-
1
-
-
2342466734
-
Global prevalence of diabetes - estimates for the year 2000 and projections for 2030
-
Wild S., et al. Global prevalence of diabetes - estimates for the year 2000 and projections for 2030. Diabetes Care 2004, 27(5):1047-1053.
-
(2004)
Diabetes Care
, vol.27
, Issue.5
, pp. 1047-1053
-
-
Wild, S.1
-
2
-
-
0035856980
-
Biochemistry and molecular cell biology of diabetic complications
-
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001, 414(6865):813-820.
-
(2001)
Nature
, vol.414
, Issue.6865
, pp. 813-820
-
-
Brownlee, M.1
-
3
-
-
17044386953
-
Type 2 diabetes: principles of pathogenesis and therapy
-
Stumvoll M., Goldstein B.J., van Haeften T.W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet 2005, 365(9467):1333-1346.
-
(2005)
Lancet
, vol.365
, Issue.9467
, pp. 1333-1346
-
-
Stumvoll, M.1
Goldstein, B.J.2
van Haeften, T.W.3
-
4
-
-
12344305124
-
Mitochondrial dysfunction and type 2 diabetes
-
Lowell B.B., Shulmanz G.I. Mitochondrial dysfunction and type 2 diabetes. Science 2005, 307(5708):384-387.
-
(2005)
Science
, vol.307
, Issue.5708
, pp. 384-387
-
-
Lowell, B.B.1
Shulmanz, G.I.2
-
5
-
-
31044433308
-
Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents
-
Morino K., et al. Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents. J Clin Investig 2005, 115(12):3587-3593.
-
(2005)
J Clin Investig
, vol.115
, Issue.12
, pp. 3587-3593
-
-
Morino, K.1
-
6
-
-
0036788293
-
Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes
-
Kelley D.E., et al. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 2002, 51(10):2944-2950.
-
(2002)
Diabetes
, vol.51
, Issue.10
, pp. 2944-2950
-
-
Kelley, D.E.1
-
7
-
-
0038025371
-
Mitochondrial dysfunction in the elderly: possible role in insulin resistance
-
Petersen K.F., et al. Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science 2003, 300(5622):1140-1142.
-
(2003)
Science
, vol.300
, Issue.5622
, pp. 1140-1142
-
-
Petersen, K.F.1
-
8
-
-
1642377274
-
Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes
-
Petersen K.F., et al. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med 2004, 350(7):664-671.
-
(2004)
N Engl J Med
, vol.350
, Issue.7
, pp. 664-671
-
-
Petersen, K.F.1
-
9
-
-
34248141686
-
Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients
-
Befroy D.E., et al. Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 2007, 56(5):1376-1381.
-
(2007)
Diabetes
, vol.56
, Issue.5
, pp. 1376-1381
-
-
Befroy, D.E.1
-
10
-
-
38849199866
-
Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice
-
Bonnard C., et al. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. J Clin Investig 2008, 118(2):789-800.
-
(2008)
J Clin Investig
, vol.118
, Issue.2
, pp. 789-800
-
-
Bonnard, C.1
-
11
-
-
3242745192
-
Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes
-
Tiikkainen M., et al. Effects of rosiglitazone and metformin on liver fat content, hepatic insulin resistance, insulin clearance, and gene expression in adipose tissue in patients with type 2 diabetes. Diabetes 2004, 53(8):2169-2176.
-
(2004)
Diabetes
, vol.53
, Issue.8
, pp. 2169-2176
-
-
Tiikkainen, M.1
-
12
-
-
0033008628
-
An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats
-
Faure P., et al. An insulin sensitizer improves the free radical defense system potential and insulin sensitivity in high fructose-fed rats. Diabetes 1999, 48(2):353-357.
-
(1999)
Diabetes
, vol.48
, Issue.2
, pp. 353-357
-
-
Faure, P.1
-
13
-
-
0029995670
-
Thiazolidinediones in the treatment of insulin resistance and type II diabetes
-
Saltiel A.R., Olefsky J.M. Thiazolidinediones in the treatment of insulin resistance and type II diabetes. Diabetes 1996, 45(12):1661-1669.
-
(1996)
Diabetes
, vol.45
, Issue.12
, pp. 1661-1669
-
-
Saltiel, A.R.1
Olefsky, J.M.2
-
14
-
-
11844290634
-
Antidiabetic drugs and heart failure risk in patients with type 2 diabetes in the U.K primary care setting
-
Maru S., et al. Antidiabetic drugs and heart failure risk in patients with type 2 diabetes in the U.K primary care setting. Diabetes Care 2005, 28(1):20-26.
-
(2005)
Diabetes Care
, vol.28
, Issue.1
, pp. 20-26
-
-
Maru, S.1
-
15
-
-
71849094328
-
Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients
-
Liu J., et al. Targeting mitochondrial biogenesis for preventing and treating insulin resistance in diabetes and obesity: hope from natural mitochondrial nutrients. Adv Drug Deliv Rev 2009, 61(14):1343-1352.
-
(2009)
Adv Drug Deliv Rev
, vol.61
, Issue.14
, pp. 1343-1352
-
-
Liu, J.1
-
16
-
-
21844441151
-
Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease
-
Liu J.K., Ames B.N. Reducing mitochondrial decay with mitochondrial nutrients to delay and treat cognitive dysfunction, Alzheimer's disease, and Parkinson's disease. Nutr Neurosci 2005, 8(2):67-89.
-
(2005)
Nutr Neurosci
, vol.8
, Issue.2
, pp. 67-89
-
-
Liu, J.K.1
Ames, B.N.2
-
17
-
-
36649024590
-
R-alpha-lipoic acid and acetyl-l-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes
-
Shen W., et al. R-alpha-lipoic acid and acetyl-l-carnitine complementarily promote mitochondrial biogenesis in murine 3T3-L1 adipocytes. Diabetologia 2008, 51(1):165-174.
-
(2008)
Diabetologia
, vol.51
, Issue.1
, pp. 165-174
-
-
Shen, W.1
-
18
-
-
46949087413
-
Protective effects of R-alpha-lipoic acid and acetyl-l-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid
-
Shen W., et al. Protective effects of R-alpha-lipoic acid and acetyl-l-carnitine in MIN6 and isolated rat islet cells chronically exposed to oleic acid. J Cell Biochem 2008, 104(4):1232-1243.
-
(2008)
J Cell Biochem
, vol.104
, Issue.4
, pp. 1232-1243
-
-
Shen, W.1
-
19
-
-
48449104125
-
A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats
-
Shen W.L., et al. A combination of nutriments improves mitochondrial biogenesis and function in skeletal muscle of type 2 diabetic Goto-Kakizaki rats. Plos One 2008, 3(6).
-
(2008)
Plos One
, vol.3
, Issue.6
-
-
Shen, W.L.1
-
20
-
-
65249179642
-
Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats
-
Hao J.J., et al. Mitochondrial nutrients improve immune dysfunction in the type 2 diabetic Goto-Kakizaki rats. J Cell Molec Med 2009, 13(4):701-711.
-
(2009)
J Cell Molec Med
, vol.13
, Issue.4
, pp. 701-711
-
-
Hao, J.J.1
-
21
-
-
0038054341
-
PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes
-
Mootha V.K., et al. PGC-1 alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 2003, 34(3):267-273.
-
(2003)
Nat Genet
, vol.34
, Issue.3
, pp. 267-273
-
-
Mootha, V.K.1
-
22
-
-
0037477855
-
Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1
-
Patti M.E., et al. Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci USA 2003, 100(14):8466-8471.
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.14
, pp. 8466-8471
-
-
Patti, M.E.1
-
23
-
-
53549085136
-
Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes
-
Frederiksen C.M., et al. Transcriptional profiling of myotubes from patients with type 2 diabetes: no evidence for a primary defect in oxidative phosphorylation genes. Diabetologia 2008, 51(11):2068-2077.
-
(2008)
Diabetologia
, vol.51
, Issue.11
, pp. 2068-2077
-
-
Frederiksen, C.M.1
-
25
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. Embo J 2008, 27(2):433-446.
-
(2008)
Embo J
, vol.27
, Issue.2
, pp. 433-446
-
-
Twig, G.1
-
26
-
-
35648944317
-
Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase
-
Collins Q.F., et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5'-AMP-activated protein kinase. J Biol Chem 2007, 282(41):30143-30149.
-
(2007)
J Biol Chem
, vol.282
, Issue.41
, pp. 30143-30149
-
-
Collins, Q.F.1
-
27
-
-
33845699279
-
Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1 a and elicits cellular responses in the presence and absence of insulin
-
Anton S., Melville L., Rena G. Epigallocatechin gallate (EGCG) mimics insulin action on the transcription factor FOXO1 a and elicits cellular responses in the presence and absence of insulin. Cell Signal 2007, 19(2):378-383.
-
(2007)
Cell Signal
, vol.19
, Issue.2
, pp. 378-383
-
-
Anton, S.1
Melville, L.2
Rena, G.3
-
28
-
-
33749456308
-
Epigallocatechin gallate supplementation alleviates diabetes in rodents
-
Wolfram S., et al. Epigallocatechin gallate supplementation alleviates diabetes in rodents. J Nutr 2006, 136(10):2512-2518.
-
(2006)
J Nutr
, vol.136
, Issue.10
, pp. 2512-2518
-
-
Wolfram, S.1
-
29
-
-
0037144406
-
Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production
-
Waltner-Law M.E., et al. Epigallocatechin gallate, a constituent of green tea, represses hepatic glucose production. J Biol Chem 2002, 277(38):34933-34940.
-
(2002)
J Biol Chem
, vol.277
, Issue.38
, pp. 34933-34940
-
-
Waltner-Law, M.E.1
-
30
-
-
0010394161
-
-
NIH publication no. 85-23
-
NIH. Principles of laboratory animal care NIH publication no. 85-23. http://www.grants1.nih.gov/grants/olaw/references/phspol.htm.
-
NIH. Principles of laboratory animal care
-
-
-
31
-
-
27744481738
-
HMG-CoA reductase inhibitors do not improve glucose intolerance in spontaneously diabetic Goto-Kakizaki rats
-
Satoh K., et al. HMG-CoA reductase inhibitors do not improve glucose intolerance in spontaneously diabetic Goto-Kakizaki rats. Biol Pharm Bull 2005, 28(11):2092-2095.
-
(2005)
Biol Pharm Bull
, vol.28
, Issue.11
, pp. 2092-2095
-
-
Satoh, K.1
-
32
-
-
33645765312
-
Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress
-
Rolo A.P., Palmeira C.M. Diabetes and mitochondrial function: role of hyperglycemia and oxidative stress. Toxicol Appl Pharmacol 2006, 212(2):167-178.
-
(2006)
Toxicol Appl Pharmacol
, vol.212
, Issue.2
, pp. 167-178
-
-
Rolo, A.P.1
Palmeira, C.M.2
-
33
-
-
40449128961
-
Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3
-
Dokken B.B., et al. Oxidative stress-induced insulin resistance in rat skeletal muscle: role of glycogen synthase kinase-3. Am J Physiol-Endocrinol Metab 2008, 294(3):E615-E621.
-
(2008)
Am J Physiol-Endocrinol Metab
, vol.294
, Issue.3
-
-
Dokken, B.B.1
-
34
-
-
0034643340
-
Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage
-
Nishikawa T., et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000, 404(6779):787-790.
-
(2000)
Nature
, vol.404
, Issue.6779
, pp. 787-790
-
-
Nishikawa, T.1
-
35
-
-
0034329418
-
LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing
-
Kabeya Y., et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. Embo J 2000, 19(21):5720-5728.
-
(2000)
Embo J
, vol.19
, Issue.21
, pp. 5720-5728
-
-
Kabeya, Y.1
-
36
-
-
64549084052
-
Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death
-
Park K.J., et al. Upregulation of Beclin-1 expression and phosphorylation of Bcl-2 and p53 are involved in the JNK-mediated autophagic cell death. Biochem Biophys Res Commun 2009, 382(4):726-729.
-
(2009)
Biochem Biophys Res Commun
, vol.382
, Issue.4
, pp. 726-729
-
-
Park, K.J.1
-
37
-
-
53149122044
-
ERK and JNK mediate TNF alpha-induced p53 activation in apoptotic and autophagic L929 cell death
-
Cheng Y., et al. ERK and JNK mediate TNF alpha-induced p53 activation in apoptotic and autophagic L929 cell death. Biochem Biophys Res Commun 2008, 376(3):483-488.
-
(2008)
Biochem Biophys Res Commun
, vol.376
, Issue.3
, pp. 483-488
-
-
Cheng, Y.1
-
38
-
-
33644552417
-
Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology
-
Yu T.Z., Robotham J.L., Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci USA 2006, 103(8):2653-2658.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, Issue.8
, pp. 2653-2658
-
-
Yu, T.Z.1
Robotham, J.L.2
Yoon, Y.3
-
39
-
-
77955298346
-
Manganese superoxide dismutase versus p53: the mitochondrial center
-
Holley A.K., Dhar S.K., St Clair D.K. Manganese superoxide dismutase versus p53: the mitochondrial center. Ann N Y Acad Sci 2010, 1201:72-78.
-
(2010)
Ann N Y Acad Sci
, vol.1201
, pp. 72-78
-
-
Holley, A.K.1
Dhar, S.K.2
St Clair, D.K.3
-
40
-
-
78149361937
-
Manganese superoxide dismutase vs p53 Regulation of mitochondrial ROS
-
Holley A.K., Dhar S.K., St Clair D.K. Manganese superoxide dismutase vs p53 Regulation of mitochondrial ROS. Mitochondrion 2010, 10(6):649-661.
-
(2010)
Mitochondrion
, vol.10
, Issue.6
, pp. 649-661
-
-
Holley, A.K.1
Dhar, S.K.2
St Clair, D.K.3
-
41
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132(1):27-42.
-
(2008)
Cell
, vol.132
, Issue.1
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
42
-
-
52749094770
-
Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
-
Jung H.S., et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metabolism 2008, 8(4):318-324.
-
(2008)
Cell Metabolism
, vol.8
, Issue.4
, pp. 318-324
-
-
Jung, H.S.1
-
43
-
-
34047179973
-
Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy
-
Kaniuk N.A., et al. Ubiquitinated-protein aggregates form in pancreatic beta-cells during diabetes-induced oxidative stress and are regulated by autophagy. Diabetes 2007, 56(4):930-939.
-
(2007)
Diabetes
, vol.56
, Issue.4
, pp. 930-939
-
-
Kaniuk, N.A.1
-
44
-
-
52749093177
-
Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
-
Ebato C., et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab 2008, 8(4):325-332.
-
(2008)
Cell Metab
, vol.8
, Issue.4
, pp. 325-332
-
-
Ebato, C.1
-
45
-
-
0000906170
-
Induction of autophagy and inhibition of tumorigenesis by beclin 1
-
Liang X.H., et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999, 402(6762):672-676.
-
(1999)
Nature
, vol.402
, Issue.6762
, pp. 672-676
-
-
Liang, X.H.1
-
46
-
-
37349067228
-
Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells
-
Chen Y., et al. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2008, 15(1):171-182.
-
(2008)
Cell Death Differ
, vol.15
, Issue.1
, pp. 171-182
-
-
Chen, Y.1
-
47
-
-
76749157966
-
MiR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway
-
Li J., et al. miR-30 regulates mitochondrial fission through targeting p53 and the dynamin-related protein-1 pathway. PLoS Genet 2010, 6(1):e1000795.
-
(2010)
PLoS Genet
, vol.6
, Issue.1
-
-
Li, J.1
-
48
-
-
0021994683
-
Effects of insulin on peripheral and splanchnic glucose-metabolism in noninsulin-dependent (type-II) diabetes-mellitus
-
Defronzo R.A., et al. Effects of insulin on peripheral and splanchnic glucose-metabolism in noninsulin-dependent (type-II) diabetes-mellitus. J Clin Invest 1985, 76(1):149-155.
-
(1985)
J Clin Invest
, vol.76
, Issue.1
, pp. 149-155
-
-
Defronzo, R.A.1
-
49
-
-
33845542745
-
Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction
-
Morino K., Petersen K.F., Shulman G.I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction. Diabetes 2006, 55:S9-15.
-
(2006)
Diabetes
, vol.55
-
-
Morino, K.1
Petersen, K.F.2
Shulman, G.I.3
-
50
-
-
67650815430
-
Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans
-
Anderson E.J., et al. Mitochondrial H2O2 emission and cellular redox state link excess fat intake to insulin resistance in both rodents and humans. J Clin Invest 2009, 119(3):573-581.
-
(2009)
J Clin Invest
, vol.119
, Issue.3
, pp. 573-581
-
-
Anderson, E.J.1
-
51
-
-
67649304876
-
Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria
-
Nakamura S., et al. Palmitate induces insulin resistance in H4IIEC3 hepatocytes through reactive oxygen species produced by mitochondria. J Biol Chem 2009, 284(22):14809-14818.
-
(2009)
J Biol Chem
, vol.284
, Issue.22
, pp. 14809-14818
-
-
Nakamura, S.1
-
52
-
-
0034979379
-
Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells
-
Park K.S., et al. Depletion of mitochondrial DNA alters glucose metabolism in SK-Hep1 cells. Am J Physiol-Endocrinol Metab 2001, 280(6):E1007-E1014.
-
(2001)
Am J Physiol-Endocrinol Metab
, vol.280
, Issue.6
-
-
Park, K.S.1
-
53
-
-
77951737783
-
Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations
-
Chen H.C., et al. Mitochondrial fusion is required for mtDNA stability in skeletal muscle and tolerance of mtDNA mutations. Cell 2010, 141:280-289.
-
(2010)
Cell
, vol.141
, pp. 280-289
-
-
Chen, H.C.1
|