-73.
    • (2010) J Biol Chem , vol.285 , pp. 29965-29973
    • Gao, D.1    Nong, S.2    Huang, X.3
  • 48
    • 34547502060 scopus 로고    scopus 로고
    • Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes
    • Takamura T, Honda M, Sakai Y, et al. Gene expression profiles in peripheral blood mononuclear cells reflect the pathophysiology of type 2 diabetes. Biochem Biophys Res Commun 2007; 361: 379-84.
    • (2007) Biochem Biophys Res Commun , vol.361 , pp. 379-384
    • Takamura, T.1    Honda, M.2    Sakai, Y.3
  • 49
    • 12344305124 scopus 로고    scopus 로고
    • Mitochondrial dysfunction and type 2 diabetes
    • Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science 2005; 307: 384-7.
    • (2005) Science , vol.307 , pp. 384-387
    • Lowell, B.B.1    Shulman, G.I.2
  • 50
    • 0038025371 scopus 로고    scopus 로고
    • Mitochondrial dysfunction in the elderly: Possible role in insulin resistance
    • Petersen KF, Befroy D, Dufour S, et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003; 300: 1140-2.
    • (2003) Science , vol.300 , pp. 1140-1142
    • Petersen, K.F.1    Befroy, D.2    Dufour, S.3
  • 51
    • 67349265189 scopus 로고    scopus 로고
    • Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans?
    • Dumas JF, Simard G, Flamment M, Ducluzeau PH, Ritz P. Is skeletal muscle mitochondrial dysfunction a cause or an indirect consequence of insulin resistance in humans? Diabetes Metab 2009; 35: 159-67.
    • (2009) Diabetes Metab , vol.35 , pp. 159-167
    • Dumas, J.F.1    Simard, G.2    Flamment, M.3    Ducluzeau, P.H.4    Ritz, P.5
  • 53
    • 0036788293 scopus 로고    scopus 로고
    • Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
    • Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002; 51: 2944-50.
    • (2002) Diabetes , vol.51 , pp. 2944-2950
    • Kelley, D.E.1    He, J.2    Menshikova, E.V.3    Ritov, V.B.4
  • 55
    • 0038054341 scopus 로고    scopus 로고
    • PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
    • Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpharesponsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003; 34: 267-73.
    • (2003) Nat Genet , vol.34 , pp. 267-273
    • Mootha, V.K.1    Lindgren, C.M.2    Eriksson, K.F.3
  • 56
    • 0037477855 scopus 로고    scopus 로고
    • Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1
    • Patti ME, Butte AJ, Crunkhorn S, et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: Potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 2003; 100: 8466-71.
    • (2003) Proc Natl Acad Sci U S A , vol.100 , pp. 8466-8471
    • Patti, M.E.1    Butte, A.J.2    Crunkhorn, S.3
  • 57
    • 34247637323 scopus 로고    scopus 로고
    • Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes
    • Misu H, Takamura T, Matsuzawa N, et al. Genes involved in oxidative phosphorylation are coordinately upregulated with fasting hyperglycaemia in livers of patients with type 2 diabetes. Diabetologia 2007; 50: 268-77.
    • (2007) Diabetologia , vol.50 , pp. 268-277
    • Misu, H.1    Takamura, T.2    Matsuzawa, N.3
  • 58
    • 77953532427 scopus 로고    scopus 로고
    • The mitochondrial proteome: A dynamic functional program in tissues and disease states
    • Balaban RS. The mitochondrial proteome: a dynamic functional program in tissues and disease states. Environ Mol Mutagen 2010; 51: 352-9.
    • (2010) Environ Mol Mutagen , vol.51 , pp. 352-359
    • Balaban, R.S.1
  • 59
    • 33644749330 scopus 로고    scopus 로고
    • Activation of AMPactivated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells
    • Kukidome D, Nishikawa T, Sonoda K, et al. Activation of AMPactivated protein kinase reduces hyperglycemia-induced mitochondrial reactive oxygen species production and promotes mitochondrial biogenesis in human umbilical vein endothelial cells. Diabetes 2006; 55: 120-7.
    • (2006) Diabetes , vol.55 , pp. 120-127
    • Kukidome, D.1    Nishikawa, T.2    Sonoda, K.3
  • 60
    • 9444272216 scopus 로고    scopus 로고
    • Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms
    • Cleasby ME, Dzamko N, Hegarty BD, Cooney GJ, Kraegen EW, Ye JM. Metformin prevents the development of acute lipid-induced insulin resistance in the rat through altered hepatic signaling mechanisms. Diabetes 2004; 53: 3258-66.
    • (2004) Diabetes , vol.53 , pp. 3258-3266
    • Cleasby, M.E.1    Dzamko, N.2    Hegarty, B.D.3    Cooney, G.J.4    Kraegen, E.W.5    Ye, J.M.6
  • 61
    • 85047689659 scopus 로고    scopus 로고
    • Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone
    • Wilson-Fritch L, Nicoloro S, Chouinard M, et al. Mitochondrial remodeling in adipose tissue associated with obesity and treatment with rosiglitazone. J Clin Invest 2004; 114: 1281-9.
    • (2004) J Clin Invest , vol.114 , pp. 1281-1289
    • Wilson-Fritch, L.1    Nicoloro, S.2    Chouinard, M.3
  • 62
    • 24144496019 scopus 로고    scopus 로고
    • Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: A 16-week randomized, doubleblind, placebo-controlled study
    • Lautamaki R, Airaksinen KE, Seppanen M, et al. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, doubleblind, placebo-controlled study. Diabetes 2005; 54: 2787-94.
    • (2005) Diabetes , vol.54 , pp. 2787-2794
    • Lautamaki, R.1    Airaksinen, K.E.2    Seppanen, M.3
  • 63
    • 17844385363 scopus 로고    scopus 로고
    • Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo
    • Bogacka I, Xie H, Bray GA, Smith SR. Pioglitazone induces mitochondrial biogenesis in human subcutaneous adipose tissue in vivo. Diabetes 2005; 54: 1392-9.
    • (2005) Diabetes , vol.54 , pp. 1392-1399
    • Bogacka, I.1    Xie, H.2    Bray, G.A.3    Smith, S.R.4
  • 64
    • 0036300538 scopus 로고    scopus 로고
    • Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha
    • Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes 2002; 51: 2005-11.
    • (2002) Diabetes , vol.51 , pp. 2005-2011
    • Itani, S.I.1    Ruderman, N.B.2    Schmieder, F.3    Boden, G.4
  • 65
    • 0037184925 scopus 로고    scopus 로고
    • Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)- associated phosphatidylinositol 3-kinase activity in muscle
    • Yu C, Chen Y, Cline GW, et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS-1)- associated phosphatidylinositol 3-kinase activity in muscle. J Biol Chem 2002; 277: 50230-6.
    • (2002) J Biol Chem , vol.277 , pp. 50230-50236
    • Yu, C.1    Chen, Y.2    Cline, G.W.3
  • 66
    • 0034903710 scopus 로고    scopus 로고
    • Prevention of fat-induced insulin resistance by salicylate
    • Kim JK, Kim YJ, Fillmore JJ, et al. Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 2001; 108: 437-46.
    • (2001) J Clin Invest , vol.108 , pp. 437-446
    • Kim, J.K.1    Kim, Y.J.2    Fillmore, J.J.3
  • 67
    • 78649660058 scopus 로고    scopus 로고
    • Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: Role of oxidative stress
    • Yuzefovych L, Wilson G, Rachek L. Different effects of oleate vs. palmitate on mitochondrial function, apoptosis, and insulin signaling in L6 skeletal muscle cells: role of oxidative stress. Am J Physiol Endocrinol Metab 2010; 299: E1096-105.
    • (2010) Am J Physiol Endocrinol Metab , vol.299
    • Yuzefovych, L.1    Wilson, G.2    Rachek, L.3
  • 68
    • 56949089426 scopus 로고    scopus 로고
    • Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: A molecular mechanism leading to hepatic insulin resistance
    • Lim JH, Lee HJ, Ho Jung M, Song J. Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal 2009; 21: 169-77.
    • (2009) Cell Signal , vol.21 , pp. 169-177
    • Lim, J.H.1    Lee, H.J.2    Ho Jung, M.3    Song, J.4
  • 69
    • 78649704325 scopus 로고    scopus 로고
    • Autophagy and metabolism
    • Rabinowitz JD, White E. Autophagy and metabolism. Science 2010; 330: 1344-8.
    • (2010) Science , vol.330 , pp. 1344-1348
    • Rabinowitz, J.D.1    White, E.2
  • 70
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
    • Jung HS, Chung KW, Won Kim J, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab 2008; 8: 318-24.
    • (2008) Cell Metab , vol.8 , pp. 318-324
    • Jung, H.S.1    Chung, K.W.2    Won Kim, J.3
  • 71
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Ebato C, Uchida T, Arakawa M, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008; 8: 325-32.
    • (2008) Cell Metab , vol.8 , pp. 325-332
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3
  • 72
    • 77957299576 scopus 로고    scopus 로고
    • Role of autophagy in beta-cell function and mass
    • Hur KY, Jung HS, Lee MS. Role of autophagy in beta-cell function and mass. Diabetes Obes Metab 2010; 12 Suppl 2: 20-6.
    • Diabetes Obes Metab 2010 , vol.12 , Issue.SUPPL. 2 , pp. 20-26
    • Hur, K.Y.1    Jung, H.S.2    Lee, M.S.3
  • 73
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab 2010; 11: 467-78.
    • (2010) Cell Metab , vol.11 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3    Calay, E.S.4    Hotamisligil, G.S.5
  • 74
    • 71449091240 scopus 로고    scopus 로고
    • Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: Inhibition of FoxO1-dependent expression of key autophagy genes by insulin
    • Liu HY, Han J, Cao SY, et al. Hepatic autophagy is suppressed in the presence of insulin resistance and hyperinsulinemia: inhibition of FoxO1-dependent expression of key autophagy genes by insulin. J Biol Chem 2009; 284: 31484-92.
    • (2009) J Biol Chem , vol.284 , pp. 31484-31492
    • Liu, H.Y.1    Han, J.2    Cao, S.Y.3
  • 75
    • 84862309959 scopus 로고    scopus 로고
    • Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: Ameliorating effects of (-)-epigallocatechin-3-gallate
    • Yan J, Feng Z, Liu J, et al. Enhanced autophagy plays a cardinal role in mitochondrial dysfunction in type 2 diabetic Goto-Kakizaki (GK) rats: ameliorating effects of (-)-epigallocatechin-3-gallate. J Nutr Biochem 2012; 23: 716-24.
    • (2012) J Nutr Biochem , vol.23 , pp. 716-724
    • Yan, J.1    Feng, Z.2    Liu, J.3
  • 76
    • 77954251401 scopus 로고    scopus 로고
    • Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes
    • Ost A, Svensson K, Ruishalme I, et al. Attenuated mTOR signaling and enhanced autophagy in adipocytes from obese patients with type 2 diabetes. Mol Med 2010; 16: 235-46.
    • (2010) Mol Med , vol.16 , pp. 235-246
    • Ost, A.1    Svensson, K.2    Ruishalme, I.3
  • 78
    • 49549104494 scopus 로고    scopus 로고
    • Could glucose be a proaging factor?
    • Kassi E, Papavassiliou AG. Could glucose be a proaging factor? J Cell Mol Med 2008; 12: 1194-8.
    • (2008) J Cell Mol Med , vol.12 , pp. 1194-1198
    • Kassi, E.1    Papavassiliou, A.G.2
  • 79
    • 77958484950 scopus 로고    scopus 로고
    • Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway
    • Komiya K, Uchida T, Ueno T, et al. Free fatty acids stimulate autophagy in pancreatic beta-cells via JNK pathway. Biochem Biophys Res Commun 2010; 401: 561-7.
    • (2010) Biochem Biophys Res Commun , vol.401 , pp. 561-567
    • Komiya, K.1    Uchida, T.2    Ueno, T.3
  • 80
    • 33845459165 scopus 로고    scopus 로고
    • Autophagy is activated for cell survival after endoplasmic reticulum stress
    • Ogata M, Hino S, Saito A, et al. Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol Cell Biol 2006; 26: 9220-31.
    • (2006) Mol Cell Biol , vol.26 , pp. 9220-9231
    • Ogata, M.1    Hino, S.2    Saito, A.3
  • 81
    • 63849308518 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress-mediated autophagy/ apoptosis induced by capsaicin (8-methyl-N-vanillyl-6- nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells
    • Oh SH, Lim SC. Endoplasmic reticulum stress-mediated autophagy/ apoptosis induced by capsaicin (8-methyl-N-vanillyl-6- nonenamide) and dihydrocapsaicin is regulated by the extent of c-Jun NH2-terminal kinase/extracellular signal-regulated kinase activation in WI38 lung epithelial fibroblast cells. J Pharmacol Exp Ther 2009; 329: 112-22.
    • (2009) J Pharmacol Exp Ther , vol.329 , pp. 112-122
    • Oh, S.H.1    Lim, S.C.2
  • 82
    • 44949237240 scopus 로고    scopus 로고
    • JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy
    • Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30: 678-88.
    • (2008) Mol Cell , vol.30 , pp. 678-688
    • Wei, Y.1    Pattingre, S.2    Sinha, S.3    Bassik, M.4    Levine, B.5
  • 83
    • 68349110789 scopus 로고    scopus 로고
    • JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy
    • Wu H, Wang MC, Bohmann D. JNK protects Drosophila from oxidative stress by trancriptionally activating autophagy. Mech Dev 2009; 126: 624-37.
    • (2009) Mech Dev , vol.126 , pp. 624-637
    • Wu, H.1    Wang, M.C.2    Bohmann, D.3
  • 84
    • 36448940798 scopus 로고    scopus 로고
    • FoxO3 controls autophagy in skeletal muscle in vivo
    • Mammucari C, Milan G, Romanello V, et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab 2007; 6: 458-71.
    • (2007) Cell Metab , vol.6 , pp. 458-471
    • Mammucari, C.1    Milan, G.2    Romanello, V.3
  • 85
    • 41449113346 scopus 로고    scopus 로고
    • Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor
    • Zhao J, Brault JJ, Schild A, Goldberg AL. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008; 4: 378-80.
    • (2008) Autophagy , vol.4 , pp. 378-380
    • Zhao, J.1    Brault, J.J.2    Schild, A.3    Goldberg, A.L.4
  • 86
    • 17044408768 scopus 로고    scopus 로고
    • JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling
    • Wang MC, Bohmann D, Jasper H. JNK extends life span and limits growth by antagonizing cellular and organism-wide responses to insulin signaling. Cell 2005; 121: 115-25.
    • (2005) Cell , vol.121 , pp. 115-125
    • Wang, M.C.1    Bohmann, D.2    Jasper, H.3
  • 87
    • 80052546811 scopus 로고    scopus 로고
    • Inflammation and cellular stress: A mechanistic link between immune-mediated and metabolically driven pathologies
    • Rath E, Haller D. Inflammation and cellular stress: a mechanistic link between immune-mediated and metabolically driven pathologies. Eur J Nutr 2011; 50: 219-33.
    • (2011) Eur J Nutr , vol.50 , pp. 219-233
    • Rath, E.1    Haller, D.2
  • 88
    • 0029915016 scopus 로고    scopus 로고
    • The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite
    • Viner RI, Huhmer AF, Bigelow DJ, Schoneich C. The oxidative inactivation of sarcoplasmic reticulum Ca(2+)-ATPase by peroxynitrite. Free Radic Res 1996; 24: 243-59.
    • (1996) Free Radic Res , vol.24 , pp. 243-259
    • Viner, R.I.1    Huhmer, A.F.2    Bigelow, D.J.3    Schoneich, C.4
  • 89
    • 0033984036 scopus 로고    scopus 로고
    • Modulation of endoplasmic reticulum-bound cholesterol regulatory enzymes by iron/ascorbate-mediated lipid peroxidation
    • Brunet S, Thibault L, Lepage G, Seidman EG, Dube N, Levy E. Modulation of endoplasmic reticulum-bound cholesterol regulatory enzymes by iron/ascorbate-mediated lipid peroxidation. Free Radic Biol Med 2000; 28: 46-54.
    • (2000) Free Radic Biol Med , vol.28 , pp. 46-54
    • Brunet, S.1    Thibault, L.2    Lepage, G.3    Seidman, E.G.4    Dube, N.5    Levy, E.6
  • 90
    • 35848957485 scopus 로고    scopus 로고
    • Endoplasmic reticulum stress and oxidative stress: A vicious cycle or a double-edged sword?
    • Malhotra JD, Kaufman RJ. Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal 2007; 9: 2277-93.
    • (2007) Antioxid Redox Signal , vol.9 , pp. 2277-2293
    • Malhotra, J.D.1    Kaufman, R.J.2
  • 91
    • 47949099916 scopus 로고    scopus 로고
    • From endoplasmic-reticulum stress to the inflammatory response
    • Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature 2008; 454: 455-62.
    • (2008) Nature , vol.454 , pp. 455-462
    • Zhang, K.1    Kaufman, R.J.2
  • 92
    • 84866129230 scopus 로고    scopus 로고
    • Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice
    • Henstridge DC, Bruce CR, Pang CP, et al. Skeletal muscle-specific overproduction of constitutively activated c-Jun N-terminal kinase (JNK) induces insulin resistance in mice. Diabetologia 2012; 55: 2769-78.
    • (2012) Diabetologia , vol.55 , pp. 2769-2778
    • Henstridge, D.C.1    Bruce, C.R.2    Pang, C.P.3
  • 93
    • 79960898591 scopus 로고    scopus 로고
    • Mitochondria and endoplasmic reticulum: Mitochondriaendoplasmic reticulum interplay in type 2 diabetes pathophysiology
    • Rieusset J. Mitochondria and endoplasmic reticulum: mitochondriaendoplasmic reticulum interplay in type 2 diabetes pathophysiology. Int J Biochem Cell Biol 2011; 43: 1257-62.
    • (2011) Int J Biochem Cell Biol , vol.43 , pp. 1257-1262
    • Rieusset, J.1
  • 94
    • 41949114990 scopus 로고    scopus 로고
    • Role of mitochondrial dysfunction in insulin resistance
    • Kim JA, Wei Y, Sowers JR. Role of mitochondrial dysfunction in insulin resistance. Circ Res 2008; 102: 401-14.
    • (2008) Circ Res , vol.102 , pp. 401-414
    • Kim, J.A.1    Wei, Y.2    Sowers, J.R.3
  • 95
    • 38849199866 scopus 로고    scopus 로고
    • Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice
    • Bonnard C, Durand A, Peyrol S, et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Invest 2008; 118: 789-800.
    • (2008) J Clin Invest , vol.118 , pp. 789-800
    • Bonnard, C.1    Durand, A.2    Peyrol, S.3
  • 96
    • 0346340042 scopus 로고    scopus 로고
    • Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction
    • Krauss S, Zhang CY, Scorrano L, et al. Superoxide-mediated activation of uncoupling protein 2 causes pancreatic beta cell dysfunction. J Clin Invest 2003; 112: 1831-42.
    • (2003) J Clin Invest , vol.112 , pp. 1831-1842
    • Krauss, S.1    Zhang, C.Y.2    Scorrano, L.3
  • 98
    • 0842306477 scopus 로고    scopus 로고
    • The biology of mitochondrial uncoupling proteins
    • Rousset S, Alves-Guerra MC, Mozo J, et al. The biology of mitochondrial uncoupling proteins. Diabetes 2004; 53 Suppl 1: S130-5.
    • Diabetes 2004 , vol.53 , Issue.SUPPL. 1
    • Rousset, S.1    Alves-Guerra, M.C.2    Mozo, J.3
  • 100
    • 56249090667 scopus 로고    scopus 로고
    • Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production
    • Saitoh T, Fujita N, Jang MH, et al. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 2008; 456: 264-8.
    • (2008) Nature , vol.456 , pp. 264-268
    • Saitoh, T.1    Fujita, N.2    Jang, M.H.3
  • 101
    • 78650848689 scopus 로고    scopus 로고
    • The emerging role of autophagy in the pathophysiology of diabetes mellitus
    • Gonzalez CD, Lee MS, Marchetti P, et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011; 7: 2-11.
    • (2011) Autophagy , vol.7 , pp. 2-11
    • Gonzalez, C.D.1    Lee, M.S.2    Marchetti, P.3
  • 102
    • 72549095406 scopus 로고    scopus 로고
    • Regulation mechanisms and signaling pathways of autophagy
    • He C, Klionsky DJ. Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 2009; 43: 67-93.
    • (2009) Annu Rev Genet , vol.43 , pp. 67-93
    • He, C.1    Klionsky, D.J.2
  • 103
    • 27544487938 scopus 로고    scopus 로고
    • JNK: Bridging the insulin signaling and inflammatory pathway
    • Liu G, Rondinone CM. JNK: bridging the insulin signaling and inflammatory pathway. Curr Opin Investig Drugs 2005; 6: 979-87.
    • (2005) Curr Opin Investig Drugs , vol.6 , pp. 979-987
    • Liu, G.1    Rondinone, C.M.2
  • 105
    • 59149084125 scopus 로고    scopus 로고
    • Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes
    • Ijaz A, Tejada T, Catanuto P, et al. Inhibition of C-jun N-terminal kinase improves insulin sensitivity but worsens albuminuria in experimental diabetes. Kidney Int 2009; 75: 381-8.
    • (2009) Kidney Int , vol.75 , pp. 381-388
    • Ijaz, A.1    Tejada, T.2    Catanuto, P.3
  • 106
    • 55949100580 scopus 로고    scopus 로고
    • Identification of a new JNK inhibitor targeting the JNK-JIP interaction site
    • Stebbins JL, De SK, Machleidt T, et al. Identification of a new JNK inhibitor targeting the JNK-JIP interaction site. Proc Natl Acad Sci U S A 2008; 105: 16809-13.
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 16809-16813
    • Stebbins, J.L.1    De, S.K.2    Machleidt, T.3
  • 107
    • 57049105164 scopus 로고    scopus 로고
    • Pharmacological characterization of a small molecule inhibitor of c-Jun kinase
    • Cho H, Black SC, Looper D, et al. Pharmacological characterization of a small molecule inhibitor of c-Jun kinase. Am J Physiol Endocrinol Metab 2008; 295: E1142-51.
    • (2008) Am J Physiol Endocrinol Metab , vol.295
    • Cho, H.1    Black, S.C.2    Looper, D.3
  • 108
    • 84875825054 scopus 로고    scopus 로고
    • The protective effect and underlying mechanism of metformin on neointima formation in fructoseinduced insulin resistant rats
    • Lu J, Ji J, Meng H, et al. The protective effect and underlying mechanism of metformin on neointima formation in fructoseinduced insulin resistant rats. Cardiovasc Diabetol 2013; 12: 58.
    • (2013) Cardiovasc Diabetol , vol.12 , pp. 58
    • Lu, J.1    Ji, J.2    Meng, H.3
  • 109
    • 84855765351 scopus 로고    scopus 로고
    • Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway
    • Jung TW, Lee MW, Lee YJ, Kim SM. Metformin prevents endoplasmic reticulum stress-induced apoptosis through AMPK-PI3K-c-Jun NH2 pathway. Biochem Biophys Res Commun 2012; 417: 147-52.
    • (2012) Biochem Biophys Res Commun , vol.417 , pp. 147-152
    • Jung, T.W.1    Lee, M.W.2    Lee, Y.J.3    Kim, S.M.4
  • 110
    • 84882763389 scopus 로고    scopus 로고
    • Activation in Pancreatic beta-Cells Leads to Glucose Intolerance Caused by Insulin Resistance in Pancreas
    • Lanuza-Masdeu J, Arevalo MI, Vila C, Barbera A, Gomis R, Caelles C. In Vivo JNK Activation in Pancreatic beta-Cells Leads to Glucose Intolerance Caused by Insulin Resistance in Pancreas. Diabetes 2013; 62: 2308-17.
    • (2013) Diabetes , vol.62 , pp. 2308-2317
    • Lanuza-Masdeu, J.1    Arevalo, M.I.2    Vila, C.3    Barbera, A.4    Gomis, R.5    Caelles, C.6    In Vivo, J.N.K.7
  • 111
    • 80051863257 scopus 로고    scopus 로고
    • The Monascus metabolite monascin against TNF-alpha-induced insulin resistance via suppressing PPAR-gamma phosphorylation in C2C12 myotubes
    • Lee BH, Hsu WH, Liao TH, Pan TM. The Monascus metabolite monascin against TNF-alpha-induced insulin resistance via suppressing PPAR-gamma phosphorylation in C2C12 myotubes. Food Chem Toxicol 2011; 49: 2609-17.
    • (2011) Food Chem Toxicol , vol.49 , pp. 2609-2617
    • Lee, B.H.1    Hsu, W.H.2    Liao, T.H.3    Pan, T.M.4
  • 112
    • 80052517174 scopus 로고    scopus 로고
    • Glucagonlike peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis
    • Svegliati-Baroni G, Saccomanno S, Rychlicki C, et al. Glucagonlike peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int 2011; 31: 1285-97.
    • (2011) Liver Int , vol.31 , pp. 1285-1297
    • Svegliati-Baroni, G.1    Saccomanno, S.2    Rychlicki, C.3
  • 113
    • 84876403316 scopus 로고    scopus 로고
    • Cyclosporin A attenuates weight gain and improves glucose tolerance in diet-induced obese mice
    • Jiang M, Wang C, Meng Q, et al. Cyclosporin A attenuates weight gain and improves glucose tolerance in diet-induced obese mice. Mol Cell Endocrinol 2013; 370: 96-102.
    • (2013) Mol Cell Endocrinol , vol.370 , pp. 96-102
    • Jiang, M.1    Wang, C.2    Meng, Q.3
  • 114
    • 84858992662 scopus 로고    scopus 로고
    • Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress
    • Yan J, Zhao Y, Suo S, Liu Y, Zhao B. Green tea catechins ameliorate adipose insulin resistance by improving oxidative stress. Free Radic Biol Med 2012; 52: 1648-57.
    • (2012) Free Radic Biol Med , vol.52 , pp. 1648-1657
    • Yan, J.1    Zhao, Y.2    Suo, S.3    Liu, Y.4    Zhao, B.5
  • 115
    • 84867102899 scopus 로고    scopus 로고
    • Epicatechin prevents TNFalpha-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes
    • Vazquez-Prieto MA, Bettaieb A, Haj FG, Fraga CG, Oteiza PI. (-)- Epicatechin prevents TNFalpha-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch Biochem Biophys 2012; 527: 113-8.
    • (2012) Arch Biochem Biophys , vol.527 , pp. 113-118
    • Vazquez-Prieto, M.A.1    Bettaieb, A.2    Haj, F.G.3    Fraga, C.G.4    Oteiza, P.I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.