메뉴 건너뛰기




Volumn 11, Issue 3, 2010, Pages 208-219

Maintaining genome stability at the replication fork

Author keywords

[No Author keywords available]

Indexed keywords

DNA TOPOISOMERASE; SUMO PROTEIN; UBIQUITIN;

EID: 77649165394     PISSN: 14710072     EISSN: 14710080     Source Type: Journal    
DOI: 10.1038/nrm2852     Document Type: Review
Times cited : (646)

References (155)
  • 1
    • 8844254769 scopus 로고    scopus 로고
    • Flexibility and governance in eukaryotic DNA replication
    • Schwob, E. Flexibility and governance in eukaryotic DNA replication. Curr. Opin. Microbiol. 7, 680-690 (2004).
    • (2004) Curr. Opin. Microbiol. , vol.7 , pp. 680-690
    • Schwob, E.1
  • 2
    • 0344845078 scopus 로고    scopus 로고
    • Enigmatic variations: Divergent modes of regulating eukaryotic DNA replication
    • Kearsey, S. E. & Cotterill, S. Enigmatic variations: divergent modes of regulating eukaryotic DNA replication. Mol. Cell 12, 1067-1075 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1067-1075
    • Kearsey, S.E.1    Cotterill, S.2
  • 3
    • 68249102864 scopus 로고    scopus 로고
    • DNA replication as a target of the DNA damage checkpoint
    • Zegerman, P. & Diffley, J. F. DNA replication as a target of the DNA damage checkpoint. DNA Repair (Amst.) 8, 1077-1088 (2009).
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1077-1088
    • Zegerman, P.1    Diffley, J.F.2
  • 4
    • 0035812808 scopus 로고    scopus 로고
    • Replication dynamics of the yeast genome
    • Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115-121 (2001).
    • (2001) Science , vol.294 , pp. 115-121
    • Raghuraman, M.K.1
  • 5
    • 0036668464 scopus 로고    scopus 로고
    • Mapping of early firing origins on a replication profile of budding yeast
    • Yabuki, N., Terashima, H. & Kitada, K. Mapping of early firing origins on a replication profile of budding yeast. Genes Cells 7, 781-789 (2002).
    • (2002) Genes Cells , vol.7 , pp. 781-789
    • Yabuki, N.1    Terashima, H.2    Kitada, K.3
  • 6
    • 0035861492 scopus 로고    scopus 로고
    • Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: High-resolution mapping of replication origins
    • Wyrick, J. J. et al. Genome-wide distribution of ORC and MCM proteins in S. cerevisiae: high-resolution mapping of replication origins. Science 294, 2357-2360 (2001).
    • (2001) Science , vol.294 , pp. 2357-2360
    • Wyrick, J.J.1
  • 7
    • 0027534202 scopus 로고
    • The effect on chromosome stability of deleting replication origins
    • Dershowitz, A. & Newlon, C. S. The effect on chromosome stability of deleting replication origins. Mol. Cell. Biol. 13, 391-398 (1993).
    • (1993) Mol. Cell. Biol. , vol.13 , pp. 391-398
    • Dershowitz, A.1    Newlon, C.S.2
  • 8
    • 33747432986 scopus 로고    scopus 로고
    • Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress
    • Woodward, A. M. et al. Excess Mcm2-7 license dormant origins of replication that can be used under conditions of replicative stress. J. Cell Biol. 173, 673-683 (2006).
    • (2006) J. Cell Biol. , vol.173 , pp. 673-683
    • Woodward, A.M.1
  • 9
    • 48249084972 scopus 로고    scopus 로고
    • Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication
    • Ibarra, A., Schwob, E. & Mendez, J. Excess MCM proteins protect human cells from replicative stress by licensing backup origins of replication. Proc. Natl Acad. Sci. USA 105, 8956-8961 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 8956-8961
    • Ibarra, A.1    Schwob, E.2    Mendez, J.3
  • 10
    • 0035422288 scopus 로고    scopus 로고
    • Chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle
    • Okuno, Y., McNairn, A. J., den Elzen, N., Pines, J. & Gilbert, D. M. Stability, chromatin association and functional activity of mammalian pre-replication complex proteins during the cell cycle. EMBO J. 20, 4263-4277 (2001).
    • (2001) EMBO J. , vol.20 , pp. 4263-4277
    • Okuno, Y.1    McNairn, A.J.2    Den Elzen, N.3    Pines, J.4    Stability, M.G.D.5
  • 11
    • 0019455680 scopus 로고
    • Replication origins in the eukaryotic chromosome
    • Laskey, R. A. & Harland, R. M. Replication origins in the eukaryotic chromosome. Cell 24, 283-284 (1981).
    • (1981) Cell , vol.24 , pp. 283-284
    • Laskey, R.A.1    Harland, R.M.2
  • 12
    • 0348047594 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes
    • Ivessa, A. S. et al. The Saccharomyces cerevisiae helicase Rrm3p facilitates replication past nonhistone protein-DNA complexes. Mol. Cell 12, 1525-1536 (2003).
    • (2003) Mol. Cell , vol.12 , pp. 1525-1536
    • Ivessa, A.S.1
  • 13
    • 0037178723 scopus 로고    scopus 로고
    • ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones
    • Cha, R. S. & Kleckner, N. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297, 602-606 (2002).
    • (2002) Science , vol.297 , pp. 602-606
    • Cha, R.S.1    Kleckner, N.2
  • 14
    • 0036606186 scopus 로고    scopus 로고
    • Saccharomyces Rrm3pa 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA
    • Ivessa, A. S., Zhou, J. Q., Schulz, V. P., Monson, E. K. & Zakian, V. A. Saccharomyces Rrm3p, a 5′ to 3′ DNA helicase that promotes replication fork progression through telomeric and subtelomeric DNA. Genes Dev. 16, 1383-1396 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 1383-1396
    • Ivessa, A.S.1    Zhou, J.Q.2    Schulz, V.P.3    Monson, E.K.4    Zakian, V.A.5
  • 15
    • 0034681257 scopus 로고    scopus 로고
    • The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA
    • Ivessa, A. S., Zhou, J. Q. & Zakian, V. A. The Saccharomyces Pif1p DNA helicase and the highly related Rrm3p have opposite effects on replication fork progression in ribosomal DNA. Cell 100, 479-489 (2000).
    • (2000) Cell , vol.100 , pp. 479-489
    • Ivessa, A.S.1    Zhou, J.Q.2    Zakian, V.A.3
  • 16
    • 69249229528 scopus 로고    scopus 로고
    • Telomere length regulation: Coupling DNA end processing to feedback regulation of telomerase
    • Shore, D. & Bianchi, A. Telomere length regulation: coupling DNA end processing to feedback regulation of telomerase. EMBO J. 28, 2309-2322 (2009).
    • (2009) EMBO J. , vol.28 , pp. 2309-2322
    • Shore, D.1    Bianchi, A.2
  • 18
    • 70149108086 scopus 로고    scopus 로고
    • Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants
    • Dulev, S. et al. Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants. Proc. Natl Acad. Sci. USA 106, 14466-14471 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 14466-14471
    • Dulev, S.1
  • 19
    • 39449096135 scopus 로고    scopus 로고
    • Genome instability: A mechanistic view of its causes and consequences
    • Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nature Rev. Genet. 9, 204-217 (2008).
    • (2008) Nature Rev. Genet. , vol.9 , pp. 204-217
    • Aguilera, A.1    Gomez-Gonzalez, B.2
  • 20
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner, R. D., Putnam, C. D. & Myung, K. Maintenance of genome stability in Saccharomyces cerevisiae. Science 297, 552-557 (2002).
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 21
    • 47349114465 scopus 로고    scopus 로고
    • The Mcm2-7 complex has in vitro helicase activity
    • Bochman, M. L. & Schwacha, A. The Mcm2-7 complex has in vitro helicase activity. Mol. Cell 31, 287-293 (2008).
    • (2008) Mol. Cell , vol.31 , pp. 287-293
    • Bochman, M.L.1    Schwacha, A.2
  • 22
    • 0034595448 scopus 로고    scopus 로고
    • Uninterrupted MCM2-7 function required for DNA replication fork progression
    • Labib, K., Tercero, J. A. & Diffley, J. F. Uninterrupted MCM2-7 function required for DNA replication fork progression. Science 288, 1643-1647 (2000).
    • (2000) Science , vol.288 , pp. 1643-1647
    • Labib, K.1    Tercero, J.A.2    Diffley, J.F.3
  • 23
    • 0027978640 scopus 로고
    • Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo
    • Dowell, S. J., Romanowski, P. & Diffley, J. F. Interaction of Dbf4, the Cdc7 protein kinase regulatory subunit, with yeast replication origins in vivo. Science 265, 1243-1246 (1994).
    • (1994) Science , vol.265 , pp. 1243-1246
    • Dowell, S.J.1    Romanowski, P.2    Diffley, J.F.3
  • 24
    • 0028949675 scopus 로고
    • Eukaryotic replicators and associated protein complexes
    • Bell, S. P. Eukaryotic replicators and associated protein complexes. Curr. Opin. Genet. Dev. 5, 162-167 (1995).
    • (1995) Curr. Opin. Genet. Dev. , vol.5 , pp. 162-167
    • Bell, S.P.1
  • 25
    • 0030886099 scopus 로고    scopus 로고
    • Components and dynamics of DNA replication complexes in S. cerevisiae: Redistribution of MCM proteins and Cdc45p during S phase
    • Aparicio, O. M., Weinstein, D. M. & Bell, S. P. Components and dynamics of DNA replication complexes in S. cerevisiae: redistribution of MCM proteins and Cdc45p during S phase. Cell 91, 59-69 (1997).
    • (1997) Cell , vol.91 , pp. 59-69
    • Aparicio, O.M.1    Weinstein, D.M.2    Bell, S.P.3
  • 26
    • 0030751470 scopus 로고    scopus 로고
    • Getting started: Regulating the initiation of DNA replication in yeast
    • Toone, W. M., Aerne, B. L., Morgan, B. A. & Johnston, L. H. Getting started: regulating the initiation of DNA replication in yeast. Annu. Rev. Microbiol 51, 125-149 (1997).
    • (1997) Annu. Rev. Microbiol , vol.51 , pp. 125-149
    • Toone, W.M.1    Aerne, B.L.2    Morgan, B.A.3    Johnston, L.H.4
  • 27
    • 33645717628 scopus 로고    scopus 로고
    • GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks
    • Gambus, A. et al. GINS maintains association of Cdc45 with MCM in replisome progression complexes at eukaryotic DNA replication forks. Nature Cell Biol. 8, 358-366 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 358-366
    • Gambus, A.1
  • 28
    • 0042865938 scopus 로고    scopus 로고
    • S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex
    • Katou, Y. et al. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424, 1078-1083 (2003).
    • (2003) Nature , vol.424 , pp. 1078-1083
    • Katou, Y.1
  • 29
    • 0042466524 scopus 로고    scopus 로고
    • DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1
    • Cobb, J. A., Bjergbaek, L., Shimada, K., Frei, C. & Gasser, S. M. DNA polymerase stabilization at stalled replication forks requires Mec1 and the RecQ helicase Sgs1. EMBO J. 22, 4325-4336 (2003).
    • (2003) EMBO J. , vol.22 , pp. 4325-4336
    • Cobb, J.A.1    Bjergbaek, L.2    Shimada, K.3    Frei, C.4    Gasser, S.M.5
  • 30
    • 1442351990 scopus 로고    scopus 로고
    • Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing
    • Lucca, C. et al. Checkpoint-mediated control of replisome-fork association and signalling in response to replication pausing. Oncogene 23, 1206-1213 (2004).
    • (2004) Oncogene , vol.23 , pp. 1206-1213
    • Lucca, C.1
  • 32
    • 0036085460 scopus 로고    scopus 로고
    • Cellular roles of DNA topoisomerases: A molecular perspective
    • Wang, J. C. Cellular roles of DNA topoisomerases: a molecular perspective. Nature Rev. Mol. Cell. Biol. 3, 430-440 (2002).
    • (2002) Nature Rev. Mol. Cell. Biol. , vol.3 , pp. 430-440
    • Wang, J.C.1
  • 33
    • 34547626213 scopus 로고    scopus 로고
    • Top1-and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation
    • Bermejo, R. et al. Top1-and Top2-mediated topological transitions at replication forks ensure fork progression and stability and prevent DNA damage checkpoint activation. Genes Dev. 21, 1921-1936 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 1921-1936
    • Bermejo, R.1
  • 34
    • 0024598214 scopus 로고
    • Sequences that promote formation of catenated intertwines during termination of DNA replication
    • Fields-Berry, S. C. & DePamphilis, M. L. Sequences that promote formation of catenated intertwines during termination of DNA replication. Nucleic Acids Res. 17, 3261-3273 (1989).
    • (1989) Nucleic Acids Res. , vol.17 , pp. 3261-3273
    • Fields-Berry, S.C.1    Depamphilis, M.L.2
  • 35
    • 33947432388 scopus 로고    scopus 로고
    • Replication fork stalling at natural impediments
    • Mirkin, E. V. & Mirkin, S. M. Replication fork stalling at natural impediments. Microbiol Mol. Biol. Rev. 71, 13-35 (2007).
    • (2007) Microbiol Mol. Biol. Rev. , vol.71 , pp. 13-35
    • Mirkin, E.V.1    Mirkin, S.M.2
  • 36
    • 0037074013 scopus 로고    scopus 로고
    • ATR regulates fragile site stability
    • Casper, A. M., Nghiem, P., Arlt, M. F. & Glover, T. W. ATR regulates fragile site stability. Cell 111, 779-789 (2002).
    • (2002) Cell , vol.111 , pp. 779-789
    • Casper, A.M.1    Nghiem, P.2    Arlt, M.F.3    Glover, T.W.4
  • 37
    • 0029740114 scopus 로고    scopus 로고
    • DNA replication fork pause sites dependent on transcription
    • Deshpande, A. M. & Newlon, C. S. DNA replication fork pause sites dependent on transcription. Science 272, 1030-1033 (1996).
    • (1996) Science , vol.272 , pp. 1030-1033
    • Deshpande, A.M.1    Newlon, C.S.2
  • 38
    • 67449113551 scopus 로고    scopus 로고
    • Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae
    • Azvolinsky, A., Giresi, P. G., Lieb, J. D. & Zakian, V. A. Highly transcribed RNA polymerase II genes are impediments to replication fork progression in Saccharomyces cerevisiae. Mol. Cell 34, 722-734 (2009).
    • (2009) Mol. Cell , vol.34 , pp. 722-734
    • Azvolinsky, A.1    Giresi, P.G.2    Lieb, J.D.3    Zakian, V.A.4
  • 39
    • 0033546210 scopus 로고    scopus 로고
    • The organization of replication and transcription
    • Cook, P. R. The organization of replication and transcription. Science 284, 1790-1795 (1999).
    • (1999) Science , vol.284 , pp. 1790-1795
    • Cook, P.R.1
  • 40
    • 0036965964 scopus 로고    scopus 로고
    • DNA knotting caused by head-on collision of transcription and replication
    • Olavarrieta, L., Hernandez, P., Krimer, D. B. & Schvartzman, J. B. DNA knotting caused by head-on collision of transcription and replication. J. Mol. Biol. 322, 1-6 (2002).
    • (2002) J. Mol. Biol. , vol.322 , pp. 1-6
    • Olavarrieta, L.1    Hernandez, P.2    Krimer, D.B.3    Schvartzman, J.B.4
  • 41
    • 70449522304 scopus 로고    scopus 로고
    • Topoisomerase i suppresses genomic instability by preventing interference between replication and transcription
    • Tuduri, S. et al. Topoisomerase I suppresses genomic instability by preventing interference between replication and transcription. Nature Cell Biol. 1 1, 1315-1324 (2009).
    • (2009) Nature Cell Biol. , vol.11 , pp. 1315-1324
    • Tuduri, S.1
  • 42
    • 69449108384 scopus 로고    scopus 로고
    • Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription
    • Bermejo, R. et al. Genome-organizing factors Top2 and Hmo1 prevent chromosome fragility at sites of S phase transcription. Cell 138, 870-884 (2009).
    • (2009) Cell , vol.138 , pp. 870-884
    • Bermejo, R.1
  • 43
    • 0027278557 scopus 로고
    • Instability and decay of the primary structure of DNA
    • Lindahl, T. Instability and decay of the primary structure of DNA. Nature 362, 709-715 (1993).
    • (1993) Nature , vol.362 , pp. 709-715
    • Lindahl, T.1
  • 44
    • 33744807443 scopus 로고    scopus 로고
    • DNA structures, repeat expansions and human hereditary disorders
    • Mirkin, S. M. DNA structures, repeat expansions and human hereditary disorders. Curr. Opin. Struct. Biol. 16, 351-358 (2006)
    • (2006) Curr. Opin. Struct. Biol. , vol.16 , pp. 351-358
    • Mirkin, S.M.1
  • 45
    • 77649144557 scopus 로고    scopus 로고
    • Repeat instability as the basis for human diseases and as a potential target for therapy
    • L?pez Castel, A., Cleary, J. D & Pearson, C. E. Repeat instability as the basis for human diseases and as a potential target for therapy. Nature Rev. Mol. Cell Biol. 11, 165-170 (2010).
    • (2010) Nature Rev. Mol. Cell Biol. , vol.11 , pp. 165-170
    • Lpez Castel, A.1    Cleary, J.D.2    Pearson, C.E.3
  • 46
    • 34547692622 scopus 로고    scopus 로고
    • Trinucleotide repeat disorders
    • Orr, H. T. & Zoghbi, H. Y. Trinucleotide repeat disorders. Annu. Rev. Neurosci. 30, 575-621 (2007).
    • (2007) Annu. Rev. Neurosci. , vol.30 , pp. 575-621
    • Orr, H.T.1    Zoghbi, H.Y.2
  • 48
    • 0017381277 scopus 로고
    • Fragile sites on human chromosomes: Demonstration of their dependence on the type of tissue culture medium
    • Sutherland, G. R. Fragile sites on human chromosomes: demonstration of their dependence on the type of tissue culture medium. Science 197, 265-266 (1977).
    • (1977) Science , vol.197 , pp. 265-266
    • Sutherland, G.R.1
  • 49
    • 0018958525 scopus 로고
    • DNA rearrangements associated with a transposable element in yeast
    • Roeder, G. S. & Fink, G. R. DNA rearrangements associated with a transposable element in yeast. Cell 21, 239-249 (1980).
    • (1980) Cell , vol.21 , pp. 239-249
    • Roeder, G.S.1    Fink, G.R.2
  • 50
    • 50149084043 scopus 로고    scopus 로고
    • Double-strand breaks associated with repetitive DNA can reshape the genome
    • Argueso, J. L. et al. Double-strand breaks associated with repetitive DNA can reshape the genome. Proc. Natl Acad. Sci. USA 105, 11845-11850 (2008).
    • (2008) Proc. Natl Acad. Sci USA , vol.105 , pp. 11845-11850
    • Argueso, J.L.1
  • 51
    • 14844286404 scopus 로고    scopus 로고
    • Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites
    • Lemoine, F. J., Degtyareva, N. P., Lobachev, K. & Petes, T. D. Chromosomal translocations in yeast induced by low levels of DNA polymerase a model for chromosome fragile sites. Cell 120, 587-598 (2005).
    • (2005) Cell , vol.120 , pp. 587-598
    • Lemoine, F.J.1    Degtyareva, N.P.2    Lobachev, K.3    Petes, T.D.4
  • 52
    • 30944462801 scopus 로고    scopus 로고
    • Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast
    • Admire, A. et al. Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast. Genes Dev. 20, 159-173 (2006).
    • (2006) Genes Dev. , vol.20 , pp. 159-173
    • Admire, A.1
  • 53
    • 0032544699 scopus 로고    scopus 로고
    • The structure of supercoiled intermediates in DNA replication
    • Peter, B. J., Ullsperger, C., Hiasa, H., Marians, K. J. & Cozzarelli, N. R. The structure of supercoiled intermediates in DNA replication. Cell 94, 819-827 (1998).
    • (1998) Cell , vol.94 , pp. 819-827
    • Peter, B.J.1    Ullsperger, C.2    Hiasa, H.3    Marians, K.J.4    Cozzarelli, N.R.5
  • 54
    • 0026419949 scopus 로고
    • Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli
    • Trinh, T. Q. & Sinden, R. R. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352, 544-547 (1991).
    • (1991) Nature , vol.352 , pp. 544-547
    • Trinh, T.Q.1    Sinden, R.R.2
  • 55
    • 0029161151 scopus 로고
    • Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands
    • Rosche, W. A., Trinh, T. Q. & Sinden, R. R. Differential DNA secondary structure-mediated deletion mutation in the leading and lagging strands. J. Bacteriol. 177, 4385-4391 (1995).
    • (1995) J. Bacteriol. , vol.177 , pp. 4385-4391
    • Rosche, W.A.1    Trinh, T.Q.2    Sinden, R.R.3
  • 56
    • 0027176828 scopus 로고
    • Association of fragile X syndrome with delayed replication of the FMR1 gene
    • Hansen, R. S., Canfield, T. K., Lamb, M. M., Gartler, S. M. & Laird, C. D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403-1409 (1993).
    • (1993) Cell , vol.73 , pp. 1403-1409
    • Hansen, R.S.1    Canfield, T.K.2    Lamb, M.M.3    Gartler, S.M.4    Laird, C.D.5
  • 57
    • 0030473893 scopus 로고    scopus 로고
    • Characterization of a high mobility group 1/2 homolog in yeast
    • Lu, J., Kobayashi, R. & Brill, S. J. Characterization of a high mobility group 1/2 homolog in yeast. J. Biol. Chem. 271, 33678-33685 (1996).
    • (1996) J. Biol. Chem. , vol.271 , pp. 33678-33685
    • Lu, J.1    Kobayashi, R.2    Brill, S.J.3
  • 58
    • 67349091155 scopus 로고    scopus 로고
    • Suppression of a DNA polymerase δ mutation by the absence of the high mobility group protein Hmo1 in Saccharomyces cerevisiae
    • Kim, H. & Livingston, D. M. Suppression of a DNA polymerase δ mutation by the absence of the high mobility group protein Hmo1 in Saccharomyces cerevisiae. Curr. Genet. 55, 127-138 (2009).
    • (2009) Curr. Genet. , vol.55 , pp. 127-138
    • Kim, H.1    Livingston, D.M.2
  • 59
    • 17144426028 scopus 로고    scopus 로고
    • Impairment of replication fork progression mediates RNA polII transcription-associated recombination
    • Prado, F. & Aguilera, A. Impairment of replication fork progression mediates RNA polII transcription-associated recombination. EMBO J. 24, 1267-1276 (2005).
    • (2005) EMBO J. , vol.24 , pp. 1267-1276
    • Prado, F.1    Aguilera, A.2
  • 60
    • 57649129186 scopus 로고    scopus 로고
    • The replisome uses mRNA as a primer after colliding with RNA polymerase
    • Pomerantz, R. T. & O'Donnell, M. The replisome uses mRNA as a primer after colliding with RNA polymerase. Nature 456, 762-766 (2008).
    • (2008) Nature , vol.456 , pp. 762-766
    • Pomerantz, R.T.1    O'Donnell, M.2
  • 61
    • 0035882059 scopus 로고    scopus 로고
    • A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe
    • Dalgaard, J. Z. & Klar, A. J. A DNA replication-arrest site RTS1 regulates imprinting by determining the direction of replication at mat1 in S. pombe. Genes D ev. 15, 2060-2068 (2001).
    • (2001) Genes D Ev. , vol.15 , pp. 2060-2068
    • Dalgaard, J.Z.1    Klar, A.J.2
  • 62
    • 20444424939 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier
    • Lambert, S., Watson, A., Sheedy, D. M., Martin, B. & Carr, A. M. Gross chromosomal rearrangements and elevated recombination at an inducible site-specific replication fork barrier. Cell 121, 689-702 (2005).
    • (2005) Cell , vol.121 , pp. 689-702
    • Lambert, S.1    Watson, A.2    Sheedy, D.M.3    Martin, B.4    Carr, A.M.5
  • 63
    • 66049151307 scopus 로고    scopus 로고
    • Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart
    • Inagawa, T. et al. Schizosaccharomyces pombe Rtf2 mediates site-specific replication termination by inhibiting replication restart. Proc. Natl Acad. Sci. USA 106, 7927-7932 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 7927-7932
    • Inagawa, T.1
  • 64
    • 2542609134 scopus 로고    scopus 로고
    • The involvement of Srs2 in post-replication repair and homologous recombination in fission yeast
    • Doe, C. L. & Whitby, M. C. The involvement of Srs2 in post-replication repair and homologous recombination in fission yeast. Nucleic Acids Res. 32, 1480-1491 (2004).
    • (2004) Nucleic Acids Res. , vol.32 , pp. 1480-1491
    • Doe, C.L.1    Whitby, M.C.2
  • 65
    • 0037168658 scopus 로고    scopus 로고
    • Alternate pathways involving Sgs1/Top3,Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication
    • Fabre, F., Chan, A., Heyer, W. D. & Gangloff, S. Alternate pathways involving Sgs1/Top3, Mus81/Mms4, and Srs2 prevent formation of toxic recombination intermediates from single-stranded gaps created by DNA replication. Proc. Natl Acad. Sci. USA 99, 16887-16892 (2002).
    • (2002) Proc. Natl Acad. Sci. USA , vol.99 , pp. 16887-16892
    • Fabre, F.1    Chan, A.2    Heyer, W.D.3    Gangloff, S.4
  • 66
    • 22944474665 scopus 로고    scopus 로고
    • SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase
    • Pfander, B., Moldovan, G. L., Sacher, M., Hoege, C. & Jentsch, S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature 436, 428-433 (2005).
    • (2005) Nature , vol.436 , pp. 428-433
    • Pfander, B.1    Moldovan, G.L.2    Sacher, M.3    Hoege, C.4    Jentsch, S.5
  • 67
    • 21244449061 scopus 로고    scopus 로고
    • Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p
    • Papouli, E. et al. Crosstalk between SUMO and ubiquitin on PCNA is mediated by recruitment of the helicase Srs2p. Mol. Cell 19, 123-133 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 123-133
    • Papouli, E.1
  • 68
    • 57749169348 scopus 로고    scopus 로고
    • SUMOylation regulates Rad18-mediated template switch
    • Branzei, D., Vanoli, F. & Foiani, M. SUMOylation regulates Rad18-mediated template switch. Nature 456, 915-920 (2008).
    • (2008) Nature , vol.456 , pp. 915-920
    • Branzei, D.1    Vanoli, F.2    Foiani, M.3
  • 69
    • 33750437743 scopus 로고    scopus 로고
    • Ubc9-and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks
    • Branzei, D. et al. Ubc9-and Mms21-mediated sumoylation counteracts recombinogenic events at damaged replication forks. Cell 127, 509-522 (2006).
    • (2006) Cell , vol.127 , pp. 509-522
    • Branzei, D.1
  • 70
    • 16344370926 scopus 로고    scopus 로고
    • A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization
    • Zhao, X. & Blobel, G. A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl Acad. Sci. USA 102, 4777-4782 (2005).
    • (2005) Proc. Natl Acad. Sci. USA , vol.102 , pp. 4777-4782
    • Zhao, X.1    Blobel, G.2
  • 71
    • 65249118311 scopus 로고    scopus 로고
    • The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair
    • Sollier, J. et al. The Saccharomyces cerevisiae Esc2 and Smc5-6 proteins promote sister chromatid junction-mediated intra-S repair. Mol. Biol. Cell 20, 1671-1682 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1671-1682
    • Sollier, J.1
  • 72
    • 10944240060 scopus 로고    scopus 로고
    • Closing mitosis: The functions of the Cdc14 phosphatase and its regulation
    • Stegmeier, F. & Amon, A. Closing mitosis: the functions of the Cdc14 phosphatase and its regulation. Annu. Rev. Genet. 38, 203-232 (2004).
    • (2004) Annu. Rev. Genet. , vol.38 , pp. 203-232
    • Stegmeier, F.1    Amon, A.2
  • 73
    • 0035797383 scopus 로고    scopus 로고
    • The DNA replication checkpoint response stabilizes stalled replication forks
    • Lopes, M. et al. The DNA replication checkpoint response stabilizes stalled replication forks. Nature 412, 557-561 (2001).
    • (2001) Nature , vol.412 , pp. 557-561
    • Lopes, M.1
  • 74
    • 0037178740 scopus 로고    scopus 로고
    • Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects
    • Sogo, J. M., Lopes, M. & Foiani, M. Fork reversal and ssDNA accumulation at stalled replication forks owing to checkpoint defects. Science 297, 599-602 (2002).
    • (2002) Science , vol.297 , pp. 599-602
    • Sogo, J.M.1    Lopes, M.2    Foiani, M.3
  • 75
    • 64249120749 scopus 로고    scopus 로고
    • Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation
    • Doksani, Y., Bermejo, R., Fiorani, S., Haber, J. E. & Foiani, M. Replicon dynamics, dormant origin firing, and terminal fork integrity after double-strand break formation. Cell 137, 247-258 (2009).
    • (2009) Cell , vol.137 , pp. 247-258
    • Doksani, Y.1    Bermejo, R.2    Fiorani, S.3    Haber, J.E.4    Foiani, M.5
  • 76
    • 3242658268 scopus 로고    scopus 로고
    • Expanded CAG repeats activate the DNA damage checkpoint pathway
    • Lahiri, M., Gustafson, T. L., Majors, E. R. & Freudenreich, C. H. Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol. Cell 15, 287-293 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 287-293
    • Lahiri, M.1    Gustafson, T.L.2    Majors, E.R.3    Freudenreich, C.H.4
  • 77
    • 13444253858 scopus 로고    scopus 로고
    • Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: Implications for trinucleotide repeat expansion diseases
    • Freudenreich, C. H. & Lahiri, M. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3, 1370-1374 (2004).
    • (2004) Cell Cycle , vol.3 , pp. 1370-1374
    • Freudenreich, C.H.1    Lahiri, M.2
  • 78
    • 48249141027 scopus 로고    scopus 로고
    • Replication stalling at unstable inverted repeats: Interplay between DNA hairpins and fork stabilizing proteins
    • Voineagu, I., Narayanan, V., Lobachev, K. S. & Mirkin, S. M. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc. Natl Acad. Sci. USA 105, 9936-9941 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 9936-9941
    • Voineagu, I.1    Narayanan, V.2    Lobachev, K.S.3    Mirkin, S.M.4
  • 79
    • 59649105477 scopus 로고    scopus 로고
    • Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility
    • Voineagu, I., Surka, C. F., Shishkin, A. A., Krasilnikova, M. M. & Mirkin, S. M. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nature Struct. Mol. Biol. 16, 226-228 (2009).
    • (2009) Nature Struct. Mol. Biol. , vol.16 , pp. 226-228
    • Voineagu, I.1    Surka, C.F.2    Shishkin, A.A.3    Krasilnikova, M.M.4    Mirkin, S.M.5
  • 80
    • 0035951787 scopus 로고    scopus 로고
    • Positive torsional strain causes the formation of a four-way junction at replication forks
    • Postow, L. et al. Positive torsional strain causes the formation of a four-way junction at replication forks. J. Biol. Chem. 276, 2790-2796 (2001).
    • (2001) J. Biol. Chem. , vol.276 , pp. 2790-2796
    • Postow, L.1
  • 82
    • 11344268431 scopus 로고    scopus 로고
    • Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells
    • Cotta-Ramusino, C. et al. Exo1 processes stalled replication forks and counteracts fork reversal in checkpoint-defective cells. Mol. Cell 17, 153-159 (2005).
    • (2005) Mol. Cell , vol.17 , pp. 153-159
    • Cotta-Ramusino, C.1
  • 83
    • 33645152790 scopus 로고    scopus 로고
    • Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication
    • Feng, W. et al. Genomic mapping of single-stranded DNA in hydroxyurea-challenged yeasts identifies origins of replication. Nature Cell Biol. 8, 148-155 (2006).
    • (2006) Nature Cell Biol. , vol.8 , pp. 148-155
    • Feng, W.1
  • 84
    • 0035735472 scopus 로고    scopus 로고
    • Mrc1 transduces signals of DNA replication stress to activate Rad53
    • Alcasabas, A. A. et al. Mrc1 transduces signals of DNA replication stress to activate Rad53. Nature Cell Biol. 3, 958-965 (2001).
    • (2001) Nature Cell Biol. , vol.3 , pp. 958-965
    • Alcasabas, A.A.1
  • 85
    • 0038506000 scopus 로고    scopus 로고
    • Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53
    • Osborn, A. J. & Elledge, S. J. Mrc1 is a replication fork component whose phosphorylation in response to DNA replication stress activates Rad53. Genes Dev. 17, 1755-1767 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 1755-1767
    • Osborn, A.J.1    Elledge, S.J.2
  • 86
    • 0035109312 scopus 로고    scopus 로고
    • Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae
    • Foss, E. J. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157, 567-577 (2001).
    • (2001) Genetics , vol.157 , pp. 567-577
    • Foss, E.J.1
  • 87
    • 68249122027 scopus 로고    scopus 로고
    • The checkpoint response to replication stress
    • Branzei, D. & Foiani, M. The checkpoint response to replication stress. DNA Repair (Amst.) 8, 1038-1046 (2009).
    • (2009) DNA Repair (Amst.) , vol.8 , pp. 1038-1046
    • Branzei, D.1    Foiani, M.2
  • 88
    • 67649639511 scopus 로고    scopus 로고
    • Large-scale expansions of Friedreich's ataxia GAA repeats in yeast
    • Shishkin, A. A. et al. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 35, 82-92 (2009).
    • (2009) Mol. Cell , vol.35 , pp. 82-92
    • Shishkin, A.A.1
  • 89
    • 0037224965 scopus 로고    scopus 로고
    • Checkpoint activation regulates mutagenic translesion synthesis
    • Kai, M. & Wang, T. S. Checkpoint activation regulates mutagenic translesion synthesis. Genes Dev. 17, 64-76 (2003).
    • (2003) Genes Dev. , vol.17 , pp. 64-76
    • Kai, M.1    Wang, T.S.2
  • 90
    • 33644616440 scopus 로고    scopus 로고
    • The 9-1-1 checkpoint clamp physically interacts with polζ and is partially required for spontaneous polζ-dependent mutagenesis in Saccharomyces cerevisiae
    • Sabbioneda, S. et al. The 9-1-1 checkpoint clamp physically interacts with polζ and is partially required for spontaneous polζ-dependent mutagenesis in Saccharomyces cerevisiae. J. Biol. Chem. 280, 38657-38665 (2005).
    • (2005) J. Biol. Chem. , vol.280 , pp. 38657-38665
    • Sabbioneda, S.1
  • 91
    • 19944432787 scopus 로고    scopus 로고
    • Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase
    • Liberi, G. et al. Rad51-dependent DNA structures accumulate at damaged replication forks in sgs1 mutants defective in the yeast ortholog of BLM RecQ helicase. Genes Dev. 19, 339-350 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 339-350
    • Liberi, G.1
  • 92
    • 29544437558 scopus 로고    scopus 로고
    • Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions
    • Lopes, M., Foiani, M. & Sogo, J. M. Multiple mechanisms control chromosome integrity after replication fork uncoupling and restart at irreparable UV lesions. Mol. Cell 21, 15-27 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 15-27
    • Lopes, M.1    Foiani, M.2    Sogo, J.M.3
  • 93
    • 3943107573 scopus 로고    scopus 로고
    • Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints
    • Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K. & Linn., S. Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39-85 (2004).
    • (2004) Annu. Rev. Biochem. , vol.73 , pp. 39-85
    • Sancar, A.1    Lindsey-Boltz, L.A.2    Unsal-Kacmaz, K.3    Linn., S.4
  • 94
    • 0017298802 scopus 로고
    • A model for replication repair in mammalian cells
    • Higgins, N. P., Kato, K. & Strauss, B. A model for replication repair in mammalian cells. J. Mol. Biol. 101, 417-425 (1976).
    • (1976) J. Mol. Biol. , vol.101 , pp. 417-425
    • Higgins, N.P.1    Kato, K.2    Strauss, B.3
  • 95
    • 31844456472 scopus 로고    scopus 로고
    • Replication fork reactivation downstream of a blocked nascent leading strand
    • Heller, R. C. & Marians, K. J. Replication fork reactivation downstream of a blocked nascent leading strand. Nature 439, 557-562 (2006).
    • (2006) Nature , vol.439 , pp. 557-562
    • Heller, R.C.1    Marians, K.J.2
  • 96
    • 33747332833 scopus 로고    scopus 로고
    • The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision
    • Amado, L. & Kuzminov, A. The replication intermediates in Escherichia coli are not the product of DNA processing or uracil excision. J. Biol. Chem. 281, 22635-22646 (2006).
    • (2006) J. Biol. Chem. , vol.281 , pp. 22635-22646
    • Amado, L.1    Kuzminov, A.2
  • 97
    • 0030737725 scopus 로고    scopus 로고
    • Stable DNA replication: Interplay between DNA replication, homologous recombination, and transcription
    • Kogoma, T. Stable DNA replication: interplay between DNA replication, homologous recombination, and transcription. Microbiol Mol. Biol. Rev. 61, 212-238 (1997).
    • (1997) Microbiol Mol. Biol. Rev. , vol.61 , pp. 212-238
    • Kogoma, T.1
  • 98
    • 33845735505 scopus 로고    scopus 로고
    • DNA damage checkpoints are involved in postreplication repair
    • Barbour, L., Ball, L. G., Zhang, K. & Xiao, W. DNA damage checkpoints are involved in postreplication repair. Genetics 174, 1789-1800 (2006).
    • (2006) Genetics , vol.174 , pp. 1789-1800
    • Barbour, L.1    Ball, L.G.2    Zhang, K.3    Xiao, W.4
  • 99
    • 0031036995 scopus 로고    scopus 로고
    • RAD9,RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage
    • Paulovich, A. G., Margulies, R. U., Garvik, B. M. & Hartwell, L. H. RAD9, RAD17, and RAD24 are required for S phase regulation in Saccharomyces cerevisiae in response to DNA damage. Genetics 145, 45-62 (1997).
    • (1997) Genetics , vol.145 , pp. 45-62
    • Paulovich, A.G.1    Margulies, R.U.2    Garvik, B.M.3    Hartwell, L.H.4
  • 100
    • 34447563946 scopus 로고    scopus 로고
    • Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice
    • Kai, M., Furuya, K., Paderi, F., Carr, A. M. & Wang, T. S. Rad3-dependent phosphorylation of the checkpoint clamp regulates repair-pathway choice. Nature Cell Biol. 9, 691-697 (2007).
    • (2007) Nature Cell Biol. , vol.9 , pp. 691-697
    • Kai, M.1    Furuya, K.2    Paderi, F.3    Carr, A.M.4    Wang, T.S.5
  • 104
    • 0037068455 scopus 로고    scopus 로고
    • RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO
    • Hoege, C., Pfander, B., Moldovan, G. L., Pyrowolakis, G. & Jentsch, S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature 419, 135-141 (2002).
    • (2002) Nature , vol.419 , pp. 135-141
    • Hoege, C.1    Pfander, B.2    Moldovan, G.L.3    Pyrowolakis, G.4    Jentsch, S.5
  • 105
    • 0141831006 scopus 로고    scopus 로고
    • Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation
    • Stelter, P. & Ulrich, H. D. Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature 425, 188-191 (2003).
    • (2003) Nature , vol.425 , pp. 188-191
    • Stelter, P.1    Ulrich, H.D.2
  • 106
    • 2442417331 scopus 로고    scopus 로고
    • Interaction of human DNA polymerase ε with monoubiquitinated PCNA: A possible mechanism for the polymerase switch in response to DNA damage
    • Kannouche, P. L., Wing, J. & Lehmann, A. R. Interaction of human DNA polymerase ε with monoubiquitinated PCNA: a possible mechanism for the polymerase switch in response to DNA damage. Mol. Cell 14, 491-500 (2004).
    • (2004) Mol. Cell , vol.14 , pp. 491-500
    • Kannouche, P.L.1    Wing, J.2    Lehmann, A.R.3
  • 110
    • 0347987856 scopus 로고    scopus 로고
    • The Bloom's syndrome helicase suppresses crossing over during homologous recombination
    • Wu, L. & Hickson, I. D. The Bloom's syndrome helicase suppresses crossing over during homologous recombination. Nature 426, 870-874 (2003).
    • (2003) Nature , vol.426 , pp. 870-874
    • Wu, L.1    Hickson, I.D.2
  • 112
    • 65249090885 scopus 로고    scopus 로고
    • Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in saccharomyces cerevisiae
    • Mankouri, H. W., Ngo, H. P. & Hickson, I. D. Esc2 and Sgs1 act in functionally distinct branches of the homologous recombination repair pathway in Saccharomyces cerevisiae. Mol. Biol. Cell 20, 1683-1694 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1683-1694
    • Mankouri, H.W.1    Ngo, H.P.2    Hickson, I.D.3
  • 113
    • 33344463137 scopus 로고    scopus 로고
    • DNA repeat rearrangements mediated by DnaK-dependent replication fork repair
    • Goldfless, S. J., Morag, A. S., Belisle, K. A., Sutera, V. A., Jr. & Lovett, S. T. DNA repeat rearrangements mediated by DnaK-dependent replication fork repair. Mol. Cell 21, 595-604 (2006).
    • (2006) Mol. Cell , vol.21 , pp. 595-604
    • Goldfless, S.J.1    Morag, A.S.2    Belisle, K.A.3    Sutera Jr., V.A.4    Lovett, S.T.5
  • 114
    • 0026661167 scopus 로고
    • Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome
    • Johnson, R. E. et al. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12, 3807-3818 (1992).
    • (1992) Mol. Cell. Biol. , vol.12 , pp. 3807-3818
    • Johnson, R.E.1
  • 115
    • 37349111022 scopus 로고    scopus 로고
    • Template switching: From replication fork repair to genome rearrangements
    • Branzei, D. & Foiani, M. Template switching: from replication fork repair to genome rearrangements. Cell 131, 1228-1230 (2007).
    • (2007) Cell , vol.131 , pp. 1228-1230
    • Branzei, D.1    Foiani, M.2
  • 116
    • 37349109667 scopus 로고    scopus 로고
    • A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders
    • Lee, J. A., Carvalho, C. M. & Lupski, J. R. A DNA replication mechanism for generating nonrecurrent rearrangements associated with genomic disorders. Cell 131, 1235-1247 (2007).
    • (2007) Cell , vol.131 , pp. 1235-1247
    • Lee, J.A.1    Carvalho, C.M.2    Lupski, J.R.3
  • 117
    • 72849116104 scopus 로고    scopus 로고
    • Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast
    • Paek, A. L. et al. Fusion of nearby inverted repeats by a replication-based mechanism leads to formation of dicentric and acentric chromosomes that cause genome instability in budding yeast. Genes Dev. 23, 2861-2875 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2861-2875
    • Paek, A.L.1
  • 118
    • 72849150228 scopus 로고    scopus 로고
    • Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism
    • Mizuno, K., Lambert, S., Baldacci, G., Murray, J. M. & Carr, A. M. Nearby inverted repeats fuse to generate acentric and dicentric palindromic chromosomes by a replication template exchange mechanism. Genes Dev. 23, 2876-2886 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 2876-2886
    • Mizuno, K.1    Lambert, S.2    Baldacci, G.3    Murray, J.M.4    Carr, A.M.5
  • 119
    • 12344282013 scopus 로고    scopus 로고
    • DNA interstrand crosslinks: Natural and drug-induced DNA adducts that induce unique cellular responses
    • Scharer, O. D. DNA interstrand crosslinks: natural and drug-induced DNA adducts that induce unique cellular responses. Chembiochem 6, 27-32 (2005).
    • (2005) Chembiochem , vol.6 , pp. 27-32
    • Scharer, O.D.1
  • 120
    • 4344597147 scopus 로고    scopus 로고
    • The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair
    • Niedzwiedz, W. et al. The Fanconi anaemia gene FANCC promotes homologous recombination and error-prone DNA repair. Mol. Cell 15, 607-620 (2004).
    • (2004) Mol. Cell , vol.15 , pp. 607-620
    • Niedzwiedz, W.1
  • 121
    • 34548759123 scopus 로고    scopus 로고
    • Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins
    • Wang, W. Emergence of a DNA-damage response network consisting of Fanconi anaemia and BRCA proteins. Nature Rev. Genet. 8, 735-748 (2007).
    • (2007) Nature Rev. Genet. , vol.8 , pp. 735-748
    • Wang, W.1
  • 122
    • 30644459206 scopus 로고    scopus 로고
    • Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks
    • Sobeck, A. et al. Fanconi anemia proteins are required to prevent accumulation of replication-associated DNA double-strand breaks. Mol. Cell. Biol. 26, 425-437 (2006).
    • (2006) Mol. Cell. Biol. , vol.26 , pp. 425-437
    • Sobeck, A.1
  • 123
    • 2942664480 scopus 로고    scopus 로고
    • FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination
    • Meetei, A. R., Yan, Z. & Wang, W. FANCL replaces BRCA1 as the likely ubiquitin ligase responsible for FANCD2 monoubiquitination. Cell Cycle 3, 179-181 (2004).
    • (2004) Cell Cycle , vol.3 , pp. 179-181
    • Meetei, A.R.1    Yan, Z.2    Wang, W.3
  • 124
    • 34247110291 scopus 로고    scopus 로고
    • Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair
    • Smogorzewska, A. et al. Identification of the FANCI protein, a monoubiquitinated FANCD2 paralog required for DNA repair. Cell 129, 289-301 (2007).
    • (2007) Cell , vol.129 , pp. 289-301
    • Smogorzewska, A.1
  • 125
    • 33846799430 scopus 로고    scopus 로고
    • Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM
    • Ciccia, A. et al. Identification of FAAP24, a Fanconi anemia core complex protein that interacts with FANCM. Mol. Cell 25, 331-343 (2007).
    • (2007) Mol. Cell , vol.25 , pp. 331-343
    • Ciccia, A.1
  • 126
    • 33846601829 scopus 로고    scopus 로고
    • Fanconi anemia is associated with a defect in the BRCA2 partner PALB2
    • Xia, B. et al. Fanconi anemia is associated with a defect in the BRCA2 partner PALB2. Nature Genet. 39, 159-161 (2007).
    • (2007) Nature Genet. , vol.39 , pp. 159-161
    • Xia, B.1
  • 127
    • 33749037701 scopus 로고    scopus 로고
    • Mechanism of homologous recombination: Mediators and helicases take on regulatory functions
    • Sung, P. & Klein, H. Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nature Rev. Mol. Cell Biol. 7, 739-750 (2006).
    • (2006) Nature Rev. Mol. Cell Biol. , vol.7 , pp. 739-750
    • Sung, P.1    Klein, H.2
  • 128
    • 24944575242 scopus 로고    scopus 로고
    • BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ
    • Litman, R. et al. BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8, 255-265 (2005).
    • (2005) Cancer Cell , vol.8 , pp. 255-265
    • Litman, R.1
  • 129
    • 29244435019 scopus 로고    scopus 로고
    • Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells
    • Nojima, K. et al. Multiple repair pathways mediate tolerance to chemotherapeutic cross-linking agents in vertebrate cells. Cancer Res. 65, 11704-11711 (2005).
    • (2005) Cancer Res. , vol.65 , pp. 11704-11711
    • Nojima, K.1
  • 130
    • 55849133052 scopus 로고    scopus 로고
    • Remodeling of DNA replication structures by the branch point translocase FANCM
    • Gari, K., Decaillet, C., Delannoy, M., Wu, L. & Constantinou, A. Remodeling of DNA replication structures by the branch point translocase FANCM. Proc. Natl Acad. Sci. USA 105, 16107-16112 (2008).
    • (2008) Proc. Natl Acad. Sci. USA , vol.105 , pp. 16107-16112
    • Gari, K.1    Decaillet, C.2    Delannoy, M.3    Wu, L.4    Constantinou, A.5
  • 131
    • 38349050087 scopus 로고    scopus 로고
    • The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks
    • Gari, K., Decaillet, C., Stasiak, A. Z., Stasiak, A. & Constantinou, A. The Fanconi anemia protein FANCM can promote branch migration of Holliday junctions and replication forks. Mol. Cell 29, 141-148 (2008).
    • (2008) Mol. Cell , vol.29 , pp. 141-148
    • Gari, K.1    Decaillet, C.2    Stasiak, A.Z.3    Stasiak, A.4    Constantinou, A.5
  • 132
    • 53149087431 scopus 로고    scopus 로고
    • The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair
    • Sun, W. et al. The FANCM ortholog Fml1 promotes recombination at stalled replication forks and limits crossing over during DNA double-strand break repair. Mol. Cell 32, 118-128 (2008).
    • (2008) Mol. Cell , vol.32 , pp. 118-128
    • Sun, W.1
  • 133
    • 75849132866 scopus 로고    scopus 로고
    • Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair
    • Chen, Y. H. et al. Interplay between the Smc5/6 complex and the Mph1 helicase in recombinational repair. Proc. Natl Acad. Sci. USA 106, 21252-21257 (2009).
    • (2009) Proc. Natl Acad. Sci. USA , vol.106 , pp. 21252-21257
    • Chen, Y.H.1
  • 134
    • 51549098159 scopus 로고    scopus 로고
    • Mechanism of replication-coupled DNA interstrand crosslink repair
    • Raschle, M. et al. Mechanism of replication-coupled DNA interstrand crosslink repair. Cell 134, 969-980 (2008).
    • (2008) Cell , vol.134 , pp. 969-980
    • Raschle, M.1
  • 135
    • 72949123930 scopus 로고    scopus 로고
    • The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair
    • Knipscheer, P. et al. The Fanconi anemia pathway promotes replication-dependent DNA interstrand cross-link repair. Science 326, 1698-1701 (2009).
    • (2009) Science , vol.326 , pp. 1698-1701
    • Knipscheer, P.1
  • 137
    • 4043133287 scopus 로고    scopus 로고
    • ATR couples FANCD2 monoubiquitination to the DNA-damage response
    • Andreassen, P. R., D'Andrea, A. D. & Taniguchi, T. ATR couples FANCD2 monoubiquitination to the DNA-damage response. Genes D e v. 18, 1958-1963 (2004).
    • (2004) Genes D e V. , vol.18 , pp. 1958-1963
    • Andreassen, P.R.1    D'Andrea, A.D.2    Taniguchi, T.3
  • 138
    • 77149123028 scopus 로고    scopus 로고
    • FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling
    • 10 Dec 2009 doi:10.1038/emboj.2009.371
    • Luke-Glaser, S., Luke, B., Grossi, S. & Constantinou, A. FANCM regulates DNA chain elongation and is stabilized by S-phase checkpoint signalling. EMBO J. 10 Dec 2009 (doi:10.1038/emboj.2009.371).
    • EMBO J.
    • Luke-Glaser, S.1    Luke, B.2    Grossi, S.3    Constantinou, A.4
  • 139
    • 0030014783 scopus 로고    scopus 로고
    • DNA topoisomerases
    • Wang, J. C. DNA topoisomerases. Annu. Rev. Biochem. 65, 635-692 (1996).
    • (1996) Annu. Rev. Biochem. , vol.65 , pp. 635-692
    • Wang, J.C.1
  • 140
    • 34447509295 scopus 로고    scopus 로고
    • Antitumour drugs impede DNA uncoiling by topoisomerase i
    • Koster, D. A., Palle, K., Bot., E. S., Bjornsti, M. A. & Dekker, N. H. Antitumour drugs impede DNA uncoiling by topoisomerase I. Nature 448, 213-217 (2007).
    • (2007) Nature , vol.448 , pp. 213-217
    • Koster, D.A.1    Palle Bot. K, E.S.2    Bjornsti, M.A.3    Dekker, N.H.4
  • 141
    • 41149094512 scopus 로고    scopus 로고
    • Regulation of DNA repair throughout the cell cycle
    • Branzei, D. & Foiani, M. Regulation of DNA repair throughout the cell cycle. Nature Rev. Mol. Cell Biol. 9, 297-308 (2008).
    • (2008) Nature Rev. Mol. Cell Biol. , vol.9 , pp. 297-308
    • Branzei, D.1    Foiani, M.2
  • 142
    • 33747889217 scopus 로고    scopus 로고
    • Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
    • Sonoda, E., Hochegger, H., Saberi, A., Taniguchi, Y. & Takeda, S. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst.) 5, 1021-1029 (2006).
    • (2006) DNA Repair (Amst.) , vol.5 , pp. 1021-1029
    • Sonoda, E.1    Hochegger, H.2    Saberi, A.3    Taniguchi, Y.4    Takeda, S.5
  • 143
    • 0027139317 scopus 로고
    • Interaction between replication forks and topoisomerase I-DNA cleavable complexes: Studies in a cell-free SV40 DNA replication system
    • Tsao, Y. P., Russo, A., Nyamuswa, G., Silber, R. & Liu, L. F. Interaction between replication forks and topoisomerase I-DNA cleavable complexes: studies in a cell-free SV40 DNA replication system. Cancer Res. 53, 5908-5914 (1993).
    • (1993) Cancer Res. , vol.53 , pp. 5908-5914
    • Tsao, Y.P.1    Russo, A.2    Nyamuswa, G.3    Silber, R.4    Liu, L.F.5
  • 144
    • 33847737716 scopus 로고    scopus 로고
    • DNA damage checkpoints: From initiation to recovery or adaptation
    • Bartek, J. & Lukas, J. DNA damage checkpoints: from initiation to recovery or adaptation. Curr. Opin. Cell Biol. 19, 238-245 (2007).
    • (2007) Curr. Opin. Cell Biol. , vol.19 , pp. 238-245
    • Bartek, J.1    Lukas, J.2
  • 145
    • 46249122812 scopus 로고    scopus 로고
    • Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks
    • Segurado, M. & Diffley, J. F. Separate roles for the DNA damage checkpoint protein kinases in stabilizing DNA replication forks. Genes Dev. 22, 1816-1827 (2008).
    • (2008) Genes Dev. , vol.22 , pp. 1816-1827
    • Segurado, M.1    Diffley, J.F.2
  • 146
    • 0034923502 scopus 로고    scopus 로고
    • DNA topoisomerases: Structure, function, and mechanism
    • Champoux, J. J. DNA topoisomerases: structure, function, and mechanism. Annu. Rev. Biochem. 70, 369-413 (2001).
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 369-413
    • Champoux, J.J.1
  • 148
    • 71249158149 scopus 로고    scopus 로고
    • SCFDia2 regulates DNA replication forks during S-phase in budding yeast
    • Mimura, S., Komata, M., Kishi, T., Shirahige, K. & Kamura, T. SCFDia2 regulates DNA replication forks during S-phase in budding yeast. EMBO J. 28, 3693-3705 (2009).
    • (2009) EMBO J. , vol.28 , pp. 3693-3705
    • Mimura, S.1    Komata, M.2    Kishi, T.3    Shirahige, K.4    Kamura, T.5
  • 149
    • 70450265298 scopus 로고    scopus 로고
    • The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex
    • Morohashi, H., Maculins, T. & Labib, K. The amino-terminal TPR domain of Dia2 tethers SCF(Dia2) to the replisome progression complex. Curr. Biol. 19, 1943-1949 (2009).
    • (2009) Curr. Biol. , vol.19 , pp. 1943-1949
    • Morohashi, H.1    MacUlins, T.2    Labib, K.3
  • 150
    • 0037967230 scopus 로고    scopus 로고
    • CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing
    • Zhong, W., Feng, H., Santiago, F. E. & Kipreos, E. T. CUL-4 ubiquitin ligase maintains genome stability by restraining DNA-replication licensing. Nature 423, 885-889 (2003).
    • (2003) Nature , vol.423 , pp. 885-889
    • Zhong, W.1    Feng, H.2    Santiago, F.E.3    Kipreos, E.T.4
  • 151
    • 24044476837 scopus 로고    scopus 로고
    • Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway
    • Zhang, Y. W. et al. Genotoxic stress targets human Chk1 for degradation by the ubiquitin-proteasome pathway. Mol. Cell 19, 607-618 (2005).
    • (2005) Mol. Cell , vol.19 , pp. 607-618
    • Zhang, Y.W.1
  • 152
    • 65549090186 scopus 로고    scopus 로고
    • DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress
    • Leung-Pineda, V., Huh, J. & Piwnica-Worms, H. DDB1 targets Chk1 to the Cul4 E3 ligase complex in normal cycling cells and in cells experiencing replication stress. Cancer Res. 69, 2630-2637 (2009).
    • (2009) Cancer Res. , vol.69 , pp. 2630-2637
    • Leung-Pineda, V.1    Huh, J.2    Piwnica-Worms, H.3
  • 153
    • 63049130207 scopus 로고    scopus 로고
    • Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7
    • Whitcomb, E. A., Dudek, E. J., Liu, Q. & Taylor, A. Novel control of S phase of the cell cycle by ubiquitin-conjugating enzyme H7. Mol. Biol. Cell 20, 1-9 (2009).
    • (2009) Mol. Biol. Cell , vol.20 , pp. 1-9
    • Whitcomb, E.A.1    Dudek, E.J.2    Liu, Q.3    Taylor, A.4
  • 154
    • 0036785375 scopus 로고    scopus 로고
    • S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51
    • Taniguchi, T. et al. S-phase-specific interaction of the Fanconi anemia protein, FANCD2, with BRCA1 and RAD51. Blood 100, 2414-2420 (2002).
    • (2002) Blood , vol.100 , pp. 2414-2420
    • Taniguchi, T.1
  • 155
    • 79955934251 scopus 로고    scopus 로고
    • Defects in DNA ligase i trigger PCNA ubiquitylation at Lys 107
    • Das-Bradoo, S. et al. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nature Cell Biol. 12, 74-79 (2010).
    • (2010) Nature Cell Biol. , vol.12 , pp. 74-79
    • Das-Bradoo, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.