-
1
-
-
34047111213
-
Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome
-
DOI 10.1038/nature05632, PII NATURE05632
-
Albert I, Mavrich TN, Tomsho LP, Qi J, Zanton SJ, Schuster SC, Pugh BF. 2007. Translational and rotational settings of H2A.Z nucleosomes across the Saccharomyces cerevisiae genome. Nature 446: 572-576. (Pubitemid 46514724)
-
(2007)
Nature
, vol.446
, Issue.7135
, pp. 572-576
-
-
Albert, I.1
Mavrich, T.N.2
Tomsho, L.P.3
Qi, J.4
Zanton, S.J.5
Schuster, S.C.6
Pugh, B.F.7
-
2
-
-
57749121616
-
A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters
-
Badis G, Chan ET, van Bakel H, Pena-Castillo L, Tillo D, Tsui K, Carlson CD, Gossett AJ, Hasinoff MJ, Warren CL, et al. 2008. A library of yeast transcription factor motifs reveals a widespread function for Rsc3 in targeting nucleosome exclusion at promoters. Mol Cell 32: 878-887.
-
(2008)
Mol Cell
, vol.32
, pp. 878-887
-
-
Badis, G.1
Chan, E.T.2
Van Bakel, H.3
Pena-Castillo, L.4
Tillo, D.5
Tsui, K.6
Carlson, C.D.7
Gossett, A.J.8
Hasinoff, M.J.9
Warren, C.L.10
-
3
-
-
15844371193
-
CIS: Compound importance sampling method for protein-DNA binding site p-value estimation
-
DOI 10.1093/bioinformatics/bti041
-
Barash Y, Elidan G, Kaplan T, Friedman N. 2005. CIS: compound importance sampling method for protein-DNA binding site p-value estimation. Bioinformatics 21: 596-600. (Pubitemid 40424784)
-
(2005)
Bioinformatics
, vol.21
, Issue.5
, pp. 596-600
-
-
Barash, Y.1
Elidan, G.2
Kaplan, T.3
Friedman, N.4
-
4
-
-
0344196800
-
Functional characterization of CaCBF1, the Candida albicans homolog of centromere binding factor 1
-
DOI 10.1016/j.gene.2003.09.005
-
Biswas K, Rieger KJ, Morschhauser J. 2003. Functional characterization of CaCBF1, the Candida albicans homolog of centromere binding factor 1. Gene 323: 43-55. (Pubitemid 37501084)
-
(2003)
Gene
, vol.323
, Issue.1-2
, pp. 43-55
-
-
Biswas, K.1
Rieger, K.-J.2
Morschhauser, J.3
-
5
-
-
67650725820
-
The biology of chromatin remodeling complexes
-
Clapier CR, Cairns BR. 2009. The biology of chromatin remodeling complexes. Annu Rev Biochem 78: 273-304.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 273-304
-
-
Clapier, C.R.1
Cairns, B.R.2
-
6
-
-
34547611439
-
Increased glycolytic flux as an outcome of whole-genome duplication in yeast
-
doi: 10.1038/ msb 4100270
-
Conant GC, Wolfe KH. 2007. Increased glycolytic flux as an outcome of whole-genome duplication in yeast. Mol Syst Biol 3: 129. doi: 10.1038/ msb 4100270.
-
(2007)
Mol Syst Biol
, vol.3
, pp. 129
-
-
Conant, G.C.1
Wolfe, K.H.2
-
7
-
-
0022230224
-
DNA bending and its relation to nucleosome positioning
-
Drew HR, Travers AA. 1985. DNA bending and its relation to nucleosome positioning. J Mol Biol 186: 773-790. (Pubitemid 16087267)
-
(1985)
Journal of Molecular Biology
, vol.186
, Issue.4
, pp. 773-790
-
-
Drew, H.R.1
Travers, A.A.2
-
8
-
-
57149119464
-
Distinct modes of regulation by chromatin encoded through nucleosome positioning signals
-
doi: 10.1371/journal.pcbi.1000216
-
Field Y, Kaplan N, Fondufe-Mittendorf Y, Moore IK, Sharon E, Lubling Y, Widom J, Segal E. 2008. Distinct modes of regulation by chromatin encoded through nucleosome positioning signals. PLoS Comput Biol 4: e1000216. doi: 10.1371/journal.pcbi.1000216.
-
(2008)
PLoS Comput Biol
, vol.4
-
-
Field, Y.1
Kaplan, N.2
Fondufe-Mittendorf, Y.3
Moore, I.K.4
Sharon, E.5
Lubling, Y.6
Widom, J.7
Segal, E.8
-
9
-
-
63449135035
-
Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization
-
Field Y, Fondufe-Mittendorf Y, Moore IK, Mieczkowski P, Kaplan N, Lubling Y, Lieb JD, Widom J, Segal E. 2009. Gene expression divergence in yeast is coupled to evolution of DNA-encoded nucleosome organization. Nat Genet 41: 438-445.
-
(2009)
Nat Genet
, vol.41
, pp. 438-445
-
-
Field, Y.1
Fondufe-Mittendorf, Y.2
Moore, I.K.3
Mieczkowski, P.4
Kaplan, N.5
Lubling, Y.6
Lieb, J.D.7
Widom, J.8
Segal, E.9
-
10
-
-
33645128681
-
Basic methods for fission yeast
-
Forsburg SL, Rhind N. 2006. Basic methods for fission yeast. Yeast 23: 173-183.
-
(2006)
Yeast
, vol.23
, pp. 173-183
-
-
Forsburg, S.L.1
Rhind, N.2
-
11
-
-
56249101714
-
Malleable machines take shape in eukaryotic transcriptional regulation
-
Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ. 2008. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 4: 728-737.
-
(2008)
Nat Chem Biol
, vol.4
, pp. 728-737
-
-
Fuxreiter, M.1
Tompa, P.2
Simon, I.3
Uversky, V.N.4
Hansen, J.C.5
Asturias, F.J.6
-
12
-
-
79953729072
-
Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast
-
Ganapathi M, Palumbo MJ, Ansari SA, He Q, Tsui K, Nislow C, Morse RH. 2010. Extensive role of the general regulatory factors, Abf1 and Rap1, in determining genome-wide chromatin structure in budding yeast. Nucleic Acids Res 39: 2032-2044.
-
(2010)
Nucleic Acids Res
, vol.39
, pp. 2032-2044
-
-
Ganapathi, M.1
Palumbo, M.J.2
Ansari, S.A.3
He, Q.4
Tsui, K.5
Nislow, C.6
Morse, R.H.7
-
13
-
-
0029129562
-
The essential DNA-binding protein sap1 of Schizosaccharomyces pombe contains two independent oligomerization interfaces that dictate the relative orientation of the DNA-binding domain
-
Ghazvini M, Ribes V, Arcangioli B. 1995. The essential DNA-binding protein sap1 of Schizosaccharomyces pombe contains two independent oligomerization interfaces that dictate the relative orientation of the DNA-binding domain. Mol Cell Biol 15: 4939-4946.
-
(1995)
Mol Cell Biol
, vol.15
, pp. 4939-4946
-
-
Ghazvini, M.1
Ribes, V.2
Arcangioli, B.3
-
14
-
-
4544352942
-
Transcriptional regulatory code of a eukaryotic genome
-
DOI 10.1038/nature02800
-
Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM, Tagne JB, Reynolds DB, Yoo J, et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431: 99-104. (Pubitemid 39215116)
-
(2004)
Nature
, vol.430
, Issue.7004
, pp. 99-104
-
-
Harbison, C.T.1
Gordon, D.B.2
Lee, T.I.3
Rinaldl, N.J.4
Macisaac, K.D.5
Danford, T.W.6
Hannett, N.M.7
Tagne, J.-B.8
Reynolds, D.B.9
Yoo, J.10
Jennings, E.G.11
Zeitlinger, J.12
Pokholok, D.K.13
Kellis, M.14
Rolfe, P.A.15
Takusagawa, K.T.16
Lander, E.S.17
Gilford, D.K.18
Fraenkel, E.19
Young, R.A.20
more..
-
15
-
-
65249164132
-
Mechanisms that specify promoter nucleosome location and identity
-
Hartley PD, Madhani HD. 2009. Mechanisms that specify promoter nucleosome location and identity. Cell 137: 445-458.
-
(2009)
Cell
, vol.137
, pp. 445-458
-
-
Hartley, P.D.1
Madhani, H.D.2
-
16
-
-
40649126603
-
Transcription Factor Substitution during the Evolution of Fungal Ribosome Regulation
-
DOI 10.1016/j.molcel.2008.02.006, PII S1097276508001226
-
Hogues H, Lavoie H, Sellam A, Mangos M, Roemer T, Purisima E, Nantel A, Whiteway M. 2008. Transcription factor substitution during the evolution of fungal ribosome regulation. Mol Cell 29: 552-562. (Pubitemid 351374685)
-
(2008)
Molecular Cell
, vol.29
, Issue.5
, pp. 552-562
-
-
Hogues, H.1
Lavoie, H.2
Sellam, A.3
Mangos, M.4
Roemer, T.5
Purisima, E.6
Nantel, A.7
Whiteway, M.8
-
17
-
-
33749153628
-
Nucleosome positions predicted through comparative genomics
-
DOI 10.1038/ng1878, PII NG1878
-
Ioshikhes IP, Albert I, Zanton SJ, Pugh BF. 2006. Nucleosome positions predicted through comparative genomics. Nat Genet 38: 1210-1215. (Pubitemid 44470369)
-
(2006)
Nature Genetics
, vol.38
, Issue.10
, pp. 1210-1215
-
-
Ioshikhes, I.P.1
Albert, I.2
Zanton, S.J.3
Pugh, B.F.4
-
18
-
-
0029026719
-
Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure
-
Iyer V, Struhl K. 1995. Poly(dA:dT), a ubiquitous promoter element that stimulates transcription via its intrinsic DNA structure. EMBO J 14: 2570-2579.
-
(1995)
EMBO J
, vol.14
, pp. 2570-2579
-
-
Iyer, V.1
Struhl, K.2
-
19
-
-
60349089645
-
Nucleosome positioning and gene regulation: Advances through genomics
-
Jiang C, Pugh BF. 2009. Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10: 161-172.
-
(2009)
Nat Rev Genet
, vol.10
, pp. 161-172
-
-
Jiang, C.1
Pugh, B.F.2
-
20
-
-
62649085538
-
The DNA-encoded nucleosome organization of a eukaryotic genome
-
Kaplan N, Moore IK, Fondufe-Mittendorf Y, Gossett AJ, Tillo D, Field Y, Leproust EM, Hughes TR, Lieb JD, Widom J, et al. 2008. The DNA-encoded nucleosome organization of a eukaryotic genome. Nature 458: 362-366.
-
(2008)
Nature
, vol.458
, pp. 362-366
-
-
Kaplan, N.1
Moore, I.K.2
Fondufe-Mittendorf, Y.3
Gossett, A.J.4
Tillo, D.5
Field, Y.6
Leproust, E.M.7
Hughes, T.R.8
Lieb, J.D.9
Widom, J.10
-
21
-
-
0036226603
-
BLAT-the BLAST-like alignment tool
-
Kent WJ. 2002. BLAT-the BLAST-like alignment tool. Genome Res 12: 656-664.
-
(2002)
Genome Res
, vol.12
, pp. 656-664
-
-
Kent, W.J.1
-
22
-
-
0019879337
-
The location of nucleosomes in chromatin: Specific or statistical
-
Kornberg R. 1981. The location of nucleosomes in chromatin: specific or statistical. Nature 292: 579-580.
-
(1981)
Nature
, vol.292
, pp. 579-580
-
-
Kornberg, R.1
-
23
-
-
0033529565
-
Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome
-
DOI 10.1016/S0092-8674(00)81958-3
-
Kornberg RD, Lorch Y. 1999. Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98: 285-294. (Pubitemid 29380564)
-
(1999)
Cell
, vol.98
, Issue.3
, pp. 285-294
-
-
Kornberg, R.D.1
Lorch, Y.2
-
24
-
-
0023777538
-
Statistical distributions of nucleosomes: Nonrandom locations by a stochastic mechanism
-
Kornberg RD, Stryer L. 1988. Statistical distributions of nucleosomes: nonrandom locations by a stochastic mechanism. Nucleic Acids Res 16: 6677-6690.
-
(1988)
Nucleic Acids Res
, vol.16
, pp. 6677-6690
-
-
Kornberg, R.D.1
Stryer, L.2
-
25
-
-
76349103252
-
Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae
-
Lantermann AB, Straub T, Stralfors A, Yuan GC, Ekwall K, Korber P. 2010. Schizosaccharomyces pombe genome-wide nucleosome mapping reveals positioning mechanisms distinct from those of Saccharomyces cerevisiae. Nat Struct Mol Biol 17: 251-257.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 251-257
-
-
Lantermann, A.B.1
Straub, T.2
Stralfors, A.3
Yuan, G.C.4
Ekwall, K.5
Korber, P.6
-
26
-
-
0034653847
-
Different roles for Abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A
-
Lascaris RF, Groot E, Hoen PB, Mager WH, Planta RJ. 2000. Different roles for abf1p and a T-rich promoter element in nucleosome organization of the yeast RPS28A gene. Nucleic Acids Res 28: 1390-1396. (Pubitemid 30142682)
-
(2000)
Nucleic Acids Research
, vol.28
, Issue.6
, pp. 1390-1396
-
-
Lascaris, R.F.1
De Groot, E.2
Hoen, P.-B.3
Mager, W.H.4
Planta, R.J.5
-
27
-
-
77950553742
-
Evolutionary tinkering with conserved components of a transcriptional regulatory network
-
doi: 10.1371/ journal.pbio.1000329
-
Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M. 2010. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLoS Biol 8: e1000329. doi: 10.1371/ journal.pbio.1000329.
-
(2010)
PLoS Biol
, vol.8
-
-
Lavoie, H.1
Hogues, H.2
Mallick, J.3
Sellam, A.4
Nantel, A.5
Whiteway, M.6
-
28
-
-
70149095590
-
Major evolutionary transitions in centromere complexity
-
Malik HS, Henikoff S. 2009. Major evolutionary transitions in centromere complexity. Cell 138: 1067-1082.
-
(2009)
Cell
, vol.138
, pp. 1067-1082
-
-
Malik, H.S.1
Henikoff, S.2
-
29
-
-
46449112319
-
A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome
-
DOI 10.1101/gr.078261.108
-
Mavrich TN, Ioshikhes IP, Venters BJ, Jiang C, Tomsho LP, Qi J, Schuster SC, Albert I, Pugh BF. 2008. A barrier nucleosome model for statistical positioning of nucleosomes throughout the yeast genome. Genome Res 18: 1073-1083. (Pubitemid 351931158)
-
(2008)
Genome Research
, vol.18
, Issue.7
, pp. 1073-1083
-
-
Mavrich, T.N.1
Ioshikhes, I.P.2
Venters, B.J.3
Jiang, C.4
Tomsho, L.P.5
Qi, J.6
Schuster, S.C.7
Albert, I.8
Pugh, B.F.9
-
30
-
-
78049434489
-
Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites
-
doi: 10.1371/journal. pcbi.1000891
-
Mobius W, Gerland U. 2010. Quantitative test of the barrier nucleosome model for statistical positioning of nucleosomes up- and downstream of transcription start sites. PLoS Comput Biol 6: doi: 10.1371/journal. pcbi.1000891.
-
(2010)
PLoS Comput Biol
, vol.6
-
-
Mobius, W.1
Gerland, U.2
-
31
-
-
34247876071
-
Sap1 promotes the association of the replication fork protection complex with chromatin and is involved in the replication checkpoint in Schizosaccharomyces pombe
-
DOI 10.1534/genetics.106.065334
-
Noguchi C, Noguchi E. 2007. Sap1 promotes the association of the replication fork protection complex with chromatin and is involved in the replication checkpoint in Schizosaccharomyces pombe. Genetics 175: 553-566. (Pubitemid 46798258)
-
(2007)
Genetics
, vol.175
, Issue.2
, pp. 553-566
-
-
Noguchi, C.1
Noguchi, E.2
-
32
-
-
34547643563
-
Nucleosome positioning signals in genomic DNA
-
DOI 10.1101/gr.6101007
-
Peckham HE, Thurman RE, Fu Y, Stamatoyannopoulos JA, Noble WS, Struhl K, Weng Z. 2007. Nucleosome positioning signals in genomic DNA. Genome Res 17: 1170-1177. (Pubitemid 47204860)
-
(2007)
Genome Research
, vol.17
, Issue.8
, pp. 1170-1177
-
-
Peckham, H.E.1
Thurman, R.E.2
Fu, Y.3
Stamatoyannopoulos, J.A.4
Noble, W.S.5
Struhl, K.6
Weng, Z.7
-
33
-
-
76949093375
-
Nucleosome positioning: How is it established, and why does it matter?
-
Radman-Livaja M, Rando OJ. 2010. Nucleosome positioning: how is it established, and why does it matter? Dev Biol 339: 258-266.
-
(2010)
Dev Biol
, vol.339
, pp. 258-266
-
-
Radman-Livaja, M.1
Rando, O.J.2
-
34
-
-
26844511498
-
Histone variant H2A.Z Marks the 5′ ends of both active and inactive genes in euchromatin
-
DOI 10.1016/j.cell.2005.10.002, PII S0092867405010251
-
Raisner RM, Hartley PD, Meneghini MD, Bao MZ, Liu CL, Schreiber SL, Rando OJ, Madhani HD. 2005. Histone variant H2A.Z marks the 5′ ends of both active and inactive genes in euchromatin. Cell 123: 233-248. (Pubitemid 41457214)
-
(2005)
Cell
, vol.123
, Issue.2
, pp. 233-248
-
-
Raisner, R.M.1
Hartley, P.D.2
Meneghini, M.D.3
Bao, M.Z.4
Liu, C.L.5
Schreiber, S.L.6
Rando, O.J.7
Madhani, H.D.8
-
35
-
-
34250168295
-
Rules and regulation in the primary structure of chromatin
-
DOI 10.1016/j.ceb.2007.04.006, PII S0955067407000580, Nucleus and Gene Expression
-
Rando OJ, Ahmad K. 2007. Rules and regulation in the primary structure of chromatin. Curr Opin Cell Biol 19: 250-256. (Pubitemid 46899508)
-
(2007)
Current Opinion in Cell Biology
, vol.19
, Issue.3
, pp. 250-256
-
-
Rando, O.J.1
Ahmad, K.2
-
36
-
-
67650711140
-
Genome-wide views of chromatin structure
-
Rando OJ, Chang HY. 2009. Genome-wide views of chromatin structure. Annu Rev Biochem 78: 245-271.
-
(2009)
Annu Rev Biochem
, vol.78
, pp. 245-271
-
-
Rando, O.J.1
Chang, H.Y.2
-
37
-
-
68349125112
-
What controls nucleosome positions?
-
Segal E, Widom J. 2009. What controls nucleosome positions? Trends Genet 25: 335-343.
-
(2009)
Trends Genet
, vol.25
, pp. 335-343
-
-
Segal, E.1
Widom, J.2
-
38
-
-
20444403749
-
Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast
-
DOI 10.1016/j.molcel.2005.05.003, PII S1097276505013092
-
Sekinger EA, Moqtaderi Z, Struhl K. 2005. Intrinsic histone-DNA interactions and low nucleosome density are important for preferential accessibility of promoter regions in yeast. Mol Cell 18: 735-748. (Pubitemid 40804808)
-
(2005)
Molecular Cell
, vol.18
, Issue.6
, pp. 735-748
-
-
Sekinger, E.A.1
Moqtaderi, Z.2
Struhl, K.3
-
39
-
-
41749091787
-
Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation
-
doi: 10.1371/ journal.pbio.0060065
-
Shivaswamy S, Bhinge A, Zhao Y, Jones S, Hirst M, Iyer VR. 2008. Dynamic remodeling of individual nucleosomes across a eukaryotic genome in response to transcriptional perturbation. PLoS Biol 6: e65. doi: 10.1371/ journal.pbio.0060065.
-
(2008)
PLoS Biol
, vol.6
-
-
Shivaswamy, S.1
Bhinge, A.2
Zhao, Y.3
Jones, S.4
Hirst, M.5
Iyer, V.R.6
-
40
-
-
77950355103
-
The most frequent short sequences in noncoding DNA
-
Subirana JA, Messeguer X. 2010. The most frequent short sequences in noncoding DNA. Nucleic Acids Res 38: 1172-1181.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. 1172-1181
-
-
Subirana, J.A.1
Messeguer, X.2
-
41
-
-
75149135277
-
G+C content dominates intrinsic nucleosome occupancy
-
doi: 10.1186/1471-2105-10-442
-
Tillo D, Hughes TR. 2009. G+C content dominates intrinsic nucleosome occupancy. BMC Bioinformatics 10: 442. doi: 10.1186/1471-2105-10-442.
-
(2009)
BMC Bioinformatics
, vol.10
, pp. 442
-
-
Tillo, D.1
Hughes, T.R.2
-
42
-
-
77955045449
-
The role of nucleosome positioning in the evolution of gene regulation
-
doi: 10.1371/journal.pbio.1000414
-
Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLoS Biol 8: e1000414. doi: 10.1371/journal.pbio.1000414.
-
(2010)
PLoS Biol
, vol.8
-
-
Tsankov, A.M.1
Thompson, D.A.2
Socha, A.3
Regev, A.4
Rando, O.J.5
-
43
-
-
74949084972
-
A novel strategy of transcription regulation by intragenic nucleosome ordering
-
Vaillant C, Palmeira L, Chevereau G, Audit B, d'Aubenton-Carafa Y, Thermes C, Arneodo A. 2010. A novel strategy of transcription regulation by intragenic nucleosome ordering. Genome Res 20: 59-67.
-
(2010)
Genome Res
, vol.20
, pp. 59-67
-
-
Vaillant, C.1
Palmeira, L.2
Chevereau, G.3
Audit, B.4
D'Aubenton-Carafa, Y.5
Thermes, C.6
Arneodo, A.7
-
44
-
-
46449103738
-
A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning
-
DOI 10.1101/gr.076463.108
-
Valouev A, Ichikawa J, Tonthat T, Stuart J, Ranade S, Peckham H, Zeng K, Malek JA, Costa G, McKernan K, et al. 2008. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning. Genome Res 18: 1051-1063. (Pubitemid 351931156)
-
(2008)
Genome Research
, vol.18
, Issue.7
, pp. 1051-1063
-
-
Valouev, A.1
Ichikawa, J.2
Tonthat, T.3
Stuart, J.4
Ranade, S.5
Peckham, H.6
Zeng, K.7
Malek, J.A.8
Costa, G.9
McKernan, K.10
Sidow, A.11
Fire, A.12
Johnson, S.M.13
-
45
-
-
34548501747
-
Natural history and evolutionary principles of gene duplication in fungi
-
DOI 10.1038/nature06107, PII NATURE06107
-
Wapinski I, Pfeffer A, Friedman N, Regev A. 2007. Natural history and evolutionary principles of gene duplication in fungi. Nature 449: 54-61. (Pubitemid 47373776)
-
(2007)
Nature
, vol.449
, Issue.7158
, pp. 54-61
-
-
Wapinski, I.1
Pfeffer, A.2
Friedman, N.3
Regev, A.4
-
46
-
-
74949110964
-
High-resolution nucleosome mapping reveals transcription-dependent promoter packaging
-
Weiner A, Hughes A, Yassour M, Rando OJ, Friedman N. 2010. High-resolution nucleosome mapping reveals transcription-dependent promoter packaging. Genome Res 20: 90-100.
-
(2010)
Genome Res
, vol.20
, pp. 90-100
-
-
Weiner, A.1
Hughes, A.2
Yassour, M.3
Rando, O.J.4
Friedman, N.5
-
47
-
-
37249077649
-
Chromatin remodelling at promoters suppresses antisense transcription
-
DOI 10.1038/nature06391, PII NATURE06391
-
Whitehouse I, Rando OJ, Delrow J, Tsukiyama T. 2007. Chromatin remodelling at promoters suppresses antisense transcription. Nature 450: 1031-1035. (Pubitemid 350273613)
-
(2007)
Nature
, vol.450
, Issue.7172
, pp. 1031-1035
-
-
Whitehouse, I.1
Rando, O.J.2
Delrow, J.3
Tsukiyama, T.4
-
48
-
-
29244467484
-
Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length
-
Woodcock CL, Skoultchi AI, Fan Y. 2006. Role of linker histone in chromatin structure and function: H1 stoichiometry and nucleosome repeat length. Chromosome Res 14: 17-25.
-
(2006)
Chromosome Res
, vol.14
, pp. 17-25
-
-
Woodcock, C.L.1
Skoultchi, A.I.2
Fan, Y.3
-
49
-
-
60549108380
-
Bidirectional promoters generate pervasive transcription in yeast
-
Xu Z, Wei W, Gagneur J, Perocchi F, Clauder-Munster S, Camblong J, Guffanti E, Stutz F, Huber W, Steinmetz LM. 2009. Bidirectional promoters generate pervasive transcription in yeast. Nature 457: 1033-1037.
-
(2009)
Nature
, vol.457
, pp. 1033-1037
-
-
Xu, Z.1
Wei, W.2
Gagneur, J.3
Perocchi, F.4
Clauder-Munster, S.5
Camblong, J.6
Guffanti, E.7
Stutz, F.8
Huber, W.9
Steinmetz, L.M.10
-
50
-
-
4744375319
-
Comparison of ABF1 arid RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae
-
DOI 10.1128/MCB.24.20.9152-9164.2004
-
Yarragudi A, Miyake T, Li R, Morse RH. 2004. Comparison of ABF1 and RAP1 in chromatin opening and transactivator potentiation in the budding yeast Saccharomyces cerevisiae. Mol Cell Biol 24: 9152-9164. (Pubitemid 39313917)
-
(2004)
Molecular and Cellular Biology
, vol.24
, Issue.20
, pp. 9152-9164
-
-
Yarragudi, A.1
Miyake, T.2
Li, R.3
Morse, R.H.4
-
51
-
-
33846694307
-
Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae
-
DOI 10.1093/nar/gkl1059
-
Yarragudi A, Parfrey LW, Morse RH. 2007. Genome-wide analysis of transcriptional dependence and probable target sites for Abf1 and Rap1 in Saccharomyces cerevisiae. Nucleic Acids Res 35: 193-202. (Pubitemid 46189844)
-
(2007)
Nucleic Acids Research
, vol.35
, Issue.1
, pp. 193-202
-
-
Yarragudi, A.1
Parfrey, L.W.2
Morse, R.H.3
-
52
-
-
0032793066
-
Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae
-
Yu L, Morse RH. 1999. Chromatin opening and transactivator potentiation by RAP1 in Saccharomyces cerevisiae. Mol Cell Biol 19: 5279-5288. (Pubitemid 29339887)
-
(1999)
Molecular and Cellular Biology
, vol.19
, Issue.8
, pp. 5279-5288
-
-
Yu, L.1
Morse, R.H.2
-
53
-
-
38949204996
-
Genomic sequence is highly predictive of local nucleosome depletion
-
doi: 10.1371/ journal.pcbi.0040013
-
Yuan GC, Liu JS. 2008. Genomic sequence is highly predictive of local nucleosome depletion. PLoS Comput Biol 4: e13. doi: 10.1371/ journal.pcbi.0040013.
-
(2008)
PLoS Comput Biol
, vol.4
-
-
Yuan, G.C.1
Liu, J.S.2
-
54
-
-
22744432660
-
Molecular biology: Genome-scale identification of nucleosome positions in S. cerevisiae
-
DOI 10.1126/science.1112178
-
Yuan GC, Liu YJ, Dion MF, Slack MD, Wu LF, Altschuler SJ, Rando OJ. 2005. Genome-scale identification of nucleosome positions in S. cerevisiae. Science 309: 626-630. (Pubitemid 41033649)
-
(2005)
Science
, vol.309
, Issue.5734
, pp. 626-630
-
-
Yuan, G.-C.1
Liu, Y.-J.2
Dion, M.F.3
Slack, M.D.4
Wu, L.F.5
Altschuler, S.J.6
Rando, O.J.7
-
55
-
-
68249142923
-
Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo
-
Zhang Y, Moqtaderi Z, Rattner BP, Euskirchen G, Snyder M, Kadonaga JT, Liu XS, Struhl K. 2009. Intrinsic histone-DNA interactions are not the major determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16: 847-852.
-
(2009)
Nat Struct Mol Biol
, vol.16
, pp. 847-852
-
-
Zhang, Y.1
Moqtaderi, Z.2
Rattner, B.P.3
Euskirchen, G.4
Snyder, M.5
Kadonaga, J.T.6
Liu, X.S.7
Struhl, K.8
-
56
-
-
63849315606
-
High-resolution DNA-binding specificity analysis of yeast transcription factors
-
Zhu C, Byers KJ, McCord RP, Shi Z, Berger MF, Newburger DE, Saulrieta K, Smith Z, Shah MV, Radhakrishnan M, et al. 2009. High-resolution DNA-binding specificity analysis of yeast transcription factors. Genome Res 19: 556-566.
-
(2009)
Genome Res
, vol.19
, pp. 556-566
-
-
Zhu, C.1
Byers, K.J.2
McCord, R.P.3
Shi, Z.4
Berger, M.F.5
Newburger, D.E.6
Saulrieta, K.7
Smith, Z.8
Shah, M.V.9
Radhakrishnan, M.10
|