메뉴 건너뛰기




Volumn 3, Issue 11-12, 2012, Pages 678-696

Back to the origin: Reconsidering replication, transcription, epigenetics, and cell cycle control

Author keywords

Checkpoints; Epigenetics; Origin; Replication; Replicon; Transcription

Indexed keywords

CYTOSINE;

EID: 84880473591     PISSN: 19476019     EISSN: 19476027     Source Type: Journal    
DOI: 10.1177/1947601912474891     Document Type: Article
Times cited : (15)

References (276)
  • 1
    • 0010756724 scopus 로고
    • Brenner S. [On the regulation of DNA synthesis in bacteria: The hypothesis of the replicon]
    • Jacob F, Brenner S. [On the regulation of DNA synthesis in bacteria: the hypothesis of the replicon]. C R Hebd Seances Acad Sci. 1963;256:298-300
    • (1963) C R Hebd Seances Acad Sci , vol.256 , pp. 298-300
    • Jacob, F.1
  • 2
    • 77957168933 scopus 로고    scopus 로고
    • Eukaryotic DNA replication origins: Many choices for appropriate answers
    • Mechali M. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat Rev Mol Cell Biol. 2010;11:728-738
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 728-738
    • Mechali, M.1
  • 3
    • 0035997368 scopus 로고    scopus 로고
    • DNA replication in eukaryotic cells
    • Bell SP, Dutta A. DNA replication in eukaryotic cells. Annu Rev Biochem. 2002;71:333-374
    • (2002) Annu Rev Biochem , vol.71 , pp. 333-374
    • Bell, S.P.1    Dutta, A.2
  • 4
    • 0033472810 scopus 로고    scopus 로고
    • Replication origins of mammalian chromosomes: The happy few
    • Todorovic V, Falaschi A, Giacca M. Replication origins of mammalian chromosomes: the happy few. Front Biosci. 1999;4:D859-D868
    • (1999) Front Biosci , vol.4
    • Todorovic, V.1    Falaschi, A.2    Giacca, M.3
  • 5
    • 30444436433 scopus 로고    scopus 로고
    • Transcription factors and DNA replication origin selection
    • Kohzaki H, Murakami Y. Transcription factors and DNA replication origin selection. Bioessays. 2005;27:1107-1116
    • (2005) Bioessays , vol.27 , pp. 1107-1116
    • Kohzaki, H.1    Murakami, Y.2
  • 6
    • 0033043743 scopus 로고    scopus 로고
    • Replication origins in metazoan chromosomes: Fact or fiction?
    • DePamphilis ML. Replication origins in metazoan chromosomes: fact or fiction? Bioessays. 1999;21:5-16
    • (1999) Bioessays , vol.21 , pp. 5-16
    • Depamphilis, M.L.1
  • 7
    • 0031056052 scopus 로고    scopus 로고
    • CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication
    • Zou L, Mitchell J, Stillman B. CDC45, a novel yeast gene that functions with the origin recognition complex and Mcm proteins in initiation of DNA replication. Mol Cell Biol. 1997;17:553-563
    • (1997) Mol Cell Biol , vol.17 , pp. 553-563
    • Zou, L.1    Mitchell, J.2    Stillman, B.3
  • 8
    • 0034671935 scopus 로고    scopus 로고
    • Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts
    • Walter JC. Evidence for sequential action of cdc7 and cdk2 protein kinases during initiation of DNA replication in Xenopus egg extracts. J Biol Chem. 2000;275:39773-39778
    • (2000) J Biol Chem , vol.275 , pp. 39773-39778
    • Walter, J.C.1
  • 9
    • 0033569906 scopus 로고    scopus 로고
    • Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication
    • Jiang W, McDonald D, Hope TJ, Hunter T. Mammalian Cdc7-Dbf4 protein kinase complex is essential for initiation of DNA replication. EMBO J. 1999;18:5703-5713
    • (1999) EMBO J , vol.18 , pp. 5703-5713
    • Jiang, W.1    McDonald, D.2    Hope, T.J.3    Hunter, T.4
  • 10
    • 39549110810 scopus 로고    scopus 로고
    • Preventing DNA over-replication: A Cdk perspective
    • Porter AC. Preventing DNA over-replication: a Cdk perspective. Cell Div. 2008;3:3
    • (2008) Cell Div , vol.3 , pp. 3
    • Porter, A.C.1
  • 11
    • 33947127410 scopus 로고    scopus 로고
    • Strength in numbers: Preventing rereplication via multiple mechanisms in eukaryotic cells
    • Arias EE, Walter JC. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 2007;21:497-518
    • (2007) Genes Dev , vol.21 , pp. 497-518
    • Arias, E.E.1    Walter, J.C.2
  • 12
    • 62649109311 scopus 로고    scopus 로고
    • Metazoan origins of DNA replication: Regulation through dynamic chromatin structure
    • Rampakakis E, Arvanitis DN, Di Paola D, Zannis-Hadjopoulos M. Metazoan origins of DNA replication: regulation through dynamic chromatin structure. J Cell Biochem. 2009;106:512-520
    • (2009) J Cell Biochem , vol.106 , pp. 512-520
    • Rampakakis, E.1    Arvanitis, D.N.2    Di Paola, D.3    Zannis-Hadjopoulos, M.4
  • 13
    • 40549108563 scopus 로고    scopus 로고
    • Cell cycle regulation of DNA replication
    • Sclafani RA, Holzen TM. Cell cycle regulation of DNA replication. Annu Rev Genet. 2007;41: 237-280
    • (2007) Annu Rev Genet , vol.41 , pp. 237-280
    • Sclafani, R.A.1    Holzen, T.M.2
  • 14
    • 26244431903 scopus 로고    scopus 로고
    • Right place, right time, and only once: Replication initiation in metazoans
    • Machida YJ, Hamlin JL, Dutta A. Right place, right time, and only once: replication initiation in metazoans. Cell. 2005;123:13-24
    • (2005) Cell , vol.123 , pp. 13-24
    • Machida, Y.J.1    Hamlin, J.L.2    Dutta, A.3
  • 15
    • 18344384065 scopus 로고    scopus 로고
    • DNA replication and progression through S phase
    • Takeda DY, Dutta A. DNA replication and progression through S phase. Oncogene. 2005;24:2827-2843
    • (2005) Oncogene , vol.24 , pp. 2827-2843
    • Takeda, D.Y.1    Dutta, A.2
  • 16
    • 0035963372 scopus 로고    scopus 로고
    • Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms
    • Nguyen VQ, Co C, Li JJ. Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature. 2001;411:1068-1073
    • (2001) Nature , vol.411 , pp. 1068-1073
    • Nguyen, V.Q.1    Co, C.2    Li, J.J.3
  • 17
    • 0029807797 scopus 로고    scopus 로고
    • Once and only once upon a time: Specifying and regulating origins of DNA replication in eukaryotic cells
    • Diffley JF. Once and only once upon a time: specifying and regulating origins of DNA replication in eukaryotic cells. Genes Dev. 1996;10:2819-2830
    • (1996) Genes Dev , vol.10 , pp. 2819-2830
    • Diffley, J.F.1
  • 18
    • 33745264366 scopus 로고    scopus 로고
    • The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks
    • Narayanan V, Mieczkowski PA, Kim HM, Petes TD, Lobachev KS. The pattern of gene amplification is determined by the chromosomal location of hairpin-capped breaks. Cell. 2006;125:1283-1296
    • (2006) Cell , vol.125 , pp. 1283-1296
    • Narayanan, V.1    Mieczkowski, P.A.2    Kim, H.M.3    Petes, T.D.4    Lobachev, K.S.5
  • 19
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes M, Cotta-Ramusino C, Pellicioli A, et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature. 2001;412:557-561
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1    Cotta-Ramusino, C.2    Pellicioli, A.3
  • 21
    • 75749150810 scopus 로고    scopus 로고
    • Direct restart of a replication fork stalled by a head-on RNA polymerase
    • Pomerantz RT, O'Donnell M. Direct restart of a replication fork stalled by a head-on RNA polymerase. Science. 2010;327:590-592
    • (2010) Science , vol.327 , pp. 590-592
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 22
    • 59249105978 scopus 로고    scopus 로고
    • A microhomology-mediated break-induced replication model for the origin of human copy number variation
    • e1000327
    • Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009;5:e1000327
    • (2009) PLoS Genet , vol.5
    • Hastings, P.J.1    Ira, G.2    Lupski, J.R.3
  • 23
    • 61549098717 scopus 로고    scopus 로고
    • Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants
    • Arlt MF, Mulle JG, Schaibley VM, et al. Replication stress induces genome-wide copy number changes in human cells that resemble polymorphic and pathogenic variants. Am J Hum Genet. 2009;84:339-350
    • (2009) Am J Hum Genet , vol.84 , pp. 339-350
    • Arlt, M.F.1    Mulle, J.G.2    Schaibley, V.M.3
  • 25
    • 0037567268 scopus 로고    scopus 로고
    • Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes
    • Zou L, Elledge SJ. Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science. 2003;300:1542-1548
    • (2003) Science , vol.300 , pp. 1542-1548
    • Zou, L.1    Elledge, S.J.2
  • 26
    • 77649165394 scopus 로고    scopus 로고
    • Maintaining genome stability at the replication fork
    • Branzei D, Foiani M. Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol. 2010;11:208-219
    • (2010) Nat Rev Mol Cell Biol , vol.11 , pp. 208-219
    • Branzei, D.1    Foiani, M.2
  • 27
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo JM, Lopes M, Foiani M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science. 2002;297:599-602
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 28
    • 81955167432 scopus 로고    scopus 로고
    • DNA replication: Failures and inverted fusions
    • Carr AM, Paek AL, Weinert T. DNA replication: failures and inverted fusions. Semin Cell Dev Biol. 2011;22:866-874
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 866-874
    • Carr, A.M.1    Paek, A.L.2    Weinert, T.3
  • 29
    • 69649094480 scopus 로고    scopus 로고
    • Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes
    • Lange J, Skaletsky H, van Daalen SK, et al. Isodicentric Y chromosomes and sex disorders as byproducts of homologous recombination that maintains palindromes. Cell. 2009;138:855-869
    • (2009) Cell , vol.138 , pp. 855-869
    • Lange, J.1    Skaletsky, H.2    van Daalen, S.K.3
  • 30
    • 39449096135 scopus 로고    scopus 로고
    • Genome instability: A mechanistic view of its causes and consequences
    • Aguilera A, Gomez-Gonzalez B. Genome instability: a mechanistic view of its causes and consequences. Nat Rev Genet. 2008;9:204-217
    • (2008) Nat Rev Genet , vol.9 , pp. 204-217
    • Aguilera, A.1    Gomez-Gonzalez, B.2
  • 31
    • 70549097977 scopus 로고    scopus 로고
    • The replication fork's five degrees of freedom, their failure and genome rearrangements
    • Weinert T, Kaochar S, Jones H, Paek A, Clark AJ. The replication fork's five degrees of freedom, their failure and genome rearrangements. Curr Opin Cell Biol. 2009;21:778-784
    • (2009) Curr Opin Cell Biol , vol.21 , pp. 778-784
    • Weinert, T.1    Kaochar, S.2    Jones, H.3    Paek, A.4    Clark, A.J.5
  • 32
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner RD, Putnam CD, Myung K. Maintenance of genome stability in Saccharomyces cerevisiae. Science. 2002;297:552-557
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 33
    • 33748333194 scopus 로고    scopus 로고
    • Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome
    • Sharp AJ, Hansen S, Selzer RR, et al. Discovery of previously unidentified genomic disorders from the duplication architecture of the human genome. Nat Genet. 2006;38:1038-1042
    • (2006) Nat Genet , vol.38 , pp. 1038-1042
    • Sharp, A.J.1    Hansen, S.2    Selzer, R.R.3
  • 34
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee JA, Carvalho CM, Lupski JR. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell. 2007;131:1235-1247
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.M.2    Lupski, J.R.3
  • 35
    • 68649123353 scopus 로고    scopus 로고
    • Duplication hotspots, rare genomic disorders, and common disease
    • Mefford HC, Eichler EE. Duplication hotspots, rare genomic disorders, and common disease. Curr Opin Genet Dev. 2009;19:196-204
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 196-204
    • Mefford, H.C.1    Eichler, E.E.2
  • 36
    • 0038730929 scopus 로고    scopus 로고
    • A central role for DNA replication forks in checkpoint activation and response
    • Tercero JA, Longhese MP, Diffley JF. A central role for DNA replication forks in checkpoint activation and response. Mol Cell. 2003;11:1323-1336
    • (2003) Mol Cell , vol.11 , pp. 1323-1336
    • Tercero, J.A.1    Longhese, M.P.2    Diffley, J.F.3
  • 37
    • 0037264074 scopus 로고    scopus 로고
    • Genome rearrangements in mammalian evolution: Lessons from human and mouse genomes
    • Pevzner P, Tesler G. Genome rearrangements in mammalian evolution: lessons from human and mouse genomes. Genome Res. 2003;13:37-45
    • (2003) Genome Res , vol.13 , pp. 37-45
    • Pevzner, P.1    Tesler, G.2
  • 38
    • 66149120624 scopus 로고    scopus 로고
    • Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching
    • Carvalho CM, Zhang F, Liu P, et al. Complex rearrangements in patients with duplications of MECP2 can occur by fork stalling and template switching. Hum Mol Genet. 2009;18:2188-2203
    • (2009) Hum Mol Genet , vol.18 , pp. 2188-2203
    • Carvalho, C.M.1    Zhang, F.2    Liu, P.3
  • 41
    • 84855319060 scopus 로고    scopus 로고
    • Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene
    • Ankala A, Kohn JN, Hegde A, et al. Aberrant firing of replication origins potentially explains intragenic nonrecurrent rearrangements within genes, including the human DMD gene. Genome Res. 2012;22:25-34
    • (2012) Genome Res , vol.22 , pp. 25-34
    • Ankala, A.1    Kohn, J.N.2    Hegde, A.3
  • 42
    • 67649878596 scopus 로고    scopus 로고
    • The DNA replication FoSTeS/ MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans
    • Zhang F, Khajavi M, Connolly AM, Towne CF, Batish SD, Lupski JR. The DNA replication FoSTeS/ MMBIR mechanism can generate genomic, genic and exonic complex rearrangements in humans. Nat Genet. 2009;41:849-853
    • (2009) Nat Genet , vol.41 , pp. 849-853
    • Zhang, F.1    Khajavi, M.2    Connolly, A.M.3    Towne, C.F.4    Batish, S.D.5    Lupski, J.R.6
  • 44
    • 0026463867 scopus 로고
    • Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF
    • Hwang DS, Kornberg A. Opening of the replication origin of Escherichia coli by DnaA protein with protein HU or IHF. J Biol Chem. 1992;267:23083-23086
    • (1992) J Biol Chem , vol.267 , pp. 23083-23086
    • Hwang, D.S.1    Kornberg, A.2
  • 45
    • 0035812742 scopus 로고    scopus 로고
    • Making sense of eukaryotic DNA replication origins
    • Gilbert DM. Making sense of eukaryotic DNA replication origins. Science. 2001;294:96-100
    • (2001) Science , vol.294 , pp. 96-100
    • Gilbert, D.M.1
  • 46
    • 33746860263 scopus 로고    scopus 로고
    • Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling
    • Erzberger JP, Mott ML, Berger JM. Structural basis for ATP-dependent DnaA assembly and replication-origin remodeling. Nat Struct Mol Biol. 2006;13:676-683
    • (2006) Nat Struct Mol Biol , vol.13 , pp. 676-683
    • Erzberger, J.P.1    Mott, M.L.2    Berger, J.M.3
  • 48
    • 33645055663 scopus 로고    scopus 로고
    • Replication-associated gene dosage effects shape the genomes of fastgrowing bacteria but only for transcription and translation genes
    • Couturier E, Rocha EP. Replication-associated gene dosage effects shape the genomes of fastgrowing bacteria but only for transcription and translation genes. Mol Microbiol. 2006;59:1506-1518
    • (2006) Mol Microbiol , vol.59 , pp. 1506-1518
    • Couturier, E.1    Rocha, E.P.2
  • 49
    • 0042667165 scopus 로고    scopus 로고
    • Essentiality, not expressiveness, drives gene-strand bias in bacteria
    • Rocha EP, Danchin A. Essentiality, not expressiveness, drives gene-strand bias in bacteria. Nat Genet. 2003;34:377-378
    • (2003) Nat Genet , vol.34 , pp. 377-378
    • Rocha, E.P.1    Danchin, A.2
  • 50
    • 0022413030 scopus 로고
    • Characterization and properties of very large inversions of the E. Coli Chromosome Along the Origin-to-terminus Axis
    • Louarn JM, Bouche JP, Legendre F, Louarn J, Patte J. Characterization and properties of very large inversions of the E. coli chromosome along the origin-to-terminus axis. Mol Gen Genet. 1985;201:467-476
    • (1985) Mol Gen Genet , vol.201 , pp. 467-476
    • Louarn, J.M.1    Bouche, J.P.2    Legendre, F.3    Louarn, J.4    Patte, J.5
  • 51
    • 0030924440 scopus 로고    scopus 로고
    • The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence
    • Theis JF, Newlon CS. The ARS309 chromosomal replicator of Saccharomyces cerevisiae depends on an exceptional ARS consensus sequence. Proc Natl Acad Sci U S A. 1997;94:10786-10791
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 10786-10791
    • Theis, J.F.1    Newlon, C.S.2
  • 53
    • 0346484153 scopus 로고
    • Autonomously replicating sequences in Saccharomyces cerevisiae
    • Chan CS, Tye BK. Autonomously replicating sequences in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 1980;77:6329-6333
    • (1980) Proc Natl Acad Sci U S A , vol.77 , pp. 6329-6333
    • Chan, C.S.1    Tye, B.K.2
  • 54
    • 33746101049 scopus 로고    scopus 로고
    • Genome-wide identification of replication origins in yeast by comparative genomics
    • Nieduszynski CA, Knox Y, Donaldson AD. Genome-wide identification of replication origins in yeast by comparative genomics. Genes Dev. 2006;20:1874-1879
    • (2006) Genes Dev , vol.20 , pp. 1874-1879
    • Nieduszynski, C.A.1    Knox, Y.2    Donaldson, A.D.3
  • 55
    • 78049415820 scopus 로고    scopus 로고
    • Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure
    • Berbenetz NM, Nislow C, Brown GW. Diversity of eukaryotic DNA replication origins revealed by genome-wide analysis of chromatin structure. PLoS Genet. 2010;6:e1001092
    • (2010) PLoS Genet , vol.6
    • Berbenetz, N.M.1    Nislow, C.2    Brown, G.W.3
  • 57
    • 0028346546 scopus 로고
    • Initiation preference at a yeast origin of replication
    • Brewer BJ, Fangman WL. Initiation preference at a yeast origin of replication. Proc Natl Acad Sci U S A. 1994;91:3418-3422
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 3418-3422
    • Brewer, B.J.1    Fangman, W.L.2
  • 58
    • 0345369732 scopus 로고    scopus 로고
    • Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1
    • Hu YF, Hao ZL, Li R. Chromatin remodeling and activation of chromosomal DNA replication by an acidic transcriptional activation domain from BRCA1. Genes Dev. 1999;13:637-642
    • (1999) Genes Dev , vol.13 , pp. 637-642
    • Hu, Y.F.1    Hao, Z.L.2    Li, R.3
  • 60
    • 0026508417 scopus 로고
    • A yeast chromosomal origin of DNA replication defined by multiple functional elements
    • Marahrens Y, Stillman B. A yeast chromosomal origin of DNA replication defined by multiple functional elements. Science. 1992;255:817-823
    • (1992) Science , vol.255 , pp. 817-823
    • Marahrens, Y.1    Stillman, B.2
  • 61
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson JB, Gottschling DE. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 1999;13:146-151
    • (1999) Genes Dev , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 63
    • 0346873031 scopus 로고    scopus 로고
    • Genomewide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe
    • Segurado M, de Luis A, Antequera F. Genomewide distribution of DNA replication origins at A+T-rich islands in Schizosaccharomyces pombe. EMBO Rep. 2003;4:1048-1053
    • (2003) EMBO Rep , vol.4 , pp. 1048-1053
    • Segurado, M.1    de Luis, A.2    Antequera, F.3
  • 64
    • 12244265093 scopus 로고    scopus 로고
    • DNA replication origins in the Schizosaccharomyces pombe genome
    • Dai J, Chuang RY, Kelly TJ. DNA replication origins in the Schizosaccharomyces pombe genome. Proc Natl Acad Sci U S A. 2005;102:337-342
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 337-342
    • Dai, J.1    Chuang, R.Y.2    Kelly, T.J.3
  • 65
    • 0033055057 scopus 로고    scopus 로고
    • The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks
    • Chuang RY, Kelly TJ. The fission yeast homologue of Orc4p binds to replication origin DNA via multiple AT-hooks. Proc Natl Acad Sci U S A. 1999;96:2656-2661
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 2656-2661
    • Chuang, R.Y.1    Kelly, T.J.2
  • 66
    • 0029026719 scopus 로고
    • Poly(dA:DT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure
    • Iyer V, Struhl K. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J. 1995;14: 2570-2579
    • (1995) EMBO J , vol.14 , pp. 2570-2579
    • Iyer, V.1    Struhl, K.2
  • 67
    • 0022230224 scopus 로고
    • DNA bending and its relation to nucleosome positioning
    • Drew HR, Travers AA. DNA bending and its relation to nucleosome positioning. J Mol Biol. 1985;186:773-790
    • (1985) J Mol Biol , vol.186 , pp. 773-790
    • Drew, H.R.1    Travers, A.A.2
  • 68
    • 84859927986 scopus 로고    scopus 로고
    • Genomewide identification and characterization of replication origins by deep sequencing
    • Xu J, Yanagisawa Y, Tsankov AM, et al. Genomewide identification and characterization of replication origins by deep sequencing. Genome Biol. 2012;13:R27
    • (2012) Genome Biol , vol.13
    • Xu, J.1    Yanagisawa, Y.2    Tsankov, A.M.3
  • 69
    • 80555156654 scopus 로고    scopus 로고
    • Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization
    • Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 2011;21:1851-1862
    • (2011) Genome Res , vol.21 , pp. 1851-1862
    • Tsankov, A.1    Yanagisawa, Y.2    Rhind, N.3    Regev, A.4    Rando, O.J.5
  • 70
    • 0018952783 scopus 로고
    • Regulated replication of DNA microinjected into eggs of Xenopus laevis
    • Harland RM, Laskey RA. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell. 1980;21:761-771
    • (1980) Cell , vol.21 , pp. 761-771
    • Harland, R.M.1    Laskey, R.A.2
  • 72
    • 0019455680 scopus 로고
    • Replication origins in the eucaryotic chromosome
    • Laskey RA, Harland RM. Replication origins in the eucaryotic chromosome. Cell. 1981;24:283-284
    • (1981) Cell , vol.24 , pp. 283-284
    • Laskey, R.A.1    Harland, R.M.2
  • 73
    • 50249154897 scopus 로고    scopus 로고
    • In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences
    • Stanojcic S, Lemaitre JM, Brodolin K, Danis E, Mechali M. In Xenopus egg extracts, DNA replication initiates preferentially at or near asymmetric AT sequences. Mol Cell Biol. 2008;28:5265-5274
    • (2008) Mol Cell Biol , vol.28 , pp. 5265-5274
    • Stanojcic, S.1    Lemaitre, J.M.2    Brodolin, K.3    Danis, E.4    Mechali, M.5
  • 74
    • 0021714731 scopus 로고
    • Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast
    • Mechali M, Kearsey S. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell. 1984;38:55-64
    • (1984) Cell , vol.38 , pp. 55-64
    • Mechali, M.1    Kearsey, S.2
  • 75
    • 0014963612 scopus 로고
    • The cell cycle of an established line of Drosophila melanogaster cells in vitro
    • Dolfini S, Courgeon AM, Tiepolo L. The cell cycle of an established line of Drosophila melanogaster cells in vitro. Experientia. 1970;26:1020-1021
    • (1970) Experientia , vol.26 , pp. 1020-1021
    • Dolfini, S.1    Courgeon, A.M.2    Tiepolo, L.3
  • 77
    • 0015792039 scopus 로고
    • Replication of DNA in eukaryotic chromosomes
    • Callan HG. Replication of DNA in eukaryotic chromosomes. Br Med Bull. 1973;29:192-195
    • (1973) Br Med Bull , vol.29 , pp. 192-195
    • Callan, H.G.1
  • 78
    • 0032906460 scopus 로고    scopus 로고
    • Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster
    • Sasaki T, Sawado T, Yamaguchi M, Shinomiya T. Specification of regions of DNA replication initiation during embryogenesis in the 65-kilobase DNApolalpha-dE2F locus of Drosophila melanogaster. Mol Cell Biol. 1999;19:547-555
    • (1999) Mol Cell Biol , vol.19 , pp. 547-555
    • Sasaki, T.1    Sawado, T.2    Yamaguchi, M.3    Shinomiya, T.4
  • 79
    • 0028829358 scopus 로고
    • Transition in specification of embryonic metazoan DNA replication origins
    • Hyrien O, Maric C, Mechali M. Transition in specification of embryonic metazoan DNA replication origins. Science. 1995;270:994-997
    • (1995) Science , vol.270 , pp. 994-997
    • Hyrien, O.1    Maric, C.2    Mechali, M.3
  • 80
    • 79952270733 scopus 로고    scopus 로고
    • Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription
    • Mesner LD, Valsakumar V, Karnani N, Dutta A, Hamlin JL, Bekiranov S. Bubble-chip analysis of human origin distributions demonstrates on a genomic scale significant clustering into zones and significant association with transcription. Genome Res. 2011;21:377-389
    • (2011) Genome Res , vol.21 , pp. 377-389
    • Mesner, L.D.1    Valsakumar, V.2    Karnani, N.3    Dutta, A.4    Hamlin, J.L.5    Bekiranov, S.6
  • 81
    • 1842509904 scopus 로고    scopus 로고
    • DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding
    • Remus D, Beall EL, Botchan MR. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC-DNA binding. EMBO J. 2004;23:897-907
    • (2004) EMBO J , vol.23 , pp. 897-907
    • Remus, D.1    Beall, E.L.2    Botchan, M.R.3
  • 82
    • 10644297436 scopus 로고    scopus 로고
    • Coordination of replication and transcription along a Drosophila chromosome
    • MacAlpine DM, Rodriguez HK, Bell SP. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 2004;18:3094-3105
    • (2004) Genes Dev , vol.18 , pp. 3094-3105
    • Macalpine, D.M.1    Rodriguez, H.K.2    Bell, S.P.3
  • 83
    • 33750438774 scopus 로고    scopus 로고
    • Genome-wide characterization of fission yeast DNA replication origins
    • Heichinger C, Penkett CJ, Bahler J, Nurse P. Genome-wide characterization of fission yeast DNA replication origins. EMBO J. 2006;25:5171-179
    • (2006) EMBO J , vol.25 , pp. 5171-5179
    • Heichinger, C.1    Penkett, C.J.2    Bahler, J.3    Nurse, P.4
  • 84
    • 0031265756 scopus 로고    scopus 로고
    • Replication profile of Saccharomyces cerevisiae chromosome VI
    • Friedman KL, Brewer BJ, Fangman WL. Replication profile of Saccharomyces cerevisiae chromosome VI. Genes Cells. 1997;2:667-678
    • (1997) Genes Cells , vol.2 , pp. 667-678
    • Friedman, K.L.1    Brewer, B.J.2    Fangman, W.L.3
  • 85
    • 33845405316 scopus 로고    scopus 로고
    • DNA replication origin interference increases the spacing between initiation events in human cells
    • Lebofsky R, Heilig R, Sonnleitner M, Weissenbach J, Bensimon A. DNA replication origin interference increases the spacing between initiation events in human cells. Mol Biol Cell. 2006;17:5337-5345
    • (2006) Mol Biol Cell , vol.17 , pp. 5337-5345
    • Lebofsky, R.1    Heilig, R.2    Sonnleitner, M.3    Weissenbach, J.4    Bensimon, A.5
  • 87
    • 0013887376 scopus 로고
    • Autoradiography of chromosomal DNA fibers from Chinese hamster cells
    • Huberman JA, Riggs AD. Autoradiography of chromosomal DNA fibers from Chinese hamster cells. Proc Natl Acad Sci U S A. 1966;55:599-606
    • (1966) Proc Natl Acad Sci U S A , vol.55 , pp. 599-606
    • Huberman, J.A.1    Riggs, A.D.2
  • 88
    • 0037319618 scopus 로고    scopus 로고
    • Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem
    • Hyrien O, Marheineke K, Goldar A. Paradoxes of eukaryotic DNA replication: MCM proteins and the random completion problem. Bioessays. 2003;25:116-125
    • (2003) Bioessays , vol.25 , pp. 116-125
    • Hyrien, O.1    Marheineke, K.2    Goldar, A.3
  • 89
    • 36348988518 scopus 로고    scopus 로고
    • DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI
    • Czajkowsky DM, Liu J, Hamlin JL, Shao Z. DNA combing reveals intrinsic temporal disorder in the replication of yeast chromosome VI. J Mol Biol. 2008;375:12-19
    • (2008) J Mol Biol , vol.375 , pp. 12-19
    • Czajkowsky, D.M.1    Liu, J.2    Hamlin, J.L.3    Shao, Z.4
  • 91
    • 0027213553 scopus 로고
    • Eukaryotic DNA replication: Anatomy of an origin
    • DePamphilis ML. Eukaryotic DNA replication: anatomy of an origin. Annu Rev Biochem. 1993;62:29-63
    • (1993) Annu Rev Biochem , vol.62 , pp. 29-63
    • Depamphilis, M.L.1
  • 92
    • 0026687406 scopus 로고
    • The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase
    • Biamonti G, Giacca M, Perini G, et al. The gene for a novel human lamin maps at a highly transcribed locus of chromosome 19 which replicates at the onset of S-phase. Mol Cell Biol. 1992;12:3499-3506
    • (1992) Mol Cell Biol , vol.12 , pp. 3499-3506
    • Biamonti, G.1    Giacca, M.2    Perini, G.3
  • 93
    • 2642647114 scopus 로고    scopus 로고
    • Initiation of DNA replication at CpG islands in mammalian chromosomes
    • Delgado S, Gomez M, Bird A, Antequera F. Initiation of DNA replication at CpG islands in mammalian chromosomes. EMBO J. 1998;17:2426-2435
    • (1998) EMBO J , vol.17 , pp. 2426-2435
    • Delgado, S.1    Gomez, M.2    Bird, A.3    Antequera, F.4
  • 95
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert DM. Replication timing and transcriptional control: beyond cause and effect. Curr Opin Cell Biol. 2002;14:277-283
    • (2002) Curr Opin Cell Biol , vol.14 , pp. 277-283
    • Gilbert, D.M.1
  • 97
    • 70349235389 scopus 로고    scopus 로고
    • Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation
    • Rampakakis E, Di Paola D, Chan MK, Zannis-Hadjopoulos M. Dynamic changes in chromatin structure through post-translational modifications of histone H3 during replication origin activation. J Cell Biochem. 2009;108:400-407
    • (2009) J Cell Biochem , vol.108 , pp. 400-407
    • Rampakakis, E.1    Di Paola, D.2    Chan, M.K.3    Zannis-Hadjopoulos, M.4
  • 98
    • 34250305146 scopus 로고    scopus 로고
    • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
    • Birney E, Stamatoyannopoulos JA, Dutta A, et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature. 2007;447:799-816
    • (2007) Nature , vol.447 , pp. 799-816
    • Birney, E.1    Stamatoyannopoulos, J.A.2    Dutta, A.3
  • 99
    • 76049105950 scopus 로고    scopus 로고
    • Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection
    • Karnani N, Taylor CM, Malhotra A, Dutta A. Genomic study of replication initiation in human chromosomes reveals the influence of transcription regulation and chromatin structure on origin selection. Mol Biol Cell. 2010;21:393-404
    • (2010) Mol Biol Cell , vol.21 , pp. 393-404
    • Karnani, N.1    Taylor, C.M.2    Malhotra, A.3    Dutta, A.4
  • 100
    • 34250327950 scopus 로고    scopus 로고
    • Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas
    • Karnani N, Taylor C, Malhotra A, Dutta A. Pan-S replication patterns and chromosomal domains defined by genome-tiling arrays of ENCODE genomic areas. Genome Res. 2007;17:865-876
    • (2007) Genome Res , vol.17 , pp. 865-876
    • Karnani, N.1    Taylor, C.2    Malhotra, A.3    Dutta, A.4
  • 101
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer M, Rubbi L, Lucas I, Brewer BJ, Grunstein M. Histone acetylation regulates the time of replication origin firing. Mol Cell. 2002;10:1223-1233
    • (2002) Mol Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewer, B.J.4    Grunstein, M.5
  • 102
    • 2442660397 scopus 로고    scopus 로고
    • The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae
    • Aparicio JG, Viggiani CJ, Gibson DG, Aparicio OM. The Rpd3-Sin3 histone deacetylase regulates replication timing and enables intra-S origin control in Saccharomyces cerevisiae. Mol Cell Biol. 2004;24:4769-4780
    • (2004) Mol Cell Biol , vol.24 , pp. 4769-4780
    • Aparicio, J.G.1    Viggiani, C.J.2    Gibson, D.G.3    Aparicio, O.M.4
  • 103
    • 43049124410 scopus 로고    scopus 로고
    • An ARS element inhibits DNA replication through a SIR2-dependent mechanism
    • Crampton A, Chang F, Pappas DL Jr., Frisch RL, Weinreich M. An ARS element inhibits DNA replication through a SIR2-dependent mechanism. Mol Cell. 2008;30:156-166
    • (2008) Mol Cell , vol.30 , pp. 156-166
    • Crampton, A.1    Chang, F.2    Pappas Jr., D.L.3    Frisch, R.L.4    Weinreich, M.5
  • 104
    • 65449160972 scopus 로고    scopus 로고
    • Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae
    • Knott SR, Viggiani CJ, Tavare S, Aparicio OM. Genome-wide replication profiles indicate an expansive role for Rpd3L in regulating replication initiation timing or efficiency, and reveal genomic loci of Rpd3 function in Saccharomyces cerevisiae. Genes Dev. 2009;23:1077-1090
    • (2009) Genes Dev , vol.23 , pp. 1077-1090
    • Knott, S.R.1    Viggiani, C.J.2    Tavare, S.3    Aparicio, O.M.4
  • 105
    • 57349149434 scopus 로고    scopus 로고
    • Genome-wide studies highlight indirect links between human replication origins and gene regulation
    • Cadoret JC, Meisch F, Hassan-Zadeh V, et al. Genome-wide studies highlight indirect links between human replication origins and gene regulation. Proc Natl Acad Sci U S A. 2008;105:15837-15842
    • (2008) Proc Natl Acad Sci U S A , vol.105 , pp. 15837-15842
    • Cadoret, J.C.1    Meisch, F.2    Hassan-Zadeh, V.3
  • 107
    • 2342468603 scopus 로고    scopus 로고
    • Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage
    • Gomez M, Brockdorff N. Heterochromatin on the inactive X chromosome delays replication timing without affecting origin usage. Proc Natl Acad Sci U S A. 2004;101:6923-6928
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 6923-6928
    • Gomez, M.1    Brockdorff, N.2
  • 108
    • 33644861248 scopus 로고    scopus 로고
    • A question of timing: Emerging links between transcription and replication
    • Schwaiger M, Schubeler D. A question of timing: emerging links between transcription and replication. Curr Opin Genet Dev. 2006;16:177-183
    • (2006) Curr Opin Genet Dev , vol.16 , pp. 177-183
    • Schwaiger, M.1    Schubeler, D.2
  • 109
    • 33747796664 scopus 로고    scopus 로고
    • Broadening of DNA replication origin usage during metazoan cell differentiation
    • Dazy S, Gandrillon O, Hyrien O, Prioleau MN. Broadening of DNA replication origin usage during metazoan cell differentiation. EMBO Rep. 2006;7:806-811
    • (2006) EMBO Rep , vol.7 , pp. 806-811
    • Dazy, S.1    Gandrillon, O.2    Hyrien, O.3    Prioleau, M.N.4
  • 110
    • 61849177618 scopus 로고    scopus 로고
    • Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome
    • Schwaiger M, Stadler MB, Bell O, Kohler H, Oakeley EJ, Schubeler D. Chromatin state marks cell-type-and gender-specific replication of the Drosophila genome. Genes Dev. 2009;23:589-601
    • (2009) Genes Dev , vol.23 , pp. 589-601
    • Schwaiger, M.1    Stadler, M.B.2    Bell, O.3    Kohler, H.4    Oakeley, E.J.5    Schubeler, D.6
  • 111
    • 0037376187 scopus 로고    scopus 로고
    • Same origins of DNA replication function on the active and inactive human X chromosomes
    • Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. Same origins of DNA replication function on the active and inactive human X chromosomes. J Cell Biochem. 2003;88: 923-931
    • (2003) J Cell Biochem , vol.88 , pp. 923-931
    • Cohen, S.M.1    Brylawski, B.P.2    Cordeiro-Stone, M.3    Kaufman, D.G.4
  • 112
    • 0028971217 scopus 로고
    • Participation of the human beta-globin locus control region in initiation of DNA replication
    • Aladjem MI, Groudine M, Brody LL, et al. Participation of the human beta-globin locus control region in initiation of DNA replication. Science. 1995;270:815-819
    • (1995) Science , vol.270 , pp. 815-819
    • Aladjem, M.I.1    Groudine, M.2    Brody, L.L.3
  • 113
    • 0027749608 scopus 로고
    • Replication structure of the human beta-globin gene domain
    • Kitsberg D, Selig S, Keshet I, Cedar H. Replication structure of the human beta-globin gene domain. Nature. 1993;366:588-590
    • (1993) Nature , vol.366 , pp. 588-590
    • Kitsberg, D.1    Selig, S.2    Keshet, I.3    Cedar, H.4
  • 114
    • 0025107556 scopus 로고
    • A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus
    • Forrester WC, Epner E, Driscoll MC, et al. A deletion of the human beta-globin locus activation region causes a major alteration in chromatin structure and replication across the entire beta-globin locus. Genes Dev. 1990;4:1637-1649
    • (1990) Genes Dev , vol.4 , pp. 1637-1649
    • Forrester, W.C.1    Epner, E.2    Driscoll, M.C.3
  • 115
    • 0035092886 scopus 로고    scopus 로고
    • DNA replication control through interaction of E2F-RB and the origin recognition complex
    • Bosco G, Du W, Orr-Weaver TL. DNA replication control through interaction of E2F-RB and the origin recognition complex. Nat Cell Biol. 2001;3:289-295
    • (2001) Nat Cell Biol , vol.3 , pp. 289-295
    • Bosco, G.1    Du, W.2    Orr-Weaver, T.L.3
  • 116
    • 0347457073 scopus 로고    scopus 로고
    • Role for a Drosophila Mybcontaining protein complex in site-specific DNA replication
    • Beall EL, Manak JR, Zhou S, Bell M, Lipsick JS, Botchan MR. Role for a Drosophila Mybcontaining protein complex in site-specific DNA replication. Nature. 2002;420:833-837
    • (2002) Nature , vol.420 , pp. 833-837
    • Beall, E.L.1    Manak, J.R.2    Zhou, S.3    Bell, M.4    Lipsick, J.S.5    Botchan, M.R.6
  • 118
    • 0035104474 scopus 로고    scopus 로고
    • Nucleosomes positioned by ORC facilitate the initiation of DNA replication
    • Lipford JR, Bell SP. Nucleosomes positioned by ORC facilitate the initiation of DNA replication. Mol Cell. 2001;7:21-30
    • (2001) Mol Cell , vol.7 , pp. 21-30
    • Lipford, J.R.1    Bell, S.P.2
  • 119
    • 33745807643 scopus 로고    scopus 로고
    • Differential binding of replication proteins across the human c-myc replicator
    • Ghosh M, Kemp M, Liu G, Ritzi M, Schepers A, Leffak M. Differential binding of replication proteins across the human c-myc replicator. Mol Cell Biol. 2006;26:5270-5283
    • (2006) Mol Cell Biol , vol.26 , pp. 5270-5283
    • Ghosh, M.1    Kemp, M.2    Liu, G.3    Ritzi, M.4    Schepers, A.5    Leffak, M.6
  • 120
    • 10544236917 scopus 로고    scopus 로고
    • c-Jun stimulates origin-dependent DNA unwinding by polyomavirus large T antigen
    • Ito K, Asano M, Hughes P, et al. c-Jun stimulates origin-dependent DNA unwinding by polyomavirus large T antigen. EMBO J. 1996;15:5636-5646
    • (1996) EMBO J , vol.15 , pp. 5636-5646
    • Ito, K.1    Asano, M.2    Hughes, P.3
  • 121
    • 0025766819 scopus 로고
    • The yeast GAL4 protein transactivates the polyomavirus origin of DNA replication in mouse cells
    • Baru M, Shlissel M, Manor H. The yeast GAL4 protein transactivates the polyomavirus origin of DNA replication in mouse cells. J Virol. 1991;65:3496-3503
    • (1991) J Virol , vol.65 , pp. 3496-3503
    • Baru, M.1    Shlissel, M.2    Manor, H.3
  • 122
    • 0026345126 scopus 로고
    • Enhancer effect of bovine papillomavirus E2 protein in replication of polyomavirus DNA
    • Nilsson M, Forsberg M, You ZY, Westin G, Magnusson G. Enhancer effect of bovine papillomavirus E2 protein in replication of polyomavirus DNA. Nucleic Acids Res. 1991;19:7061-7065
    • (1991) Nucleic Acids Res , vol.19 , pp. 7061-7065
    • Nilsson, M.1    Forsberg, M.2    You, Z.Y.3    Westin, G.4    Magnusson, G.5
  • 123
    • 0027496089 scopus 로고
    • Two novel functions associated with the Rel oncoproteins: DNA Replication and Cell-specific Transcriptional Activation
    • Ishikawa H, Asano M, Kanda T, Kumar S, Gelinas C, Ito Y. Two novel functions associated with the Rel oncoproteins: DNA replication and cell-specific transcriptional activation. Oncogene. 1993;8:2889-2896
    • (1993) Oncogene , vol.8 , pp. 2889-2896
    • Ishikawa, H.1    Asano, M.2    Kanda, T.3    Kumar, S.4    Gelinas, C.5    Ito, Y.6
  • 124
    • 0028222958 scopus 로고
    • Stimulation of polyomavirus DNA replication by wild-type p53 through the DNA-binding site
    • Kanda T, Segawa K, Ohuchi N, Mori S, Ito Y. Stimulation of polyomavirus DNA replication by wild-type p53 through the DNA-binding site. Mol Cell Biol. 1994;14:2651-2663
    • (1994) Mol Cell Biol , vol.14 , pp. 2651-2663
    • Kanda, T.1    Segawa, K.2    Ohuchi, N.3    Mori, S.4    Ito, Y.5
  • 125
    • 0025989907 scopus 로고
    • Activation of BPV-1 replication in vitro by the transcription factor E2
    • Yang L, Li R, Mohr IJ, Clark R, Botchan MR. Activation of BPV-1 replication in vitro by the transcription factor E2. Nature. 1991;353:628-632
    • (1991) Nature , vol.353 , pp. 628-632
    • Yang, L.1    Li, R.2    Mohr, I.J.3    Clark, R.4    Botchan, M.R.5
  • 126
    • 0027400464 scopus 로고
    • Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin
    • Seo YS, Muller F, Lusky M, et al. Bovine papilloma virus (BPV)-encoded E2 protein enhances binding of E1 protein to the BPV replication origin. Proc Natl Acad Sci U S A. 1993;90:2865-2689
    • (1993) Proc Natl Acad Sci U S A , vol.90 , pp. 2865-2869
    • Seo, Y.S.1    Muller, F.2    Lusky, M.3
  • 127
    • 0029617680 scopus 로고
    • Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro
    • Sedman J, Stenlund A. Co-operative interaction between the initiator E1 and the transcriptional activator E2 is required for replicator specific DNA replication of bovine papillomavirus in vivo and in vitro. EMBO J. 1995;14:6218-6228
    • (1995) EMBO J , vol.14 , pp. 6218-6228
    • Sedman, J.1    Stenlund, A.2
  • 128
    • 34547232986 scopus 로고    scopus 로고
    • Non-transcriptional control of DNA replication by c-Myc
    • Dominguez-Sola D, Ying CY, Grandori C, et al. Non-transcriptional control of DNA replication by c-Myc. Nature. 2007;448:445-451
    • (2007) Nature , vol.448 , pp. 445-451
    • Dominguez-Sola, D.1    Ying, C.Y.2    Grandori, C.3
  • 129
    • 52449101436 scopus 로고    scopus 로고
    • Transcription-independent functions of MYC: Regulation of translation and DNA replication
    • Cole MD, Cowling VH. Transcription-independent functions of MYC: regulation of translation and DNA replication. Nat Rev Mol Cell Biol. 2008;9:810-815
    • (2008) Nat Rev Mol Cell Biol , vol.9 , pp. 810-815
    • Cole, M.D.1    Cowling, V.H.2
  • 130
    • 0037630079 scopus 로고    scopus 로고
    • Reconstructing MYC
    • Levens DL. Reconstructing MYC. Genes Dev. 2003;17:1071-1077
    • (2003) Genes Dev , vol.17 , pp. 1071-1077
    • Levens, D.L.1
  • 131
    • 67650146183 scopus 로고    scopus 로고
    • Grandori C. c-Myc accelerates S-phase and requires WRN to avoid replication stress
    • Robinson K, Asawachaicharn N, Galloway DA, Grandori C. c-Myc accelerates S-phase and requires WRN to avoid replication stress. PloS One. 2009;4:e5951
    • (2009) PloS One , vol.4
    • Robinson, K.1    Asawachaicharn, N.2    Galloway, D.A.3
  • 132
    • 84867511667 scopus 로고    scopus 로고
    • The epigenetic control of E-box and Myc-dependent chromatin modifications regulate the licensing of lamin B2 origin during cell cycle
    • Swarnalatha M, Singh AK, Kumar V. The epigenetic control of E-box and Myc-dependent chromatin modifications regulate the licensing of lamin B2 origin during cell cycle. Nucleic Acids Res. 2012;40:9021-9035
    • (2012) Nucleic Acids Res , vol.40 , pp. 9021-9035
    • Swarnalatha, M.1    Singh, A.K.2    Kumar, V.3
  • 134
    • 39749176602 scopus 로고    scopus 로고
    • The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells
    • Jorgensen HF, Azuara V, Amoils S, et al. The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol. 2007;8:R169
    • (2007) Genome Biol , vol.8
    • Jorgensen, H.F.1    Azuara, V.2    Amoils, S.3
  • 135
    • 4444384150 scopus 로고    scopus 로고
    • The replicon revisited: An old model learns new tricks in metazoan chromosomes
    • Aladjem MI, Fanning E. The replicon revisited: an old model learns new tricks in metazoan chromosomes. EMBO Rep. 2004;5:686-691
    • (2004) EMBO Rep , vol.5 , pp. 686-691
    • Aladjem, M.I.1    Fanning, E.2
  • 136
    • 0030976320 scopus 로고    scopus 로고
    • Strand asymmetries in DNA evolution
    • Francino MP, Ochman H. Strand asymmetries in DNA evolution. Trends Genet. 1997;13:240-245
    • (1997) Trends Genet , vol.13 , pp. 240-245
    • Francino, M.P.1    Ochman, H.2
  • 138
    • 79961039218 scopus 로고    scopus 로고
    • Replication-associated mutational asymmetry in the human genome
    • Chen CL, Duquenne L, Audit B, et al. Replication-associated mutational asymmetry in the human genome. Mol Biol Evol. 2011;28:2327-2337
    • (2011) Mol Biol Evol , vol.28 , pp. 2327-2337
    • Chen, C.L.1    Duquenne, L.2    Audit, B.3
  • 139
    • 0029985398 scopus 로고    scopus 로고
    • Asymmetric substitution patterns in the two DNA strands of bacteria
    • Lobry JR. Asymmetric substitution patterns in the two DNA strands of bacteria. Mol Biol Evol. 1996;13:660-665
    • (1996) Mol Biol Evol , vol.13 , pp. 660-665
    • Lobry, J.R.1
  • 140
    • 0032860238 scopus 로고    scopus 로고
    • Asymmetric substitution patterns: A review of possible underlying mutational or selective mechanisms
    • Frank AC, Lobry JR. Asymmetric substitution patterns: a review of possible underlying mutational or selective mechanisms. Gene. 1999;238:65-77
    • (1999) Gene , vol.238 , pp. 65-77
    • Frank, A.C.1    Lobry, J.R.2
  • 141
    • 0033166375 scopus 로고    scopus 로고
    • Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells: A model, its experimental support and implications
    • Lutsenko E, Bhagwat AS. Principal causes of hot spots for cytosine to thymine mutations at sites of cytosine methylation in growing cells: a model, its experimental support and implications. Mutat Res. 1999;437:11-20
    • (1999) Mutat Res , vol.437 , pp. 11-20
    • Lutsenko, E.1    Bhagwat, A.S.2
  • 142
    • 3142679507 scopus 로고    scopus 로고
    • The replication-related organization of bacterial genomes
    • Rocha EP. The replication-related organization of bacterial genomes. Microbiology. 2004;150:1609-1627
    • (2004) Microbiology , vol.150 , pp. 1609-1627
    • Rocha, E.P.1
  • 143
    • 0032524384 scopus 로고    scopus 로고
    • Analyzing genomes with cumulative skew diagrams
    • Grigoriev A. Analyzing genomes with cumulative skew diagrams. Nucleic Acids Res. 1998;26:2286-2290
    • (1998) Nucleic Acids Res , vol.26 , pp. 2286-2290
    • Grigoriev, A.1
  • 144
    • 0029938912 scopus 로고    scopus 로고
    • Origin of replication of Mycoplasma genitalium
    • Lobry JR. Origin of replication of Mycoplasma genitalium. Science. 1996;272:745-746
    • (1996) Science , vol.272 , pp. 745-746
    • Lobry, J.R.1
  • 145
    • 0034695920 scopus 로고    scopus 로고
    • Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome?
    • Gierlik A, Kowalczuk M, Mackiewicz P, Dudek MR, Cebrat S. Is there replication-associated mutational pressure in the Saccharomyces cerevisiae genome? J Theor Biol. 2000;202: 305-314
    • (2000) J Theor Biol , vol.202 , pp. 305-314
    • Gierlik, A.1    Kowalczuk, M.2    Mackiewicz, P.3    Dudek, M.R.4    Cebrat, S.5
  • 146
    • 22244455429 scopus 로고    scopus 로고
    • Replication-associated strand asymmetries in mammalian genomes: Toward detection of replication origins
    • Touchon M, Nicolay S, Audit B, et al. Replication-associated strand asymmetries in mammalian genomes: toward detection of replication origins. Proc Natl Acad Sci U S A. 2005;102:9836-9841
    • (2005) Proc Natl Acad Sci U S A , vol.102 , pp. 9836-9841
    • Touchon, M.1    Nicolay, S.2    Audit, B.3
  • 147
    • 34548396264 scopus 로고    scopus 로고
    • Human gene organization driven by the coordination of replication and transcription
    • Huvet M, Nicolay S, Touchon M, et al. Human gene organization driven by the coordination of replication and transcription. Genome Res. 2007;17:1278-1285
    • (2007) Genome Res , vol.17 , pp. 1278-1285
    • Huvet, M.1    Nicolay, S.2    Touchon, M.3
  • 148
    • 80052523848 scopus 로고    scopus 로고
    • Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features
    • Cayrou C, Coulombe P, Vigneron A, et al. Genome-scale analysis of metazoan replication origins reveals their organization in specific but flexible sites defined by conserved features. Genome Res. 2011;21:1438-1449
    • (2011) Genome Res , vol.21 , pp. 1438-1449
    • Cayrou, C.1    Coulombe, P.2    Vigneron, A.3
  • 149
    • 33344470620 scopus 로고    scopus 로고
    • Isolating apparently pure libraries of replication origins from complex genomes
    • Mesner LD, Crawford EL, Hamlin JL. Isolating apparently pure libraries of replication origins from complex genomes. Mol Cell. 2006;21:719-726
    • (2006) Mol Cell , vol.21 , pp. 719-726
    • Mesner, L.D.1    Crawford, E.L.2    Hamlin, J.L.3
  • 151
    • 0036085460 scopus 로고    scopus 로고
    • Cellular roles of DNA topoisomerases: A molecular perspective
    • Wang JC. Cellular roles of DNA topoisomerases: a molecular perspective. Nat Rev Mol Cell Biol. 2002;3:430-440
    • (2002) Nat Rev Mol Cell Biol , vol.3 , pp. 430-440
    • Wang, J.C.1
  • 152
    • 84859042868 scopus 로고    scopus 로고
    • Preventing replication stress to maintain genome stability: Resolving conflicts between replication and transcription
    • Bermejo R, Lai MS, Foiani M. Preventing replication stress to maintain genome stability: resolving conflicts between replication and transcription. Mol Cell. 2012;45:710-718
    • (2012) Mol Cell , vol.45 , pp. 710-718
    • Bermejo, R.1    Lai, M.S.2    Foiani, M.3
  • 153
    • 0034923502 scopus 로고    scopus 로고
    • DNA topoisomerases: Structure, function, and mechanism
    • Champoux JJ. DNA topoisomerases: structure, function, and mechanism. Annu Rev Biochem. 2001;70:369-413
    • (2001) Annu Rev Biochem , vol.70 , pp. 369-413
    • Champoux, J.J.1
  • 154
    • 34547626213 scopus 로고    scopus 로고
    • Top1-and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation
    • Bermejo R, Doksani Y, Capra T, et al. Top1-and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 2007;21:1921-1936
    • (2007) Genes Dev , vol.21 , pp. 1921-1936
    • Bermejo, R.1    Doksani, Y.2    Capra, T.3
  • 155
    • 29144472375 scopus 로고    scopus 로고
    • A role for the CPF 3'-end processing machinery in RNAP II-dependent gene looping
    • Ansari A, Hampsey M. A role for the CPF 3'-end processing machinery in RNAP II-dependent gene looping. Genes Dev. 2005;19:2969-2978
    • (2005) Genes Dev , vol.19 , pp. 2969-2978
    • Ansari, A.1    Hampsey, M.2
  • 156
    • 33745001795 scopus 로고    scopus 로고
    • SAGA interacting factors confine subdiffusion of transcribed genes to the nuclear envelope
    • Cabal GG, Genovesio A, Rodriguez-Navarro S, et al. SAGA interacting factors confine subdiffusion of transcribed genes to the nuclear envelope. Nature. 2006;441:770-773
    • (2006) Nature , vol.441 , pp. 770-773
    • Cabal, G.G.1    Genovesio, A.2    Rodriguez-Navarro, S.3
  • 157
    • 53749089421 scopus 로고    scopus 로고
    • THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association
    • Rougemaille M, Dieppois G, Kisseleva-Romanova E, et al. THO/Sub2p functions to coordinate 3′-end processing with gene-nuclear pore association. Cell. 2008;135:308-321
    • (2008) Cell , vol.135 , pp. 308-321
    • Rougemaille, M.1    Dieppois, G.2    Kisseleva-Romanova, E.3
  • 158
    • 72749098124 scopus 로고    scopus 로고
    • Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex
    • Tan-Wong SM, Wijayatilake HD, Proudfoot NJ. Gene loops function to maintain transcriptional memory through interaction with the nuclear pore complex. Genes Dev. 2009;23:2610-2624
    • (2009) Genes Dev , vol.23 , pp. 2610-2624
    • Tan-Wong, S.M.1    Wijayatilake, H.D.2    Proudfoot, N.J.3
  • 159
    • 0034329461 scopus 로고    scopus 로고
    • A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae
    • Chavez S, Beilharz T, Rondon AG, et al. A protein complex containing Tho2, Hpr1, Mft1 and a novel protein, Thp2, connects transcription elongation with mitotic recombination in Saccharomyces cerevisiae. EMBO J. 2000;19:5824-5834
    • (2000) EMBO J , vol.19 , pp. 5824-5834
    • Chavez, S.1    Beilharz, T.2    Rondon, A.G.3
  • 160
    • 19344378943 scopus 로고    scopus 로고
    • Rules of engagement: Co-transcriptional recruitment of pre-mRNA processing factors
    • Bentley DL. Rules of engagement: co-transcriptional recruitment of pre-mRNA processing factors. Curr Opin Cell Biol. 2005;17:251-256
    • (2005) Curr Opin Cell Biol , vol.17 , pp. 251-256
    • Bentley, D.L.1
  • 161
    • 46449087802 scopus 로고    scopus 로고
    • Biogenesis of mRNPs: Integrating different processes in the eukaryotic nucleus
    • Luna R, Gaillard H, Gonzalez-Aguilera C, Aguilera A. Biogenesis of mRNPs: integrating different processes in the eukaryotic nucleus. Chromosoma. 2008;117:319-331
    • (2008) Chromosoma , vol.117 , pp. 319-331
    • Luna, R.1    Gaillard, H.2    Gonzalez-Aguilera, C.3    Aguilera, A.4
  • 162
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky A, Giresi PG, Lieb JD, Zakian VA. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol Cell. 2009;34:722-734
    • (2009) Mol Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1    Giresi, P.G.2    Lieb, J.D.3    Zakian, V.A.4
  • 163
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo R, Capra T, Gonzalez-Huici V, et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell. 2009;138:870-884
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1    Capra, T.2    Gonzalez-Huici, V.3
  • 164
    • 0025212715 scopus 로고
    • HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene
    • Aguilera A, Klein HL. HPR1, a novel yeast gene that prevents intrachromosomal excision recombination, shows carboxy-terminal homology to the Saccharomyces cerevisiae TOP1 gene. Mol Cell Biol. 1990;10:1439-1451
    • (1990) Mol Cell Biol , vol.10 , pp. 1439-1451
    • Aguilera, A.1    Klein, H.L.2
  • 165
    • 77955664901 scopus 로고    scopus 로고
    • The interface between transcription and mRNP export: From THO to THSC/TREX-2
    • Rondon AG, Jimeno S, Aguilera A. The interface between transcription and mRNP export: from THO to THSC/TREX-2. Biochim Biophys Acta. 2010;1799:533-538
    • (2010) Biochim Biophys Acta , vol.1799 , pp. 533-538
    • Rondon, A.G.1    Jimeno, S.2    Aguilera, A.3
  • 167
    • 80052424582 scopus 로고    scopus 로고
    • Space and time in the nucleus: Developmental control of replication timing and chromosome architecture
    • Gilbert DM, Takebayashi SI, Ryba T, et al. Space and time in the nucleus: developmental control of replication timing and chromosome architecture. Cold Spring Harb Symp Quant Biol. 2010;75:143-153
    • (2010) Cold Spring Harb Symp Quant Biol , vol.75 , pp. 143-153
    • Gilbert, D.M.1    Takebayashi, S.I.2    Ryba, T.3
  • 168
    • 84866384009 scopus 로고    scopus 로고
    • Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia
    • Ryba T, Battaglia D, Chang BH, et al. Abnormal developmental control of replication-timing domains in pediatric acute lymphoblastic leukemia. Genome Res. 2012;22:1833-1844
    • (2012) Genome Res , vol.22 , pp. 1833-1844
    • Ryba, T.1    Battaglia, D.2    Chang, B.H.3
  • 169
    • 77957369058 scopus 로고    scopus 로고
    • Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture
    • Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I. Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet. 2010;6:e1001011
    • (2010) PLoS Genet , vol.6
    • Yaffe, E.1    Farkash-Amar, S.2    Polten, A.3    Yakhini, Z.4    Tanay, A.5    Simon, I.6
  • 170
    • 0032559794 scopus 로고    scopus 로고
    • Replicon clusters are stable units of chromosome structure: Evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells
    • Jackson DA, Pombo A. Replicon clusters are stable units of chromosome structure: evidence that nuclear organization contributes to the efficient activation and propagation of S phase in human cells. J Cell Biol. 1998;140:1285-1295
    • (1998) J Cell Biol , vol.140 , pp. 1285-1295
    • Jackson, D.A.1    Pombo, A.2
  • 171
    • 0032517784 scopus 로고    scopus 로고
    • Spatial and temporal dynamics of DNA replication sites in mammalian cells
    • Ma H, Samarabandu J, Devdhar RS, et al. Spatial and temporal dynamics of DNA replication sites in mammalian cells. J Cell Biol. 1998;143:1415-1425
    • (1998) J Cell Biol , vol.143 , pp. 1415-1425
    • Ma, H.1    Samarabandu, J.2    Devdhar, R.S.3
  • 172
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova DS, Gilbert DM. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol Cell. 1999;4:983-993
    • (1999) Mol Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 173
    • 9444269829 scopus 로고    scopus 로고
    • Stable chromosomal units determine the spatial and temporal organization of DNA replication
    • Sadoni N, Cardoso MC, Stelzer EH, Leonhardt H, Zink D. Stable chromosomal units determine the spatial and temporal organization of DNA replication. J Cell Sci. 2004;117:5353-5365
    • (2004) J Cell Sci , vol.117 , pp. 5353-5365
    • Sadoni, N.1    Cardoso, M.C.2    Stelzer, E.H.3    Leonhardt, H.4    Zink, D.5
  • 174
    • 17444425224 scopus 로고    scopus 로고
    • Replication timing of human chromosome 6
    • Woodfine K, Beare DM, Ichimura K, et al. Replication timing of human chromosome 6. Cell Cycle. 2005;4:172-176
    • (2005) Cell Cycle , vol.4 , pp. 172-176
    • Woodfine, K.1    Beare, D.M.2    Ichimura, K.3
  • 175
    • 1642514822 scopus 로고    scopus 로고
    • Replication timing of the human genome
    • Woodfine K, Fiegler H, Beare DM, et al. Replication timing of the human genome. Hum Mol Genet. 2004;13:191-202
    • (2004) Hum Mol Genet , vol.13 , pp. 191-202
    • Woodfine, K.1    Fiegler, H.2    Beare, D.M.3
  • 176
    • 54949085778 scopus 로고    scopus 로고
    • Global reorganization of replication domains during embryonic stem cell differentiation
    • Hiratani I, Ryba T, Itoh M, et al. Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol. 2008;6:e245
    • (2008) PLoS Biol , vol.6
    • Hiratani, I.1    Ryba, T.2    Itoh, M.3
  • 177
    • 70349873824 scopus 로고    scopus 로고
    • Comprehensive mapping of long-range interactions reveals folding principles of the human genome
    • Lieberman-Aiden E, van Berkum NL, Williams L, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289-293
    • (2009) Science , vol.326 , pp. 289-293
    • Lieberman-Aiden, E.1    van Berkum, N.L.2    Williams, L.3
  • 178
    • 33745251622 scopus 로고    scopus 로고
    • In and out of the replication factory
    • Meister P, Taddei A, Gasser SM. In and out of the replication factory. Cell. 2006;125:1233-1235
    • (2006) Cell , vol.125 , pp. 1233-1235
    • Meister, P.1    Taddei, A.2    Gasser, S.M.3
  • 179
    • 77952994784 scopus 로고    scopus 로고
    • Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types
    • Ryba T, Hiratani I, Lu J, et al. Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res. 2010;20:761-770
    • (2010) Genome Res , vol.20 , pp. 761-770
    • Ryba, T.1    Hiratani, I.2    Lu, J.3
  • 180
    • 84866412836 scopus 로고    scopus 로고
    • Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells
    • Cornacchia D, Dileep V, Quivy JP, et al. Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J. 2012;31:3678-3690
    • (2012) EMBO J , vol.31 , pp. 3678-3690
    • Cornacchia, D.1    Dileep, V.2    Quivy, J.P.3
  • 181
    • 84856103786 scopus 로고    scopus 로고
    • Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae
    • Knott SR, Peace JM, Ostrow AZ, et al. Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell. 2012;148:99-111
    • (2012) Cell , vol.148 , pp. 99-111
    • Knott, S.R.1    Peace, J.M.2    Ostrow, A.Z.3
  • 182
    • 3142593637 scopus 로고    scopus 로고
    • Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: Quantitative comparisons between theory and experiment
    • Jun S, Herrick J, Bensimon A, Bechhoefer J. Persistence length of chromatin determines origin spacing in Xenopus early-embryo DNA replication: quantitative comparisons between theory and experiment. Cell Cycle. 2004;3:223-229
    • (2004) Cell Cycle , vol.3 , pp. 223-229
    • Jun, S.1    Herrick, J.2    Bensimon, A.3    Bechhoefer, J.4
  • 183
    • 84855272663 scopus 로고    scopus 로고
    • Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome
    • Guilbaud G, Rappailles A, Baker A, et al. Evidence for sequential and increasing activation of replication origins along replication timing gradients in the human genome. PLoS Comput Biol. 2011;7:e1002322
    • (2011) PLoS Comput Biol , vol.7
    • Guilbaud, G.1    Rappailles, A.2    Baker, A.3
  • 184
    • 0034711945 scopus 로고    scopus 로고
    • Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos
    • Lucas I, Chevrier-Miller M, Sogo JM, Hyrien O. Mechanisms ensuring rapid and complete DNA replication despite random initiation in Xenopus early embryos. J Mol Biol. 2000;296:769-786
    • (2000) J Mol Biol , vol.296 , pp. 769-786
    • Lucas, I.1    Chevrier-Miller, M.2    Sogo, J.M.3    Hyrien, O.4
  • 185
    • 33751520767 scopus 로고    scopus 로고
    • DNA replication timing: Random thoughts about origin firing
    • Rhind N. DNA replication timing: random thoughts about origin firing. Nat Cell Biol. 2006;8:1313-1316
    • (2006) Nat Cell Biol , vol.8 , pp. 1313-1316
    • Rhind, N.1
  • 186
    • 77649231526 scopus 로고    scopus 로고
    • Mathematical modelling of eukaryotic DNA replication
    • Hyrien O, Goldar A. Mathematical modelling of eukaryotic DNA replication. Chromosome Res. 2010;18:147-161
    • (2010) Chromosome Res , vol.18 , pp. 147-161
    • Hyrien, O.1    Goldar, A.2
  • 187
    • 84855289466 scopus 로고    scopus 로고
    • Do replication forks control late origin firing in Saccharomyces cerevisiae?
    • Ma E, Hyrien O, Goldar A. Do replication forks control late origin firing in Saccharomyces cerevisiae? Nucleic Acids Res. 2012;40:2010-2019
    • (2012) Nucleic Acids Res , vol.40 , pp. 2010-2019
    • Ma, E.1    Hyrien, O.2    Goldar, A.3
  • 188
    • 84861147700 scopus 로고    scopus 로고
    • Replication fork polarity gradients revealed by megabasesized U-shaped replication timing domains in human cell lines
    • Baker A, Audit B, Chen CL, et al. Replication fork polarity gradients revealed by megabasesized U-shaped replication timing domains in human cell lines. PLoS Comput Biol. 2012;8:e1002443
    • (2012) PLoS Comput Biol , vol.8
    • Baker, A.1    Audit, B.2    Chen, C.L.3
  • 189
    • 0034725550 scopus 로고    scopus 로고
    • Replication fork density increases during DNA synthesis in X. laevis egg extracts
    • Herrick J, Stanislawski P, Hyrien O, Bensimon A. Replication fork density increases during DNA synthesis in X. laevis egg extracts. J Mol Biol. 2000;300:1133-1142
    • (2000) J Mol Biol , vol.300 , pp. 1133-1142
    • Herrick, J.1    Stanislawski, P.2    Hyrien, O.3    Bensimon, A.4
  • 190
    • 0035825156 scopus 로고    scopus 로고
    • Replication origins in Xenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times
    • Blow JJ, Gillespie PJ, Francis D, Jackson DA. Replication origins in Xenopus egg extract are 5-15 kilobases apart and are activated in clusters that fire at different times. J Cell Biol. 2001;152:15-25
    • (2001) J Cell Biol , vol.152 , pp. 15-25
    • Blow, J.J.1    Gillespie, P.J.2    Francis, D.3    Jackson, D.A.4
  • 191
    • 0023193418 scopus 로고
    • Role of replication time in the control of tissue-specific gene expression
    • Holmquist GP. Role of replication time in the control of tissue-specific gene expression. Am J Hum Genet. 1987;40:151-173
    • (1987) Am J Hum Genet , vol.40 , pp. 151-173
    • Holmquist, G.P.1
  • 192
    • 65449142884 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect, part II
    • Hiratani I, Takebayashi S, Lu J, Gilbert DM. Replication timing and transcriptional control: beyond cause and effect, part II. Curr Opin Genet Dev. 2009;19:142-149
    • (2009) Curr Opin Genet Dev , vol.19 , pp. 142-149
    • Hiratani, I.1    Takebayashi, S.2    Lu, J.3    Gilbert, D.M.4
  • 193
  • 194
    • 0036606915 scopus 로고    scopus 로고
    • Base composition bias might result from competition for metabolic resources
    • Rocha EP, Danchin A. Base composition bias might result from competition for metabolic resources. Trends Genet. 2002;18:291-294
    • (2002) Trends Genet , vol.18 , pp. 291-294
    • Rocha, E.P.1    Danchin, A.2
  • 195
    • 0024966756 scopus 로고
    • Chromosomal location and evolutionary rate variation in enterobacterial genes
    • Sharp PM, Shields DC, Wolfe KH, Li WH. Chromosomal location and evolutionary rate variation in enterobacterial genes. Science. 1989;246:808-810
    • (1989) Science , vol.246 , pp. 808-810
    • Sharp, P.M.1    Shields, D.C.2    Wolfe, K.H.3    Li, W.H.4
  • 196
    • 0021347480 scopus 로고
    • Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12
    • Danchin A, Dondon L, Daniel J. Metabolic alterations mediated by 2-ketobutyrate in Escherichia coli K12. Mol Gen Genet. 1984;193:473-478
    • (1984) Mol Gen Genet , vol.193 , pp. 473-478
    • Danchin, A.1    Dondon, L.2    Daniel, J.3
  • 197
    • 0036667696 scopus 로고    scopus 로고
    • Gene location and bacterial sequence divergence
    • Mira A, Ochman H. Gene location and bacterial sequence divergence. Mol Biol Evol. 2002;19:1350-1358
    • (2002) Mol Biol Evol , vol.19 , pp. 1350-1358
    • Mira, A.1    Ochman, H.2
  • 198
    • 83255189766 scopus 로고    scopus 로고
    • DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes
    • De S, Michor F. DNA replication timing and long-range DNA interactions predict mutational landscapes of cancer genomes. Nat Biotechnol. 2011;29:1103-1108
    • (2011) Nat Biotechnol , vol.29 , pp. 1103-1108
    • De, S.1    Michor, F.2
  • 199
    • 0028908039 scopus 로고
    • Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex
    • Liu B, Alberts BM. Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science. 1995; 267:1131-1137
    • (1995) Science , vol.267 , pp. 1131-1137
    • Liu, B.1    Alberts, B.M.2
  • 200
    • 77955448694 scopus 로고    scopus 로고
    • What happens when replication and transcription complexes collide?
    • Pomerantz RT, O'Donnell M. What happens when replication and transcription complexes collide? Cell Cycle. 2010;9:2537-2543
    • (2010) Cell Cycle , vol.9 , pp. 2537-2543
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 202
    • 0026733965 scopus 로고
    • Consequences of replication fork movement through transcription units in vivo
    • French S. Consequences of replication fork movement through transcription units in vivo. Science. 1992;258:1362-1365
    • (1992) Science , vol.258 , pp. 1362-1365
    • French, S.1
  • 203
    • 12844265439 scopus 로고    scopus 로고
    • Mechanisms of transcription-replication collisions in bacteria
    • Mirkin EV, Mirkin SM. Mechanisms of transcription-replication collisions in bacteria. Mol Cell Biol. 2005;25:888-895
    • (2005) Mol Cell Biol , vol.25 , pp. 888-895
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 204
    • 76749094639 scopus 로고    scopus 로고
    • Co-orientation of replication and transcription preserves genome integrity
    • Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD. Co-orientation of replication and transcription preserves genome integrity. PLoS Genet. 2010;6:e1000810
    • (2010) PLoS Genet , vol.6
    • Srivatsan, A.1    Tehranchi, A.2    Macalpine, D.M.3    Wang, J.D.4
  • 205
    • 34248394295 scopus 로고    scopus 로고
    • Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis
    • Wang JD, Berkmen MB, Grossman AD. Genome-wide coorientation of replication and transcription reduces adverse effects on replication in Bacillus subtilis. Proc Natl Acad Sci U S A. 2007;104:5608-5613
    • (2007) Proc Natl Acad Sci U S A , vol.104 , pp. 5608-5613
    • Wang, J.D.1    Berkmen, M.B.2    Grossman, A.D.3
  • 206
    • 57649129186 scopus 로고    scopus 로고
    • The replisome uses mRNA as a primer after colliding with RNA polymerase
    • Pomerantz RT, O'Donnell M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature. 2008;456:762-766
    • (2008) Nature , vol.456 , pp. 762-766
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 207
    • 1842377482 scopus 로고    scopus 로고
    • Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery
    • Elias-Arnanz M, Salas M. Bacteriophage phi29 DNA replication arrest caused by codirectional collisions with the transcription machinery. EMBO J. 1997;16:5775-5783
    • (1997) EMBO J , vol.16 , pp. 5775-5783
    • Elias-Arnanz, M.1    Salas, M.2
  • 208
    • 0027443441 scopus 로고
    • The DNA replication fork can pass RNA polymerase without displacing the nascent transcript
    • Liu B, Wong ML, Tinker RL, Geiduschek EP, Alberts BM. The DNA replication fork can pass RNA polymerase without displacing the nascent transcript. Nature. 1993;366: 33-39
    • (1993) Nature , vol.366 , pp. 33-39
    • Liu, B.1    Wong, M.L.2    Tinker, R.L.3    Geiduschek, E.P.4    Alberts, B.M.5
  • 209
    • 0024276903 scopus 로고
    • When polymerases collide: Replication and the transcriptional organization of the E. Coli Chromosome
    • Brewer BJ. When polymerases collide: replication and the transcriptional organization of the E. coli chromosome. Cell. 1988;53:679-686
    • (1988) Cell , vol.53 , pp. 679-686
    • Brewer, B.J.1
  • 210
    • 0032417093 scopus 로고    scopus 로고
    • Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes
    • McLean MJ, Wolfe KH, Devine KM. Base composition skews, replication orientation, and gene orientation in 12 prokaryote genomes. J Mol Evol. 1998;47:691-696
    • (1998) J Mol Evol , vol.47 , pp. 691-696
    • McLean, M.J.1    Wolfe, K.H.2    Devine, K.M.3
  • 211
    • 0032584101 scopus 로고    scopus 로고
    • Strand compositional asymmetry in bacterial and large viral genomes
    • Mrazek J, Karlin S. Strand compositional asymmetry in bacterial and large viral genomes. Proc Natl Acad Sci U S A. 1998;95:3720-3725
    • (1998) Proc Natl Acad Sci U S A , vol.95 , pp. 3720-3725
    • Mrazek, J.1    Karlin, S.2
  • 212
    • 0344668838 scopus 로고    scopus 로고
    • Gene essentiality determines chromosome organisation in bacteria
    • Rocha EP, Danchin A. Gene essentiality determines chromosome organisation in bacteria. Nucleic Acids Res. 2003;31:6570-6577
    • (2003) Nucleic Acids Res , vol.31 , pp. 6570-6577
    • Rocha, E.P.1    Danchin, A.2
  • 213
    • 0020085937 scopus 로고
    • Chromosomal locations of the genes for rRNA in Escherichia coli K-12
    • Ellwood M, Nomura M. Chromosomal locations of the genes for rRNA in Escherichia coli K-12. J Bacteriol. 1982;149:458-468
    • (1982) J Bacteriol , vol.149 , pp. 458-468
    • Ellwood, M.1    Nomura, M.2
  • 214
    • 0017729265 scopus 로고
    • Genetics of bacterial ribosomes
    • Nomura M, Morgan EA. Genetics of bacterial ribosomes. Annu Rev Genet. 1977;11:297-347
    • (1977) Annu Rev Genet , vol.11 , pp. 297-347
    • Nomura, M.1    Morgan, E.A.2
  • 215
    • 0141625269 scopus 로고    scopus 로고
    • Transcription through the roadblocks: The role of RNA polymerase cooperation
    • Epshtein V, Toulme F, Rahmouni AR, Borukhov S, Nudler E. Transcription through the roadblocks: the role of RNA polymerase cooperation. EMBO J. 2003;22:4719-4727
    • (2003) EMBO J , vol.22 , pp. 4719-4727
    • Epshtein, V.1    Toulme, F.2    Rahmouni, A.R.3    Borukhov, S.4    Nudler, E.5
  • 216
    • 0030731108 scopus 로고    scopus 로고
    • The complete genome sequence of the grampositive bacterium Bacillus subtilis
    • Kunst F, Ogasawara N, Moszer I, et al. The complete genome sequence of the grampositive bacterium Bacillus subtilis. Nature. 1997;390:249-256
    • (1997) Nature , vol.390 , pp. 249-256
    • Kunst, F.1    Ogasawara, N.2    Moszer, I.3
  • 217
    • 15444350252 scopus 로고    scopus 로고
    • The complete genome sequence of Escherichia coli K-12
    • Blattner FR, Plunkett G 3rd, Bloch CA, et al. The complete genome sequence of Escherichia coli K-12. Science. 1997;277:1453-1462
    • (1997) Science , vol.277 , pp. 1453-1462
    • Blattner, F.R.1    Plunkett III, G.2    Bloch, C.A.3
  • 218
    • 0036709941 scopus 로고    scopus 로고
    • Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes?
    • Rocha E. Is there a role for replication fork asymmetry in the distribution of genes in bacterial genomes? Trends Microbiol. 2002;10: 393-395
    • (2002) Trends Microbiol , vol.10 , pp. 393-395
    • Rocha, E.1
  • 220
    • 0024291357 scopus 로고
    • A replication fork barrier at the 3′ end of yeast ribosomal RNA genes
    • Brewer BJ, Fangman WL. A replication fork barrier at the 3′ end of yeast ribosomal RNA genes. Cell. 1988;55:637-643
    • (1988) Cell , vol.55 , pp. 637-643
    • Brewer, B.J.1    Fangman, W.L.2
  • 221
    • 0023806623 scopus 로고
    • Organization of replication of ribosomal DNA in Saccharomyces cerevisiae
    • Linskens MH, Huberman JA. Organization of replication of ribosomal DNA in Saccharomyces cerevisiae. Mol Cell Biol. 1988;8:4927-4935
    • (1988) Mol Cell Biol , vol.8 , pp. 4927-4935
    • Linskens, M.H.1    Huberman, J.A.2
  • 222
    • 0035882059 scopus 로고    scopus 로고
    • A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe
    • Dalgaard JZ, Klar AJ. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes Dev. 2001;15:2060-2068
    • (2001) Genes Dev , vol.15 , pp. 2060-2068
    • Dalgaard, J.Z.1    Klar, A.J.2
  • 223
    • 4644291834 scopus 로고    scopus 로고
    • Swi1-and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe
    • Krings G, Bastia D. swi1-and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A. 2004;101:14085-14090
    • (2004) Proc Natl Acad Sci U S A , vol.101 , pp. 14085-14090
    • Krings, G.1    Bastia, D.2
  • 224
    • 0027486027 scopus 로고
    • Initiation and termination of DNA replication in human rRNA genes
    • Little RD, Platt TH, Schildkraut CL. Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol. 1993;13:6600-6613
    • (1993) Mol Cell Biol , vol.13 , pp. 6600-6613
    • Little, R.D.1    Platt, T.H.2    Schildkraut, C.L.3
  • 226
    • 79960802984 scopus 로고    scopus 로고
    • The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores
    • Bermejo R, Capra T, Jossen R, et al. The replication checkpoint protects fork stability by releasing transcribed genes from nuclear pores. Cell. 2011;146:233-246
    • (2011) Cell , vol.146 , pp. 233-246
    • Bermejo, R.1    Capra, T.2    Jossen, R.3
  • 227
    • 46449117951 scopus 로고    scopus 로고
    • Asymmetric bidirectional replication at the human DBF4 origin
    • Romero J, Lee H. Asymmetric bidirectional replication at the human DBF4 origin. Nat Struct Mol Biol. 2008;15:722-729
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 722-729
    • Romero, J.1    Lee, H.2
  • 228
    • 84869453191 scopus 로고    scopus 로고
    • Origin of DNA Replication At the Human Lamin B2 Locus: OBR Or ABR?
    • Lee H, Romero J. Origin of DNA replication at the human lamin B2 locus: OBR or ABR? Cell Cycle. 2012;11:4281-4283
    • (2012) Cell Cycle , vol.11 , pp. 4281-4283
    • Lee, H.1    Romero, J.2
  • 229
    • 0034677730 scopus 로고    scopus 로고
    • Start sites of bidirectional DNA synthesis at the human lamin B2 origin
    • Abdurashidova G, Deganuto M, Klima R, et al. Start sites of bidirectional DNA synthesis at the human lamin B2 origin. Science. 2000;287:2023-2036
    • (2000) Science , vol.287 , pp. 2023-2036
    • Abdurashidova, G.1    Deganuto, M.2    Klima, R.3
  • 230
    • 0030462462 scopus 로고    scopus 로고
    • Transcriptioninduced mutations: Increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli
    • Beletskii A, Bhagwat AS. Transcriptioninduced mutations: increase in C to T mutations in the nontranscribed strand during transcription in Escherichia coli. Proc Natl Acad Sci U S A. 1996;93:13919-13924
    • (1996) Proc Natl Acad Sci U S A , vol.93 , pp. 13919-13924
    • Beletskii, A.1    Bhagwat, A.S.2
  • 231
    • 0029874447 scopus 로고    scopus 로고
    • Asymmetries generated by transcription-coupled repair in enterobacterial genes
    • Francino MP, Chao L, Riley MA, Ochman H. Asymmetries generated by transcription-coupled repair in enterobacterial genes. Science. 1996;272:107-109
    • (1996) Science , vol.272 , pp. 107-109
    • Francino, M.P.1    Chao, L.2    Riley, M.A.3    Ochman, H.4
  • 232
    • 84866978035 scopus 로고    scopus 로고
    • Threedimensional genome architecture influences partner selection for chromosomal translocations in human disease
    • Engreitz JM, Agarwala V, Mirny LA. Threedimensional genome architecture influences partner selection for chromosomal translocations in human disease. PloS One. 2012; 7:e44196
    • (2012) PloS One , vol.7
    • Engreitz, J.M.1    Agarwala, V.2    Mirny, L.A.3
  • 233
    • 0027731437 scopus 로고
    • Initiation at closely spaced replication origins in a yeast chromosome
    • Brewer BJ, Fangman WL. Initiation at closely spaced replication origins in a yeast chromosome. Science. 1993;262:1728-1731
    • (1993) Science , vol.262 , pp. 1728-1731
    • Brewer, B.J.1    Fangman, W.L.2
  • 234
    • 0033568196 scopus 로고    scopus 로고
    • Activation of dormant origins of DNA replication in budding yeast
    • Santocanale C, Sharma K, Diffley JF. Activation of dormant origins of DNA replication in budding yeast. Genes Dev. 1999;13:2360-2364
    • (1999) Genes Dev , vol.13 , pp. 2360-2364
    • Santocanale, C.1    Sharma, K.2    Diffley, J.F.3
  • 235
    • 3242708425 scopus 로고    scopus 로고
    • Regulation of DNA replication by ATR: Signaling in response to DNA intermediates
    • Shechter D, Costanzo V, Gautier J. Regulation of DNA replication by ATR: signaling in response to DNA intermediates. DNA Repair. 2004;3:901-908
    • (2004) DNA Repair , vol.3 , pp. 901-908
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 236
    • 21444434023 scopus 로고    scopus 로고
    • ATM and ATR check in on origins: A dynamic model for origin selection and activation
    • Shechter D, Gautier J. ATM and ATR check in on origins: a dynamic model for origin selection and activation. Cell Cycle. 2005;4:235-238
    • (2005) Cell Cycle , vol.4 , pp. 235-238
    • Shechter, D.1    Gautier, J.2
  • 237
    • 3142544855 scopus 로고    scopus 로고
    • Control of replication origin density and firing time in Xenopus egg extracts: Role of a caffeine-sensitive, ATR-dependent checkpoint
    • Marheineke K, Hyrien O. Control of replication origin density and firing time in Xenopus egg extracts: role of a caffeine-sensitive, ATR-dependent checkpoint. J Biol Chem. 2004;279:28071-28081
    • (2004) J Biol Chem , vol.279 , pp. 28071-28081
    • Marheineke, K.1    Hyrien, O.2
  • 238
    • 5044224075 scopus 로고    scopus 로고
    • ATR, claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage
    • Sorensen CS, Syljuasen RG, Lukas J, Bartek J. ATR, claspin and the Rad9-Rad1-Hus1 complex regulate Chk1 and Cdc25A in the absence of DNA damage. Cell Cycle. 2004;3: 941-945
    • (2004) Cell Cycle , vol.3 , pp. 941-945
    • Sorensen, C.S.1    Syljuasen, R.G.2    Lukas, J.3    Bartek, J.4
  • 239
    • 0037423308 scopus 로고    scopus 로고
    • Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints
    • Miao H, Seiler JA, Burhans WC. Regulation of cellular and SV40 virus origins of replication by Chk1-dependent intrinsic and UVC radiation-induced checkpoints. J Biol Chem. 2003;278:4295-4304
    • (2003) J Biol Chem , vol.278 , pp. 4295-4304
    • Miao, H.1    Seiler, J.A.2    Burhans, W.C.3
  • 240
    • 0034177408 scopus 로고    scopus 로고
    • Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice
    • de Klein A, Muijtjens M, van Os R, et al. Targeted disruption of the cell-cycle checkpoint gene ATR leads to early embryonic lethality in mice. Curr Biol. 2000;10:479-482
    • (2000) Curr Biol , vol.10 , pp. 479-482
    • de Klein, A.1    Muijtjens, M.2    van Os, R.3
  • 241
    • 3242670803 scopus 로고    scopus 로고
    • ATR and ATM regulate the timing of DNA replication origin firing
    • Shechter D, Costanzo V, Gautier J. ATR and ATM regulate the timing of DNA replication origin firing. Nat Cell Biol. 2004;6:648-655
    • (2004) Nat Cell Biol , vol.6 , pp. 648-655
    • Shechter, D.1    Costanzo, V.2    Gautier, J.3
  • 242
    • 82455164158 scopus 로고    scopus 로고
    • Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast
    • Mantiero D, Mackenzie A, Donaldson A, Zegerman P. Limiting replication initiation factors execute the temporal programme of origin firing in budding yeast. EMBO J. 2011;30:4805-4814
    • (2011) EMBO J , vol.30 , pp. 4805-4814
    • Mantiero, D.1    Mackenzie, A.2    Donaldson, A.3    Zegerman, P.4
  • 244
    • 17244366865 scopus 로고    scopus 로고
    • Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions
    • Gorgoulis VG, Vassiliou LV, Karakaidos P, et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature. 2005;434:907-913
    • (2005) Nature , vol.434 , pp. 907-913
    • Gorgoulis, V.G.1    Vassiliou, L.V.2    Karakaidos, P.3
  • 245
    • 17244367849 scopus 로고    scopus 로고
    • DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis
    • Bartkova J, Horejsi Z, Koed K, et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature. 2005;434:864-870
    • (2005) Nature , vol.434 , pp. 864-870
    • Bartkova, J.1    Horejsi, Z.2    Koed, K.3
  • 246
    • 0036902410 scopus 로고    scopus 로고
    • 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer
    • DiTullio RA Jr., Mochan TA, Venere M, et al. 53BP1 functions in an ATM-dependent checkpoint pathway that is constitutively activated in human cancer. Nat Cell Biol. 2002;4:998-1002
    • (2002) Nat Cell Biol , vol.4 , pp. 998-1002
    • Ditullio Jr., R.A.1    Mochan, T.A.2    Venere, M.3
  • 247
    • 33845235459 scopus 로고    scopus 로고
    • Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints
    • Bartkova J, Rezaei N, Liontos M, et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature. 2006;444:633-637
    • (2006) Nature , vol.444 , pp. 633-637
    • Bartkova, J.1    Rezaei, N.2    Liontos, M.3
  • 248
    • 33845269825 scopus 로고    scopus 로고
    • Oncogene-induced senescence is a DNA damage response triggered by DNA hyperreplication
    • Di Micco R, Fumagalli M, Cicalese A, et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyperreplication. Nature. 2006;444:638-642
    • (2006) Nature , vol.444 , pp. 638-642
    • Di Micco, R.1    Fumagalli, M.2    Cicalese, A.3
  • 249
    • 40449120350 scopus 로고    scopus 로고
    • An oncogene-induced DNA damage model for cancer development
    • Halazonetis TD, Gorgoulis VG, Bartek J. An oncogene-induced DNA damage model for cancer development. Science. 2008;319:1352-1355
    • (2008) Science , vol.319 , pp. 1352-1355
    • Halazonetis, T.D.1    Gorgoulis, V.G.2    Bartek, J.3
  • 250
    • 0028338927 scopus 로고
    • The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle
    • Denko NC, Giaccia AJ, Stringer JR, Stambrook PJ. The human Ha-ras oncogene induces genomic instability in murine fibroblasts within one cell cycle. Proc Natl Acad Sci U S A. 1994;91:5124-5128
    • (1994) Proc Natl Acad Sci U S A , vol.91 , pp. 5124-5128
    • Denko, N.C.1    Giaccia, A.J.2    Stringer, J.R.3    Stambrook, P.J.4
  • 251
    • 0029742122 scopus 로고    scopus 로고
    • Genomic instability in MycER-activated Rat1A-MycER cells
    • Mai S, Fluri M, Siwarski D, Huppi K. Genomic instability in MycER-activated Rat1A-MycER cells. Chromosome Res. 1996;4:365-371
    • (1996) Chromosome Res , vol.4 , pp. 365-371
    • Mai, S.1    Fluri, M.2    Siwarski, D.3    Huppi, K.4
  • 252
    • 0033616602 scopus 로고    scopus 로고
    • Transient excess of MYC activity can elicit genomic instability and tumorigenesis
    • Felsher DW, Bishop JM. Transient excess of MYC activity can elicit genomic instability and tumorigenesis. Proc Natl Acad Sci U S A. 1999;96:3940-3944
    • (1999) Proc Natl Acad Sci U S A , vol.96 , pp. 3940-3944
    • Felsher, D.W.1    Bishop, J.M.2
  • 253
    • 0033575920 scopus 로고    scopus 로고
    • Deregulated cyclin E Induces Chromosome Instability
    • Spruck CH, Won KA, Reed SI. Deregulated cyclin E induces chromosome instability. Nature. 1999;401:297-300
    • (1999) Nature , vol.401 , pp. 297-300
    • Spruck, C.H.1    Won, K.A.2    Reed, S.I.3
  • 254
    • 34547928992 scopus 로고    scopus 로고
    • Clurman BE. p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability
    • Minella AC, Grim JE, Welcker M, Clurman BE. p53 and SCFFbw7 cooperatively restrain cyclin E-associated genome instability. Oncogene. 2007;26:6948-6953
    • (2007) Oncogene , vol.26 , pp. 6948-6953
    • Minella, A.C.1    Grim, J.E.2    Welcker, M.3
  • 255
    • 0036278984 scopus 로고    scopus 로고
    • The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1)
    • Lengronne A, Schwob E. The yeast CDK inhibitor Sic1 prevents genomic instability by promoting replication origin licensing in late G(1). Mol Cell. 2002;9:1067-1078
    • (2002) Mol Cell , vol.9 , pp. 1067-1078
    • Lengronne, A.1    Schwob, E.2
  • 256
    • 33748623634 scopus 로고    scopus 로고
    • Common fragile sites as targets for chromosome rearrangements
    • Arlt MF, Durkin SG, Ragland RL, Glover TW. Common fragile sites as targets for chromosome rearrangements. DNA Repair. 2006;5:1126-1135
    • (2006) DNA Repair , vol.5 , pp. 1126-1135
    • Arlt, M.F.1    Durkin, S.G.2    Ragland, R.L.3    Glover, T.W.4
  • 257
    • 0029929885 scopus 로고    scopus 로고
    • Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment
    • Mao L, Lee JS, Fan YH, et al. Frequent microsatellite alterations at chromosomes 9p21 and 3p14 in oral premalignant lesions and their value in cancer risk assessment. Nat Med. 1996;2:682-685
    • (1996) Nat Med , vol.2 , pp. 682-685
    • Mao, L.1    Lee, J.S.2    Fan, Y.H.3
  • 258
    • 78650959663 scopus 로고    scopus 로고
    • Massive genomic rearrangement acquired in a single catastrophic event during cancer development
    • Stephens PJ, Greenman CD, Fu B, et al. Massive genomic rearrangement acquired in a single catastrophic event during cancer development. Cell. 2011;144:27-40
    • (2011) Cell , vol.144 , pp. 27-40
    • Stephens, P.J.1    Greenman, C.D.2    Fu, B.3
  • 259
    • 80052916562 scopus 로고    scopus 로고
    • Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements
    • Liu P, Erez A, Nagamani SC, et al. Chromosome catastrophes involve replication mechanisms generating complex genomic rearrangements. Cell. 2011;146:889-903
    • (2011) Cell , vol.146 , pp. 889-903
    • Liu, P.1    Erez, A.2    Nagamani, S.C.3
  • 260
    • 83255165727 scopus 로고    scopus 로고
    • High order chromatin architecture shapes the landscape of chromosomal alterations in cancer
    • Fudenberg G, Getz G, Meyerson M, Mirny LA. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol. 2011;29:1109-1113
    • (2011) Nat Biotechnol , vol.29 , pp. 1109-1113
    • Fudenberg, G.1    Getz, G.2    Meyerson, M.3    Mirny, L.A.4
  • 261
    • 84862778059 scopus 로고    scopus 로고
    • Spatial organization of the mouse genome and its role in recurrent chromosomal translocations
    • Zhang Y, McCord RP, Ho YJ, et al. Spatial organization of the mouse genome and its role in recurrent chromosomal translocations. Cell. 2012;148:908-921
    • (2012) Cell , vol.148 , pp. 908-921
    • Zhang, Y.1    McCord, R.P.2    Ho, Y.J.3
  • 262
    • 80053558376 scopus 로고    scopus 로고
    • Genomewide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells
    • Chiarle R, Zhang Y, Frock RL, et al. Genomewide translocation sequencing reveals mechanisms of chromosome breaks and rearrangements in B cells. Cell. 2011;147:107-119
    • (2011) Cell , vol.147 , pp. 107-119
    • Chiarle, R.1    Zhang, Y.2    Frock, R.L.3
  • 263
    • 84860378609 scopus 로고    scopus 로고
    • Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation
    • Leonardi R, Subramanian C, Jackowski S, Rock CO. Cancer-associated isocitrate dehydrogenase mutations inactivate NADPH-dependent reductive carboxylation. J Biol Chem. 2012;287: 14615-14620
    • (2012) J Biol Chem , vol.287 , pp. 14615-14620
    • Leonardi, R.1    Subramanian, C.2    Jackowski, S.3    Rock, C.O.4
  • 264
    • 77649305610 scopus 로고    scopus 로고
    • The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate
    • Ward PS, Patel J, Wise DR, et al. The common feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting alpha-ketoglutarate to 2-hydroxyglutarate. Cancer Cell. 2010;17:225-234
    • (2010) Cancer Cell , vol.17 , pp. 225-234
    • Ward, P.S.1    Patel, J.2    Wise, D.R.3
  • 265
    • 78650019179 scopus 로고    scopus 로고
    • Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation
    • Figueroa ME, Abdel-Wahab O, Lu, C, et al. Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation. Cancer Cell. 2010;18:553-567
    • (2010) Cancer Cell , vol.18 , pp. 553-567
    • Figueroa, M.E.1    Abdel-Wahab, O.2    Lu, C.3
  • 266
    • 84858796262 scopus 로고    scopus 로고
    • IDH mutation impairs histone demethylation and results in a block to cell differentiation
    • Lu C, Ward PS, Kapoor GS, et al. IDH mutation impairs histone demethylation and results in a block to cell differentiation. Nature. 2012;483:474-478
    • (2012) Nature , vol.483 , pp. 474-478
    • Lu, C.1    Ward, P.S.2    Kapoor, G.S.3
  • 267
    • 84862266735 scopus 로고    scopus 로고
    • TET2 mutations in acute myeloid leukemia (AML): Results from a comprehensive genetic and clinical analysis of the AML study group
    • Gaidzik VI, Paschka P, Spath D, et al. TET2 mutations in acute myeloid leukemia (AML): results from a comprehensive genetic and clinical analysis of the AML study group. J Clin Oncol. 2012;30:1350-1357
    • (2012) J Clin Oncol , vol.30 , pp. 1350-1357
    • Gaidzik, V.I.1    Paschka, P.2    Spath, D.3
  • 268
    • 84866510310 scopus 로고    scopus 로고
    • IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy
    • Okita Y, Narita Y, Miyakita Y, et al. IDH1/2 mutation is a prognostic marker for survival and predicts response to chemotherapy for grade II gliomas concomitantly treated with radiation therapy. Int J Oncol. Epub 2012 Jul 20
    • (2012) Int J Oncol. , pp. 20
    • Okita, Y.1    Narita, Y.2    Miyakita, Y.3
  • 269
    • 84856466311 scopus 로고    scopus 로고
    • IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma
    • SongTao Q, Lei Y, Si G, et al. IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci. 2012;103:269-273
    • (2012) Cancer Sci , vol.103 , pp. 269-273
    • Songtao, Q.1    Lei, Y.2    Si, G.3
  • 270
    • 84868342138 scopus 로고    scopus 로고
    • Potential application of IDH1 and IDH2 mutations as prognostic indicators in nonpromyelocytic acute myeloid leukemia: A metaanalysis
    • Zhou KG, Jiang LJ, Shang Z, Wang J, Huang L, Zhou JF. Potential application of IDH1 and IDH2 mutations as prognostic indicators in nonpromyelocytic acute myeloid leukemia: a metaanalysis. Leuk Lymphoma. 2012;53:2423-2429.
    • (2012) Leuk Lymphoma , vol.53 , pp. 2423-2429
    • Zhou, K.G.1    Jiang, L.J.2    Shang, Z.3    Wang, J.4    Huang, L.5    Zhou, J.F.6
  • 271
    • 77954697566 scopus 로고    scopus 로고
    • Isocitrate dehydrogenase 1 and 2 mutations in cancer: Alterations at a crossroads of cellular metabolism
    • Reitman, ZJ, Yan H. Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst. 2010;102:932-941.
    • (2010) J Natl Cancer Inst , vol.102 , pp. 932-941
    • Reitman, Z.J.1    Yan, H.2
  • 272
    • 0037340215 scopus 로고    scopus 로고
    • Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process
    • Bruniquel D, Schwartz RH. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active process. Nat Immunol. 2003;4:235-240
    • (2003) Nat Immunol , vol.4 , pp. 235-240
    • Bruniquel, D.1    Schwartz, R.H.2
  • 273
    • 40449123137 scopus 로고    scopus 로고
    • Cyclical DNA methylation of a transcriptionally active promoter
    • Metivier R, Gallais R, Tiffoche C, et al. Cyclical DNA methylation of a transcriptionally active promoter. Nature. 2008;452:45-50
    • (2008) Nature , vol.452 , pp. 45-50
    • Metivier, R.1    Gallais, R.2    Tiffoche, C.3
  • 274
    • 40449104358 scopus 로고    scopus 로고
    • Transient cyclical methylation of promoter DNA
    • Kangaspeska S, Stride B, Metivier R, et al. Transient cyclical methylation of promoter DNA. Nature. 2008;452:112-115
    • (2008) Nature , vol.452 , pp. 112-115
    • Kangaspeska, S.1    Stride, B.2    Metivier, R.3
  • 275
    • 33749993417 scopus 로고    scopus 로고
    • The consensus coding sequences of human breast and colorectal cancers
    • Sjoblom T, Jones S, Wood LD, et al. The consensus coding sequences of human breast and colorectal cancers. Science. 2006;314:268-274
    • (2006) Science , vol.314 , pp. 268-274
    • Sjoblom, T.1    Jones, S.2    Wood, L.D.3
  • 276
    • 44349125900 scopus 로고    scopus 로고
    • Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes
    • Howarth KD, Blood KA, Ng BL, et al. Array painting reveals a high frequency of balanced translocations in breast cancer cell lines that break in cancer-relevant genes. Oncogene. 2008;27:3345-3359.
    • (2008) Oncogene , vol.27 , pp. 3345-3359
    • Howarth, K.D.1    Blood, K.A.2    Ng, B.L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.