메뉴 건너뛰기




Volumn 4, Issue 1, 2003, Pages 25-32

Replicating by the clock

Author keywords

[No Author keywords available]

Indexed keywords

CELL DNA; CIS ACTING ELEMENT; DNA;

EID: 0037226539     PISSN: 14710072     EISSN: None     Source Type: Journal    
DOI: 10.1038/nrm1008     Document Type: Review
Times cited : (125)

References (80)
  • 1
    • 0018120376 scopus 로고
    • Eucaryotic DNA organization of the genome for replication
    • Hand, R. Eucaryotic DNA: organization of the genome for replication. Cell 15, 317-325 (1978).
    • (1978) Cell , vol.15 , pp. 317-325
    • Hand, R.1
  • 2
    • 0023193418 scopus 로고
    • Role of replication time in the control of tissue specific gene expression
    • Holmquist, G. P. Role of replication time in the control of tissue specific gene expression. Am. J. Hum. Genet. 40, 151-173 (1987).
    • (1987) Am. J. Hum. Genet. , vol.40 , pp. 151-173
    • Holmquist, G.P.1
  • 3
    • 0020327977 scopus 로고
    • Assembly of transcriptionally active 5S RNA gene chromatin in vitro
    • Gottesfeld, J. & Bloomer, L. S. Assembly of transcriptionally active 5S RNA gene chromatin in vitro. Cell 28, 781-791 (1982).
    • (1982) Cell , vol.28 , pp. 781-791
    • Gottesfeld, J.1    Bloomer, L.S.2
  • 4
    • 0021233482 scopus 로고
    • The role of stable complexes that repress and activate eucaryotic genes
    • Brown, D. D. The role of stable complexes that repress and activate eucaryotic genes. Cell 37, 350-365 (1984).
    • (1984) Cell , vol.37 , pp. 350-365
    • Brown, D.D.1
  • 5
    • 0015824058 scopus 로고
    • A Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes
    • Latt, S. A Microfluorometric detection of deoxyribonucleic acid replication in human metaphase chromosomes. Proc. Natl Acad. Sci. USA 70, 3395-3399 (1973).
    • (1973) Proc. Natl. Acad. Sci. USA , vol.70 , pp. 3395-3399
    • Latt, S.1
  • 6
    • 0025113404 scopus 로고
    • Analysis of DNA replication during S phase by means of dynamic chromosome banding at high resolution
    • Drouin, R., Lemieux, N. & Richer, C. L. Analysis of DNA replication during S phase by means of dynamic chromosome banding at high resolution. Chromosoma 99, 272-280 (1990).
    • (1990) Chromosoma , vol.99 , pp. 272-280
    • Drouin, R.1    Lemieux, N.2    Richer, C.L.3
  • 7
    • 0019454785 scopus 로고
    • Mid-prophase human chromosomes. The attainment of 2000 bands
    • Yunis, J. J. Mid-prophase human chromosomes. The attainment of 2000 bands. Hum. Genet. 56, 293-298 (1981).
    • (1981) Hum. Genet. , vol.56 , pp. 293-298
    • Yunis, J.J.1
  • 8
    • 0033991967 scopus 로고    scopus 로고
    • Isochores and the evolutionary genomics of vertebrates
    • Bernard, G. Isochores and the evolutionary genomics of vertebrates. Gene 241, 3-17 (2000).
    • (2000) Gene , vol.241 , pp. 3-17
    • Bernard, G.1
  • 9
    • 0030917145 scopus 로고    scopus 로고
    • Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex
    • Tenzen, T. et al. Precise switching of DNA replication timing in the GC content transition area in the human major histocompatibility complex. Mol. Cell. Biol. 17, 4043-4050 (1997).
    • (1997) Mol. Cell. Biol. , vol.17 , pp. 4043-4050
    • Tenzen, T.1
  • 10
    • 0036156599 scopus 로고    scopus 로고
    • Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: Disease-related genes in timing-switch regions
    • Watanabe, Y. et al. Chromosome-wide assessment of replication timing for human chromosomes 11q and 21q: disease-related genes in timing-switch regions. Hum. Mol. Genet. 11, 13-21 (2002).
    • (2002) Hum. Mol. Genet. , vol.11 , pp. 13-21
    • Watanabe, Y.1
  • 11
    • 0014413470 scopus 로고
    • On the mechanism of DNA replication in mammalian chromosomes
    • Huberman, J. A. & Riggs, A. D. On the mechanism of DNA replication in mammalian chromosomes. J. Mol. Biol. 32, 327-341 (1968)
    • (1968) J. Mol. Biol. , vol.32 , pp. 327-341
    • Huberman, J.A.1    Riggs, A.D.2
  • 12
    • 0016437362 scopus 로고
    • Regulation of DNA replication on subchromosomal units of mammalian cells
    • Hand, R. Regulation of DNA replication on subchromosomal units of mammalian cells. J. Cell Biol. 64, 89-97 (1975).
    • (1975) J. Cell Biol. , vol.64 , pp. 89-97
    • Hand, R.1
  • 13
    • 0035812808 scopus 로고    scopus 로고
    • Replication dynamics of the yeast genome
    • Raghuraman, M. K. et al. Replication dynamics of the yeast genome. Science 294, 115-121 (2001). The first report of a genome-wide replication timing map for a eukaryotic organism, the yeast Saccharomyces cerevisiae, which shows that there is no general correlation between gene expression and replication timing.
    • (2001) Science , vol.294 , pp. 115-121
    • Raghuraman, M.K.1
  • 14
    • 0021362841 scopus 로고
    • Replication timing of genes and middle repetitive sequences
    • Goldman, M. A., Holmquist, G. P., Caston, L. A. & Nag, A. Replication timing of genes and middle repetitive sequences. Science 224, 686-692 (1984).
    • (1984) Science , vol.224 , pp. 686-692
    • Goldman, M.A.1    Holmquist, G.P.2    Caston, L.A.3    Nag, A.4
  • 15
    • 0025357957 scopus 로고
    • Asynchronous replication of homologous loci on human active and inactive X chromosome
    • Schmidt, M. & Migeon, B. R. Asynchronous replication of homologous loci on human active and inactive X chromosome. Proc. Natl Acad. Sci USA 87, 3685-3689 (1990).
    • (1990) Proc. Natl. Acad. Sci. USA , vol.87 , pp. 3685-3689
    • Schmidt, M.1    Migeon, B.R.2
  • 16
    • 0020480696 scopus 로고
    • The temporal order of replication of murine immunoglobulin heavy chain constant region sequences corresponds to their linear order in the genome
    • Braunstein, D., Schulze, D., DelGiudice, T., Furst, A. & Schildkraut, C. L. The temporal order of replication of murine immunoglobulin heavy chain constant region sequences corresponds to their linear order in the genome. Nucleic Acids Res. 10, 6887-6902 (1982).
    • (1982) Nucleic Acids Res. , vol.10 , pp. 6887-6902
    • Braunstein, D.1    Schulze, D.2    DelGiudice, T.3    Furst, A.4    Schildkraut, C.L.5
  • 17
    • 0022481322 scopus 로고
    • Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells
    • Gilbert, D. M. Temporal order of replication of Xenopus laevis 5S ribosomal RNA genes in somatic cells. Proc. Natl. Acad. Sci. USA 83, 2924-2928 (1986).
    • (1986) Proc. Natl. Acad. Sci. USA , vol.83 , pp. 2924-2928
    • Gilbert, D.M.1
  • 18
    • 0027176828 scopus 로고
    • Association of fragile X syndrome with delayed replication of the FMR1 gene
    • Hansen, R. S., Canfield, T. K., Lamb, M. M., Gartler, S. M. & Laird, C. D. Association of fragile X syndrome with delayed replication of the FMR1 gene. Cell 73, 1403-1409 (1993).
    • (1993) Cell , vol.73 , pp. 1403-1409
    • Hansen, R.S.1    Canfield, T.K.2    Lamb, M.M.3    Gartler, S.M.4    Laird, C.D.5
  • 19
    • 0036842221 scopus 로고    scopus 로고
    • Genome-wide DNA replication profile for Drosophila melanogaster: A link between transcription and replication timing
    • Schubeler, D. et al. Genome-wide DNA replication profile for Drosophila melanogaster: a link between transcription and replication timing. Nature Genet. 32, 438-442 (2002). Genome-wide mapping that shows a strong correlation between replication timing and gene expression in Drosophila melanogaster.
    • (2002) Nature Genet. , vol.32 , pp. 438-442
    • Schubeler, D.1
  • 20
    • 0026511908 scopus 로고
    • Delineation of DNA replication time zones by fluorescence in situ hybridization
    • Selig, S., Okumura, K., Ward, D. C. & Cedar H. Delineation of DNA replication time zones by fluorescence in situ hybridization. EMBO J. 11, 1217-1225 (1992).
    • (1992) EMBO J. , vol.11 , pp. 1217-1225
    • Selig, S.1    Okumura, K.2    Ward, D.C.3    Cedar, H.4
  • 21
    • 0036843263 scopus 로고    scopus 로고
    • Replication timing and metazoan evolution
    • Gilbert, D. M. Replication timing and metazoan evolution. Nature Genet. 32, 336-337 (2002).
    • (2002) Nature Genet. , vol.32 , pp. 336-337
    • Gilbert, D.M.1
  • 23
    • 17944382111 scopus 로고    scopus 로고
    • Developmental regulation of DNA replication timing at the human β globin locus
    • Simon, I. et al. Developmental regulation of DNA replication timing at the human β globin locus. EMBO J. 20, 6150-6157 (2001).
    • (2001) EMBO J. , vol.20 , pp. 6150-6157
    • Simon, I.1
  • 24
    • 0021203243 scopus 로고
    • Mapping of DNase-I sensitive regions on mitotic chromsomes
    • Kerem, B. S., Goitein, R., Diamond, G., Cedar, H. & Marcus, M. Mapping of DNase-I sensitive regions on mitotic chromsomes. Cell 38, 493-499 (1984).
    • (1984) Cell , vol.38 , pp. 493-499
    • Kerem, B.S.1    Goitein, R.2    Diamond, G.3    Cedar, H.4    Marcus, M.5
  • 25
    • 0035234557 scopus 로고    scopus 로고
    • Genomic imprinting: Parental influence on the genome
    • Reik, W. & Walter, J. Genomic imprinting: parental influence on the genome. Nature Rev. Genet. 2, 21-32 (2001).
    • (2001) Nature Rev. Genet. , vol.2 , pp. 21-32
    • Reik, W.1    Walter, J.2
  • 26
    • 0035839064 scopus 로고    scopus 로고
    • Imprinting and the epigenetic asymmetry between parental genomes
    • Ferguson-Smith, A. C. & Surani, M. A. Imprinting and the epigenetic asymmetry between parental genomes. Science 293, 1086-1089 (2001).
    • (2001) Science , vol.293 , pp. 1086-1089
    • Ferguson-Smith, A.C.1    Surani, M.A.2
  • 27
    • 0012373464 scopus 로고    scopus 로고
    • Regulation of imprinting: A multi-tiered process
    • in the press
    • Rand, E. & Cedar, H. Regulation of imprinting: a multi-tiered process. J. Cell. Biol. (in the press).
    • J. Cell. Biol.
    • Rand, E.1    Cedar, H.2
  • 28
    • 0027749608 scopus 로고
    • Replication structure of the human β-globin gene domain
    • Kitsberg, D., Selig, S., Keshet, I. & Cedar, H. Replication structure of the human β-globin gene domain. Nature 366, 588-590 (1993).
    • (1993) Nature , vol.366 , pp. 588-590
    • Kitsberg, D.1    Selig, S.2    Keshet, I.3    Cedar, H.4
  • 29
    • 0028260642 scopus 로고
    • Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region
    • Knoll, J. H. M., Cheng, S.-D. & Lalande, M. Allele specificity of DNA replication timing in the Angelman/Prader-Willi syndrome imprinted chromosomal region. Nature Genet. 6, 41-46 (1994).
    • (1994) Nature Genet. , vol.6 , pp. 41-46
    • Knoll, J.H.M.1    Cheng, S.-D.2    Lalande, M.3
  • 30
    • 0033613361 scopus 로고    scopus 로고
    • Asynchronous replication of imprinted genes is established in the gametes and maintained during development
    • Simon, I. et al. Asynchronous replication of imprinted genes is established in the gametes and maintained during development. Nature 401, 929-932 (1999). Shows evidence that asynchronous replication timing in mammalian cells has the characteristics of a primary imprinting mark.
    • (1999) Nature , vol.401 , pp. 929-932
    • Simon, I.1
  • 31
    • 0033671832 scopus 로고    scopus 로고
    • The imprinting of the Prader-Willi/Angelman syndrome domain
    • Shemer, R. et al. The imprinting of the Prader-Willi/Angelman syndrome domain. Nature Genet. 26, 440-443 (2000).
    • (2000) Nature Genet. , vol.26 , pp. 440-443
    • Shemer, R.1
  • 32
    • 0028933627 scopus 로고
    • Tissue-specific and allele-specific replication timing control in the imprinted human Prader-Willi syndrome region
    • Gunaratne, P. H., Nakao, M., Ledbetter, D. H., Sutcliffe, J. S. & Chinault, A. C. Tissue-specific and allele-specific replication timing control in the imprinted human Prader-Willi syndrome region. Genes Dev. 9, 808-820 (1995).
    • (1995) Genes Dev. , vol.9 , pp. 808-820
    • Gunaratne, P.H.1    Nakao, M.2    Ledbetter, D.H.3    Sutcliffe, J.S.4    Chinault, A.C.5
  • 33
    • 0035228079 scopus 로고    scopus 로고
    • X-chromosome inactivation: Counting, choice and initiation
    • Avner, P. & Heard, E. X-chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59-67 (2001).
    • (2001) Nature Rev. Genet. , vol.2 , pp. 59-67
    • Avner, P.1    Heard, E.2
  • 34
    • 0023657424 scopus 로고
    • Methylation of the HPRT gene on the inactive X occurs after chromosome inactivation
    • Lock, L. F., Takagi, N. & Martin, G. R. Methylation of the HPRT gene on the inactive X occurs after chromosome inactivation. Cell 48, 39-46 (1987).
    • (1987) Cell , vol.48 , pp. 39-46
    • Lock, L.F.1    Takagi, N.2    Martin, G.R.3
  • 35
    • 0027981484 scopus 로고
    • Allelic inactivation regulates olfactory receptor gene expression
    • Chess, A., Simon, I., Cedar, H. & Axel, R. Allelic inactivation regulates olfactory receptor gene expression. Cell 78, 823-834 (1994).
    • (1994) Cell , vol.78 , pp. 823-834
    • Chess, A.1    Simon, I.2    Cedar, H.3    Axel, R.4
  • 37
    • 0035829551 scopus 로고    scopus 로고
    • Asynchronous replication and allelic exclusion in the immune system
    • Mostoslavsky R. et al. Asynchronous replication and allelic exclusion in the immune system. Nature 414, 221-225 (2001).
    • (2001) Nature , vol.414 , pp. 221-225
    • Mostoslavsky, R.1
  • 38
    • 0030006070 scopus 로고    scopus 로고
    • Clonal selection and learning in the antibody system
    • Rajewsky, K. Clonal selection and learning in the antibody system. Nature 381, 751-758 (1996).
    • (1996) Nature , vol.381 , pp. 751-758
    • Rajewsky, K.1
  • 39
    • 0036792721 scopus 로고    scopus 로고
    • Differential accessibility at the κ chain locus plays a role in allelic exclusion
    • Goldmit, M., Schlissel, M., Cedar, H & Bergman, Y. Differential accessibility at the κ chain locus plays a role in allelic exclusion. EMBO J. 21, 5255-5261 (2002).
    • (2002) EMBO J. , vol.21 , pp. 5255-5261
    • Goldmit, M.1    Schlissel, M.2    Cedar, H.3    Bergman, Y.4
  • 40
    • 0032526136 scopus 로고    scopus 로고
    • κ chain monoallelic demethylation and the establishment of allelic exclusion
    • Mostoslavsky, R. et al. κ chain monoallelic demethylation and the establishment of allelic exclusion. Genes Dev. 12, 1801-1811 (1998).
    • (1998) Genes Dev. , vol.12 , pp. 1801-1811
    • Mostoslavsky, R.1
  • 41
    • 0035512647 scopus 로고    scopus 로고
    • How smell develops
    • Mombaerts, P. How smell develops. Nature Neurosci. 4, 1192-1198 (2001).
    • (2001) Nature Neurosci. , vol.4 , pp. 1192-1198
    • Mombaerts, P.1
  • 42
    • 0024449541 scopus 로고
    • Molecular genetics of human blue cone monochromacy
    • Nathans, J. et al. Molecular genetics of human blue cone monochromacy. Science 245, 831-838 (1989).
    • (1989) Science , vol.245 , pp. 831-838
    • Nathans, J.1
  • 43
    • 0033104977 scopus 로고    scopus 로고
    • Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line
    • Ermakova, O. V. et al. Evidence that a single replication fork proceeds from early to late replicating domains in the IgH locus in a non-B cell line. Mol. Cell 3, 321-330 (1999).
    • (1999) Mol. Cell , vol.3 , pp. 321-330
    • Ermakova, O.V.1
  • 44
    • 0031005357 scopus 로고    scopus 로고
    • Cell cycle-dependent establishment of a late replication program
    • Raghuraman, M. K., Brewer, B. J. & Fangman, W. L. Cell cycle-dependent establishment of a late replication program. Science 276, 806-809 (1997). Shows that the replication timing profile is established by cis-acting elements during early G1 phase.
    • (1997) Science , vol.276 , pp. 806-809
    • Raghuraman, M.K.1    Brewer, B.J.2    Fangman, W.L.3
  • 45
    • 0026571672 scopus 로고
    • A position effect on the time of replication origin activation in yeast
    • Ferguson, B. M. & Fangman, W. L. A position effect on the time of replication origin activation in yeast Cell 68, 333-339 (1992). The first evidence that cis-acting sequences have a function in dictating the time of origin firing.
    • (1992) Cell , vol.68 , pp. 333-339
    • Ferguson, B.M.1    Fangman, W.L.2
  • 47
    • 0036791764 scopus 로고    scopus 로고
    • Ku complex controls the replication time of DNA in telomere regions
    • Cosgrove, A. J. et al. Ku complex controls the replication time of DNA in telomere regions. Genes Dev. 16, 2485-2490 (2002).
    • (2002) Genes Dev. , vol.16 , pp. 2485-2490
    • Cosgrove, A.J.1
  • 48
    • 0033556028 scopus 로고    scopus 로고
    • Telomeric chromatin modulates replication timing near chromosome ends
    • Stevenson, J. B. & Gottschling, D. E. Telomeric chromatin modulates replication timing near chromosome ends. Genes Dev. 13, 146-151 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 146-151
    • Stevenson, J.B.1    Gottschling, D.E.2
  • 49
    • 0029781449 scopus 로고    scopus 로고
    • Multiple determinanats controlling activation of yeast replication origins late in S phase
    • Friedman, K. L. et al. Multiple determinanats controlling activation of yeast replication origins late in S phase. Genes Dev. 10, 1595-1607 (1996).
    • (1996) Genes Dev. , vol.10 , pp. 1595-1607
    • Friedman, K.L.1
  • 50
    • 0027205671 scopus 로고
    • Allele-specific replication timing of imprinted gene regions
    • Kitsberg, D. et al. Allele-specific replication timing of imprinted gene regions. Nature 364, 459-463 (1993).
    • (1993) Nature , vol.364 , pp. 459-463
    • Kitsberg, D.1
  • 51
    • 0028971217 scopus 로고
    • Participation of human β-globin locus control region in initation of DNA replication
    • Aladjem, M. I. et al. Participation of human β-globin locus control region in initation of DNA replication. Science 270, 815-819 (1995).
    • (1995) Science , vol.270 , pp. 815-819
    • Aladjem, M.I.1
  • 52
    • 0032516695 scopus 로고    scopus 로고
    • Genetic dissection of a mammalian replicator in the human β-globin locus
    • Aladjem, M. I., Rodewald, L. W., Kolman, J. L. & Wahl, G. M. Genetic dissection of a mammalian replicator in the human β-globin locus. Science 281, 1005-1009 (1998).
    • (1998) Science , vol.281 , pp. 1005-1009
    • Aladjem, M.I.1    Rodewald, L.W.2    Kolman, J.L.3    Wahl, G.M.4
  • 53
    • 0036135617 scopus 로고    scopus 로고
    • Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: Evidence for multiple initiation regions
    • Aladjem, M. I. et al. Replication initiation patterns in the β-globin loci of totipotent and differentiated murine cells: evidence for multiple initiation regions. Mol. Cell. Biol. 22, 442-452 (2002).
    • (2002) Mol. Cell. Biol. , vol.22 , pp. 442-452
    • Aladjem, M.I.1
  • 54
    • 0035253632 scopus 로고    scopus 로고
    • Multiple sites of replication initiation in the human β-globin gene locus
    • Kamath, S. & Leffak, M. Multiple sites of replication initiation in the human β-globin gene locus. Nucleic Acids Res. 29, 809-817 (2001).
    • (2001) Nucleic Acids Res. , vol.29 , pp. 809-817
    • Kamath, S.1    Leffak, M.2
  • 55
    • 0025107556 scopus 로고
    • A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus
    • Forrester, W. C. et al. A deletion of the human β-globin locus activation region causes a major alteration in chromatin structure and replication across the entire β-globin locus. Genes Dev. 4, 1637-1649 (1990)
    • (1990) Genes Dev. , vol.4 , pp. 1637-1649
    • Forrester, W.C.1
  • 56
    • 0343953085 scopus 로고    scopus 로고
    • Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region
    • Cimbora, D. M. et al. Long-distance control of origin choice and replication timing in the human β-globin locus are independent of the locus control region. Mol. Cell Biol. 20, 5581-5591 (2000).
    • (2000) Mol. Cell. Biol. , vol.20 , pp. 5581-5591
    • Cimbora, D.M.1
  • 57
    • 0033369515 scopus 로고    scopus 로고
    • The spatial position and replication timing of chromosomal domains are both established in early G1 phase
    • Dimitrova, D. S. & Gilbert, D. M. The spatial position and replication timing of chromosomal domains are both established in early G1 phase. Mol. Cell 4, 983-993 (1999). The incubation in Xenopus egg extracts of mammalian nuclei isolated at different phases of the cell cycle showed that the organization of replication timing is established in early G1.
    • (1999) Mol. Cell , vol.4 , pp. 983-993
    • Dimitrova, D.S.1    Gilbert, D.M.2
  • 58
    • 0035931753 scopus 로고    scopus 로고
    • Nuclear position leaves its mark on replication timing
    • Gilbert, D. M. Nuclear position leaves its mark on replication timing. J. Cell Biol. 152, F11-F15 (2001).
    • (2001) J. Cell Biol. , vol.152
    • Gilbert, D.M.1
  • 59
    • 0035939669 scopus 로고    scopus 로고
    • The replication timing program of the Chinese hamster β-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase
    • Li, F. et al. The replication timing program of the Chinese hamster β-globin locus is established coincident with its repositioning near peripheral heterochromatin in early G1 phase. J. Cell Biol. 154, 283-292 (2001).
    • (2001) J. Cell Biol. , vol.154 , pp. 283-292
    • Li, F.1
  • 60
    • 0034628607 scopus 로고    scopus 로고
    • Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts
    • Bridger, J. M., Boyle, S., Kill, I. R. & Bickmore, W. A. Re-modelling of nuclear architecture in quiescent and senescent human fibroblasts. Curr. Biol. 10, 149-152 (2000).
    • (2000) Curr. Biol. , vol.10 , pp. 149-152
    • Bridger, J.M.1    Boyle, S.2    Kill, I.R.3    Bickmore, W.A.4
  • 61
    • 0035931758 scopus 로고    scopus 로고
    • The positioning and dynamics of origins of replication in the budding yeast nucleus
    • Heun, P., Laroche, T., Raghuraman, M. K. & Gasser, S. M. The positioning and dynamics of origins of replication in the budding yeast nucleus. J. Cell Biol. 152, 385-400 (2001).
    • (2001) J. Cell Biol. , vol.152 , pp. 385-400
    • Heun, P.1    Laroche, T.2    Raghuraman, M.K.3    Gasser, S.M.4
  • 62
    • 0036863542 scopus 로고    scopus 로고
    • Histone acetylation regulates the time of replication origin firing
    • Vogelauer, M., Rubbi, L., Lucas, I., Brewere, B. J. & Grunstein, M. Histone acetylation regulates the time of replication origin firing. Mol. Cell 10, 1223-1233 (2002). Shows that in yeast the histone acetylation status in the vicinity of origins can determine its replication time.
    • (2002) Mol. Cell , vol.10 , pp. 1223-1233
    • Vogelauer, M.1    Rubbi, L.2    Lucas, I.3    Brewere, B.J.4    Grunstein, M.5
  • 63
    • 0036562821 scopus 로고    scopus 로고
    • Replication timing properties within the mouse distal chromosome 7 imprinting cluster
    • Kagotani, K. et al. Replication timing properties within the mouse distal chromosome 7 imprinting cluster. Biosci. Biotechnol. Biochem. 66, 1046-1051 (2002).
    • (2002) Biosci. Biotechnol. Biochem. , vol.66 , pp. 1046-1051
    • Kagotani, K.1
  • 64
    • 0034326857 scopus 로고    scopus 로고
    • Escape from gene silencing in ICF syndrome: Evidence for advanced replication time as a major determinant
    • Hansen, R. S. et al. Escape from gene silencing in ICF syndrome: evidence for advanced replication time as a major determinant. Hum. Mol. Genet. 9, 2575-2587 (2000).
    • (2000) Hum. Mol. Genet. , vol.9 , pp. 2575-2587
    • Hansen, R.S.1
  • 65
    • 0022351169 scopus 로고
    • DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome
    • Jablonka, E., Goitein, R., Marcus, M. & Cedar, H. DNA hypomethylation causes an increase in DNase-I sensitivity and an advance in the time of replication of the entire inactive X chromosome. Chromosoma 93, 152-156 (1985).
    • (1985) Chromosoma , vol.93 , pp. 152-156
    • Jablonka, E.1    Goitein, R.2    Marcus, M.3    Cedar, H.4
  • 66
    • 0032134456 scopus 로고    scopus 로고
    • CLB5-dependent activation of late replication origins in S. cerevisiae
    • Donaldson, A. D. et al. CLB5-dependent activation of late replication origins in S. cerevisiae. Mol. Cell 2, 173-182 (1998).
    • (1998) Mol. Cell , vol.2 , pp. 173-182
    • Donaldson, A.D.1
  • 67
    • 0032497548 scopus 로고    scopus 로고
    • Regulation of DNA-replication origins during cell-cycle progression
    • Shirahige, K. et al. Regulation of DNA-replication origins during cell-cycle progression. Nature 395, 618-621 (1998).
    • (1998) Nature , vol.395 , pp. 618-621
    • Shirahige, K.1
  • 68
    • 0032497529 scopus 로고    scopus 로고
    • A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication
    • Santocanale, C. & Diffley, J. F. A Mec1- and Rad53-dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615-618 (1998).
    • (1998) Nature , vol.395 , pp. 615-618
    • Santocanale, C.1    Diffley, J.F.2
  • 69
    • 0029085781 scopus 로고
    • A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
    • Paulovich, A. G. & Hartwell, L. H. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82, 841-847 (1995).
    • (1995) Cell , vol.82 , pp. 841-847
    • Paulovich, A.G.1    Hartwell, L.H.2
  • 70
    • 0036591890 scopus 로고    scopus 로고
    • Replication timing and transcriptional control: Beyond cause and effect
    • Gilbert, D. M. Replication timing and transcriptional control: beyond cause and effect. Curr. Opin. Cell Biol. 14, 377-383 (2002).
    • (2002) Curr. Opin. Cell Biol. , vol.14 , pp. 377-383
    • Gilbert, D.M.1
  • 71
    • 0037078986 scopus 로고    scopus 로고
    • The establishment of transcriptional competence in early and late S-phase
    • Zhang, J., Feng, X., Hashimshony, T., Keshet, I. & Cedar, H. The establishment of transcriptional competence in early and late S-phase. Nature 420, 198-202 (2002). Nuclear injection experiments showing that replicating DNA is automatically packaged in a repressed form during late S phase.
    • (2002) Nature , vol.420 , pp. 198-202
    • Zhang, J.1    Feng, X.2    Hashimshony, T.3    Keshet, I.4    Cedar, H.5
  • 72
    • 0027183088 scopus 로고
    • The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression
    • Jeppesen, P. & Turner B. M. The inactive X chromosome in female mammals is distinguished by a lack of histone H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281-289 (1993).
    • (1993) Cell , vol.74 , pp. 281-289
    • Jeppesen, P.1    Turner, B.M.2
  • 73
    • 0033945861 scopus 로고    scopus 로고
    • DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci
    • Rountree, M. R., Bachman, K. E. & Baylin, S. B. DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nature Genet. 25, 269-277 (2000). This work shows that histone deacetylase HDAC2 localizes to replication foci exclusively during late S phase in mammalian cells. This could function as a mechanism for repressing late-replicating genes.
    • (2000) Nature Genet. , vol.25 , pp. 269-277
    • Rountree, M.R.1    Bachman, K.E.2    Baylin, S.B.3
  • 74
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein, M. Histone acetylation in chromatin structure and transcription. Nature 389, 349-352 (1997).
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 75
    • 0028847955 scopus 로고
    • Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4
    • Sobel, R. E., Cook, R. G., Perry, C. A., Annunziato, A. T. & Allis, C. D. Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc. Natl. Acad. Sci. USA 92, 1237-1247 (1995).
    • (1995) Proc. Natl. Acad. Sci. USA , vol.92 , pp. 1237-1247
    • Sobel, R.E.1    Cook, R.G.2    Perry, C.A.3    Annunziato, A.T.4    Allis, C.D.5
  • 76
    • 0032168678 scopus 로고    scopus 로고
    • CpG methylation, chromatin structure and gene silencing - A three-way connection
    • Razin, A. CpG methylation, chromatin structure and gene silencing - a three-way connection. EMBO J. 17, 4905-4908 (1998).
    • (1998) EMBO J. , vol.17 , pp. 4905-4908
    • Razin, A.1
  • 77
    • 0021237658 scopus 로고
    • Development of mouse eggs suggests imprinting of the genome during gametogenesis
    • Surani, M. A., Barton, S. C. & Norris, M. L. Development of mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308, 548-550 (1984).
    • (1984) Nature , vol.308 , pp. 548-550
    • Surani, M.A.1    Barton, S.C.2    Norris, M.L.3
  • 78
    • 0021139084 scopus 로고
    • Complementation of mouse embryogenesis requires both maternal and paternal Genomes
    • McGrath, J. & Solter, D. Complementation of mouse embryogenesis requires both maternal and paternal Genomes. Cell 37, 179-183 (1984).
    • (1984) Cell , vol.37 , pp. 179-183
    • McGrath, J.1    Solter, D.2
  • 79
    • 0012448225 scopus 로고    scopus 로고
    • Mechanisms and brain specific consequences of genomic imprinting in Prader-Willi and Angelman syndrome
    • Schumacher, A. Mechanisms and brain specific consequences of genomic imprinting in Prader-Willi and Angelman syndrome. Gene Funct. Dis. 1, 1-19 (2001).
    • (2001) Gene Funct. Dis. , vol.1 , pp. 1-19
    • Schumacher, A.1
  • 80
    • 0037373265 scopus 로고    scopus 로고
    • Coordination of the random asynchronous replication of autosomal loci
    • in the press
    • Singh, N. et al. Coordination of the random asynchronous replication of autosomal loci. Nature Genet. (in the press).
    • Nature Genet.
    • Singh, N.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.