메뉴 건너뛰기




Volumn 82, Issue , 2013, Pages 447-470

Design of protein catalysts

Author keywords

Catalytic mechanism; Computation; Directed evolution; Engineering; Enzyme

Indexed keywords

ANTIBODY; ENZYME; PROTEIN;

EID: 84878935468     PISSN: 00664154     EISSN: 15454509     Source Type: Book Series    
DOI: 10.1146/annurev-biochem-072611-101825     Document Type: Review
Times cited : (161)

References (122)
  • 1
    • 0041821836 scopus 로고    scopus 로고
    • A perspective on enzyme catalysis
    • Benkovic SJ, Hammes-Schiffer S. 2003. A perspective on enzyme catalysis. Science 301:1196-202
    • (2003) Science , vol.301 , pp. 1196-1202
    • Benkovic, S.J.1    Hammes-Schiffer, S.2
  • 3
    • 0346726109 scopus 로고    scopus 로고
    • How enzymes work: Analysis by modern rate theory and computer simulations
    • Garcia-Viloca M, Gao J, Karplus M, Truhlar DG. 2004. How enzymes work: analysis by modern rate theory and computer simulations. Science 303:186-95
    • (2004) Science , vol.303 , pp. 186-195
    • Garcia-Viloca, M.1    Gao, J.2    Karplus, M.3    Truhlar, D.G.4
  • 5
    • 0037436563 scopus 로고    scopus 로고
    • Dispelling the myths-biocatalysis in industrial synthesis
    • Schoemaker HE, Mink D, Wubbolts MG. 2003. Dispelling the myths-biocatalysis in industrial synthesis. Science 299:1694-97
    • (2003) Science , vol.299 , pp. 1694-1697
    • Schoemaker, H.E.1    Mink, D.2    Wubbolts, M.G.3
  • 7
    • 77957937199 scopus 로고    scopus 로고
    • Atomic-level characterization of the structural dynamics of proteins
    • Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, et al. 2010. Atomic-level characterization of the structural dynamics of proteins. Science 330:341-46
    • (2010) Science , vol.330 , pp. 341-346
    • Shaw, D.E.1    Maragakis, P.2    Lindorff-Larsen, K.3    Piana, S.4    Dror, R.O.5
  • 10
    • 2842610709 scopus 로고
    • Biomimetic chemistry and artificial enzymes: Catalysis by design
    • Breslow R. 1995. Biomimetic chemistry and artificial enzymes: catalysis by design. Acc. Chem. Res. 28:146-53
    • (1995) Acc. Chem. Res. , vol.28 , pp. 146-153
    • Breslow, R.1
  • 11
    • 0027453389 scopus 로고
    • Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides
    • Johnsson K, Allemann RK, Widmer H, Benner SA. 1993. Synthesis, structure and activity of artificial, rationally designed catalytic polypeptides. Nature 365:530-32
    • (1993) Nature , vol.365 , pp. 530-532
    • Johnsson, K.1    Allemann, R.K.2    Widmer, H.3    Benner, S.A.4
  • 12
    • 38349112828 scopus 로고    scopus 로고
    • Asymmetric catalysis mediated by synthetic peptides
    • Davie EA, Mennen SM, Xu Y, Miller SJ. 2007. Asymmetric catalysis mediated by synthetic peptides. Chem. Rev. 107:5759-812
    • (2007) Chem. Rev. , vol.107 , pp. 5759-5812
    • Davie, E.A.1    Mennen, S.M.2    Xu, Y.3    Miller, S.J.4
  • 13
    • 0042745376 scopus 로고    scopus 로고
    • Nonenzymatic peptide-based catalytic asymmetric phosphorylation of inositol derivatives
    • Sculimbrene BR, Morgan AJ, Miller SJ. 2003. Nonenzymatic peptide-based catalytic asymmetric phosphorylation of inositol derivatives. Chem. Commun. 1781-85
    • (2003) Chem. Commun. , pp. 1781-1785
    • Sculimbrene, B.R.1    Morgan, A.J.2    Miller, S.J.3
  • 14
    • 77953243317 scopus 로고    scopus 로고
    • Dynamic kinetic resolution of biaryl atropisomers via peptidecatalyzed asymmetric bromination
    • Gustafson JL, Lim D, Miller SJ. 2010. Dynamic kinetic resolution of biaryl atropisomers via peptidecatalyzed asymmetric bromination. Science 328:1251-55
    • (2010) Science , vol.328 , pp. 1251-1255
    • Gustafson, J.L.1    Lim, D.2    Miller, S.J.3
  • 15
    • 0033694923 scopus 로고    scopus 로고
    • De novo design of helical bundles as models for understanding protein folding and function
    • Hill RB, Raleigh DP, Lombardi A, Degrado WF. 2000. De novo design of helical bundles as models for understanding protein folding and function. Acc. Chem. Res. 33:745-54
    • (2000) Acc. Chem. Res. , vol.33 , pp. 745-754
    • Hill, R.B.1    Raleigh, D.P.2    Lombardi, A.3    Degrado, W.F.4
  • 17
    • 84856397386 scopus 로고    scopus 로고
    • Hydrolytic catalysis and structural stabilization in a designed metalloprotein
    • Zastrow ML, Peacock AF, Stuckey JA, Pecoraro VL. 2012. Hydrolytic catalysis and structural stabilization in a designed metalloprotein. Nat. Chem. 4:118-23
    • (2012) Nat. Chem. , vol.4 , pp. 118-123
    • Zastrow, M.L.1    Peacock, A.F.2    Stuckey, J.A.3    Pecoraro, V.L.4
  • 19
    • 0030793767 scopus 로고    scopus 로고
    • De novo protein design: Fully automated sequence selection
    • Dahiyat BI, Mayo SL. 1997. De novo protein design: fully automated sequence selection. Science 278:82-87
    • (1997) Science , vol.278 , pp. 82-87
    • Dahiyat, B.I.1    Mayo, S.L.2
  • 21
    • 0035810165 scopus 로고    scopus 로고
    • Functional proteins from a random-sequence library
    • Keefe AD, Szostak JW. 2001. Functional proteins from a random-sequence library. Nature 410:715-18
    • (2001) Nature , vol.410 , pp. 715-718
    • Keefe, A.D.1    Szostak, J.W.2
  • 22
    • 33749054028 scopus 로고    scopus 로고
    • De novo proteins from binary-patterned combinatorial libraries
    • Bradley LH, Thumfort PP, Hecht MH. 2006. De novo proteins from binary-patterned combinatorial libraries. Methods Mol. Biol. 340:53-69
    • (2006) Methods Mol. Biol. , vol.340 , pp. 53-69
    • Bradley, L.H.1    Thumfort, P.P.2    Hecht, M.H.3
  • 23
    • 79251539227 scopus 로고    scopus 로고
    • De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth
    • Fisher MA, McKinley KL, Bradley LH, Viola SR, Hecht MH. 2011. De novo designed proteins from a library of artificial sequences function in Escherichia coli and enable cell growth. PLoS ONE 6:e15364
    • (2011) PLoS ONE , vol.6
    • Fisher, M.A.1    McKinley, K.L.2    Bradley, L.H.3    Viola, S.R.4    Hecht, M.H.5
  • 24
    • 34250872269 scopus 로고    scopus 로고
    • Minimalist active-site redesign: Teaching old enzymes new tricks
    • Toscano MD, Woycechowsky KJ, Hilvert D. 2007. Minimalist active-site redesign: teaching old enzymes new tricks. Angew. Chem. Int. Ed. 46:3212-36
    • (2007) Angew. Chem. Int. Ed. , vol.46 , pp. 3212-3236
    • Toscano, M.D.1    Woycechowsky, K.J.2    Hilvert, D.3
  • 25
    • 0041429626 scopus 로고    scopus 로고
    • Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation
    • Seebeck FP, Hilvert D. 2003. Conversion of a PLP-dependent racemase into an aldolase by a single active site mutation. J. Am. Chem. Soc. 125:10158-59
    • (2003) J. Am. Chem. Soc. , vol.125 , pp. 10158-10159
    • Seebeck, F.P.1    Hilvert, D.2
  • 26
    • 31544477181 scopus 로고    scopus 로고
    • Design and evolution of new catalytic activity with an existing protein scaffold
    • Park H-S, Nam S-H, Lee JK, Yoon CN, Mannervik B, et al. 2006. Design and evolution of new catalytic activity with an existing protein scaffold. Science 311:535-38
    • (2006) Science , vol.311 , pp. 535-538
    • Park, H.-S.1    Nam, S.-H.2    Lee, J.K.3    Yoon, C.N.4    Mannervik, B.5
  • 29
    • 0001270261 scopus 로고    scopus 로고
    • Design by directed evolution
    • Arnold FH. 1998. Design by directed evolution. Acc. Chem. Res. 31:125-31
    • (1998) Acc. Chem. Res. , vol.31 , pp. 125-131
    • Arnold, F.H.1
  • 30
    • 33646473069 scopus 로고    scopus 로고
    • Directed evolution of enantioselective enzymes as catalysts for organic synthesis
    • Reetz MT. 2006. Directed evolution of enantioselective enzymes as catalysts for organic synthesis. Adv. Catal. 49:1-69
    • (2006) Adv. Catal. , vol.49 , pp. 1-69
    • Reetz, M.T.1
  • 32
    • 70450242805 scopus 로고    scopus 로고
    • Exploring protein fitness landscapes by directed evolution
    • Romero PA, Arnold FH. 2009. Exploring protein fitness landscapes by directed evolution. Nat. Rev. Mol. Cell Biol. 10:866-76
    • (2009) Nat. Rev. Mol. Cell Biol. , vol.10 , pp. 866-876
    • Romero, P.A.1    Arnold, F.H.2
  • 33
    • 68049106179 scopus 로고    scopus 로고
    • Directed evolution drives the next generation of biocatalysts
    • Turner NJ. 2009. Directed evolution drives the next generation of biocatalysts. Nat. Chem. Biol. 5:567-73
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 567-573
    • Turner, N.J.1
  • 34
  • 35
    • 34548082508 scopus 로고    scopus 로고
    • Structural basis for the recognition of para-benzoyl-Lphenylalanine by evolved aminoacyl-tRNA synthetases
    • Liu W, Alfonta L, Mack AV, Schultz PG. 2007. Structural basis for the recognition of para-benzoyl-Lphenylalanine by evolved aminoacyl-tRNA synthetases. Angew. Chem. Int. Ed. 46:6073-75
    • (2007) Angew. Chem. Int. Ed. , vol.46 , pp. 6073-6075
    • Liu, W.1    Alfonta, L.2    Mack, A.V.3    Schultz, P.G.4
  • 36
    • 77953643054 scopus 로고    scopus 로고
    • Adding new chemistries to the genetic code
    • Liu CC, Schultz PG. 2010. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79:413-44
    • (2010) Annu. Rev. Biochem. , vol.79 , pp. 413-444
    • Liu, C.C.1    Schultz, P.G.2
  • 38
    • 0024992830 scopus 로고
    • Selenosubtilisin as a glutathione peroxidase mimic
    • Wu Z-P, Hilvert D. 1990. Selenosubtilisin as a glutathione peroxidase mimic. J. Am. Chem. Soc. 112:5647-48
    • (1990) J. Am. Chem. Soc. , vol.112 , pp. 5647-5648
    • Wu, Z.-P.1    Hilvert, D.2
  • 39
    • 84860204636 scopus 로고    scopus 로고
    • Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase
    • Liu X, Yu Y, Hu C, Zhang W, Lu Y, Wang J. 2012. Significant increase of oxidase activity through the genetic incorporation of a tyrosine-histidine cross-link in a myoglobin model of heme-copper oxidase. Angew. Chem. Int. Ed. 51:4312-16
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 4312-4316
    • Liu, X.1    Yu, Y.2    Hu, C.3    Zhang, W.4    Lu, Y.5    Wang, J.6
  • 40
    • 72949111166 scopus 로고    scopus 로고
    • Rational design of a structural and functional nitric oxide reductase
    • Yeung N, Lin YW, Gao YG, Zhao X, Russell BS, et al. 2009. Rational design of a structural and functional nitric oxide reductase. Nature 462:1079-82
    • (2009) Nature , vol.462 , pp. 1079-1082
    • Yeung, N.1    Lin, Y.W.2    Gao, Y.G.3    Zhao, X.4    Russell, B.S.5
  • 41
    • 0021130487 scopus 로고
    • Chemical mutation of enzyme active sites
    • Kaiser ET, Lawrence DS. 1984. Chemical mutation of enzyme active sites. Science 226:505-11
    • (1984) Science , vol.226 , pp. 505-511
    • Kaiser, E.T.1    Lawrence, D.S.2
  • 42
    • 77949898910 scopus 로고    scopus 로고
    • Design strategies for the creation of artificial metalloenzymes
    • Heinisch T, Ward TR. 2010. Design strategies for the creation of artificial metalloenzymes. Curr. Opin. Chem. Biol. 14:184-99
    • (2010) Curr. Opin. Chem. Biol. , vol.14 , pp. 184-199
    • Heinisch, T.1    Ward, T.R.2
  • 44
    • 84867768045 scopus 로고    scopus 로고
    • Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation
    • Hyster TK, Knörr L, Ward TR, Rovis T. 2012. Biotinylated Rh(III) complexes in engineered streptavidin for accelerated asymmetric C-H activation. Science 338:500-3
    • (2012) Science , vol.338 , pp. 500-503
    • Hyster, T.K.1    Knörr, L.2    Ward, T.R.3    Rovis, T.4
  • 45
    • 0033791659 scopus 로고    scopus 로고
    • Critical analysis of antibody catalysis
    • Hilvert D. 2000. Critical analysis of antibody catalysis. Annu. Rev. Biochem. 69:751-93
    • (2000) Annu. Rev. Biochem. , vol.69 , pp. 751-793
    • Hilvert, D.1
  • 47
    • 0000791343 scopus 로고
    • Antibody catalysis of difficult chemical transformations
    • Schultz PG, Lerner RA. 1993. Antibody catalysis of difficult chemical transformations. Acc. Chem. Res. 26:391-95
    • (1993) Acc. Chem. Res. , vol.26 , pp. 391-395
    • Schultz, P.G.1    Lerner, R.A.2
  • 48
    • 0029018511 scopus 로고
    • Transition-state stabilization as a measure of the efficiency of antibody catalysis
    • Stewart JD, Benkovic SJ. 1995. Transition-state stabilization as a measure of the efficiency of antibody catalysis. Nature 375:388-91
    • (1995) Nature , vol.375 , pp. 388-391
    • Stewart, J.D.1    Benkovic, S.J.2
  • 50
    • 33750963095 scopus 로고    scopus 로고
    • Combinatorial methods for small-molecule placement in computational enzyme design
    • Lassila JK, Privett HK, Allen BD, Mayo SL. 2006. Combinatorial methods for small-molecule placement in computational enzyme design. Proc. Natl. Acad. Sci. USA 103:16710-15
    • (2006) Proc. Natl. Acad. Sci. USA , vol.103 , pp. 16710-16715
    • Lassila, J.K.1    Privett, H.K.2    Allen, B.D.3    Mayo, S.L.4
  • 51
    • 0032253961 scopus 로고    scopus 로고
    • Theozymes and compuzymes: Theoretical models for biological catalysis
    • Tantillo DJ, Chen J, Houk KN. 1998. Theozymes and compuzymes: theoretical models for biological catalysis. Curr. Opin. Chem. Biol. 2:743-50
    • (1998) Curr. Opin. Chem. Biol. , vol.2 , pp. 743-750
    • Tantillo, D.J.1    Chen, J.2    Houk, K.N.3
  • 52
    • 33751525692 scopus 로고    scopus 로고
    • New algorithms and an in silico benchmark for computational enzyme design
    • Zanghellini A, Jiang L, Wollacott AM, Cheng G, Meiler J, et al. 2006. New algorithms and an in silico benchmark for computational enzyme design. Protein Sci. 15:2785-94
    • (2006) Protein Sci. , vol.15 , pp. 2785-2794
    • Zanghellini, A.1    Jiang, L.2    Wollacott, A.M.3    Cheng, G.4    Meiler, J.5
  • 53
    • 0035807809 scopus 로고    scopus 로고
    • Enzyme-like proteins by computational design
    • Bolon DN, Mayo SL. 2001. Enzyme-like proteins by computational design. Proc. Natl. Acad. Sci. USA 98:14274-79
    • (2001) Proc. Natl. Acad. Sci. USA , vol.98 , pp. 14274-14279
    • Bolon, D.N.1    Mayo, S.L.2
  • 54
    • 70349330137 scopus 로고    scopus 로고
    • Automated scaffold selection for enzyme design
    • Malisi C, Kohlbacher O, Hocker B. 2009. Automated scaffold selection for enzyme design. Proteins 77:74-83
    • (2009) Proteins , vol.77 , pp. 74-83
    • Malisi, C.1    Kohlbacher, O.2    Hocker, B.3
  • 55
    • 33750056673 scopus 로고    scopus 로고
    • ROSETTALIGAND: Protein-small molecule docking with full side-chain flexibility
    • Meiler J, Baker D. 2006. ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins 65:538-48
    • (2006) Proteins , vol.65 , pp. 538-548
    • Meiler, J.1    Baker, D.2
  • 56
    • 77954811495 scopus 로고    scopus 로고
    • Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction
    • Siegel JB, Zanghellini A, Lovick HM, Kiss G, Lambert AR, et al. 2010. Computational design of an enzyme catalyst for a stereoselective bimolecular Diels-Alder reaction. Science 329:309-13
    • (2010) Science , vol.329 , pp. 309-313
    • Siegel, J.B.1    Zanghellini, A.2    Lovick, H.M.3    Kiss, G.4    Lambert, A.R.5
  • 57
    • 43449098518 scopus 로고    scopus 로고
    • Kemp elimination catalysts by computational enzyme design
    • Röthlisberger D, Khersonsky O, Wollacott AM, Jiang L, DeChancie J, et al. 2008. Kemp elimination catalysts by computational enzyme design. Nature 453:19095
    • (2008) Nature , vol.453 , pp. 19095
    • Röthlisberger, D.K.1
  • 62
    • 84862776507 scopus 로고    scopus 로고
    • Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis
    • Khare SD, Kipnis Y, Greisen P Jr, Takeuchi R, Ashani Y, et al. 2012. Computational redesign of a mononuclear zinc metalloenzyme for organophosphate hydrolysis. Nat. Chem. Biol. 8:294-300
    • (2012) Nat. Chem. Biol. , vol.8 , pp. 294-300
    • Khare, S.D.1    Kipnis, Y.2    Greisen Jr., P.3    Takeuchi, R.4    Ashani, Y.5
  • 64
    • 84856723541 scopus 로고    scopus 로고
    • Increased Diels-Alderase activity through backbone remodeling guided by Foldit players
    • Eiben CB, Siegel JB, Bale JB, Cooper S, Khatib F, et al. 2012. Increased Diels-Alderase activity through backbone remodeling guided by Foldit players. Nat. Biotechnol. 30:190-92
    • (2012) Nat. Biotechnol. , vol.30 , pp. 190-192
    • Eiben, C.B.1    Siegel, J.B.2    Bale, J.B.3    Cooper, S.4    Khatib, F.5
  • 65
    • 77955491294 scopus 로고    scopus 로고
    • Predicting protein structures with a multiplayer online game
    • Cooper S, Khatib F, Treuille A, Barbero J, Lee J, et al. 2010. Predicting protein structures with a multiplayer online game. Nature 466:756-60
    • (2010) Nature , vol.466 , pp. 756-760
    • Cooper, S.1    Khatib, F.2    Treuille, A.3    Barbero, J.4    Lee, J.5
  • 66
    • 0001348193 scopus 로고
    • Physical organic chemistry of benzisoxazoles. 1. Mechanism of base-catalyzed decomposition of benzisoxazoles
    • Casey ML, Kemp DS, Paul KG, Cox DD. 1973. Physical organic chemistry of benzisoxazoles. 1. Mechanism of base-catalyzed decomposition of benzisoxazoles. J. Org. Chem. 38:2294-301
    • (1973) J. Org. Chem. , Issue.38 , pp. 2294-2301
    • Casey, M.L.1    Kemp, D.S.2    Paul, K.G.3    Cox, D.D.4
  • 67
    • 33947086265 scopus 로고
    • Physical organic chemistry of benzisoxazoles. II. Linearity of the Brsted free energy relationship for the base-catalyzed decomposition of benzisoxazoles
    • Kemp DS, Casey ML. 1973. Physical organic chemistry of benzisoxazoles. II. Linearity of the Brsted free energy relationship for the base-catalyzed decomposition of benzisoxazoles. J. Am. Chem. Soc. 95:6670-80
    • (1973) J. Am. Chem. Soc. , vol.95 , pp. 6670-6680
    • Kemp, D.S.1    Casey, M.L.2
  • 68
    • 0000467257 scopus 로고
    • The physical organic chemistry of benzisoxazoles. IV. The origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles
    • Kemp DS, Cox DD, Paul K. 1975. The physical organic chemistry of benzisoxazoles. IV. The origins and catalytic nature of the solvent rate acceleration for the decarboxylation of 3-carboxybenzisoxazoles. J. Am. Chem. Soc. 97:7312-18
    • (1975) J. Am. Chem. Soc. , vol.97 , pp. 7312-7318
    • Kemp, D.S.1    Cox, D.D.2    Paul, K.3
  • 69
    • 0028869408 scopus 로고
    • Large rate accelerations in antibody catalysis by strategic use of haptenic charge
    • Thorn SN, Daniels RG, Auditor MTM, Hilvert D. 1995. Large rate accelerations in antibody catalysis by strategic use of haptenic charge. Nature 373:228-30
    • (1995) Nature , vol.373 , pp. 228-230
    • Thorn, S.N.1    Daniels, R.G.2    Auditor, M.T.M.3    Hilvert, D.4
  • 72
    • 73249139757 scopus 로고    scopus 로고
    • An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket
    • Debler EW, Müller R, Hilvert D, Wilson IA. 2009. An aspartate and a water molecule mediate efficient acid-base catalysis in a tailored antibody pocket. Proc. Natl. Acad. Sci. USA 106:18539-44
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 18539-18544
    • Debler, E.W.1    Müller, R.2    Hilvert, D.3    Wilson, I.A.4
  • 73
    • 77956770660 scopus 로고
    • Effective molarities for intramolecular reactions
    • Kirby AJ. 1980. Effective molarities for intramolecular reactions. Adv. Phys. Org. Chem. 17:183-278
    • (1980) Adv. Phys. Org. Chem. , vol.17 , pp. 183-278
    • Kirby, A.J.1
  • 74
    • 0031034356 scopus 로고    scopus 로고
    • Mandelate racemase in pieces: Effective concentrations of enzyme functional groups in the transition state
    • Bearne SL, Wolfenden R. 1997. Mandelate racemase in pieces: effective concentrations of enzyme functional groups in the transition state. Biochemistry 36:1646-56
    • (1997) Biochemistry , vol.36 , pp. 1646-1656
    • Bearne, S.L.1    Wolfenden, R.2
  • 75
    • 77649271939 scopus 로고    scopus 로고
    • Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series
    • Khersonsky O, Röthlisberger D, Dym O, Albeck S, Jackson CJ, et al. 2010. Evolutionary optimization of computationally designed enzymes: Kemp eliminases of the KE07 series. J. Mol. Biol. 396:1025-42
    • (2010) J. Mol. Biol. , vol.396 , pp. 1025-1042
    • Khersonsky, O.1    Röthlisberger, D.2    Dym, O.3    Albeck, S.4    Jackson, C.J.5
  • 76
    • 79952437832 scopus 로고    scopus 로고
    • Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution
    • Khersonsky O, Röthlisberger D, Wollacott AM, Murphy P, Dym O, et al. 2011. Optimization of the in-silico-designed Kemp eliminase KE70 by computational design and directed evolution. J. Mol. Biol. 407:391-412
    • (2011) J. Mol. Biol. , vol.407 , pp. 391-412
    • Khersonsky, O.1    Röthlisberger, D.2    Wollacott, A.M.3    Murphy, P.4    Dym, O.5
  • 77
    • 84863000087 scopus 로고    scopus 로고
    • Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59
    • Khersonsky O, Kiss G, Röthlisberger D, Dym O, Albeck S, et al. 2012. Bridging the gaps in design methodologies by evolutionary optimization of the stability and proficiency of designed Kemp eliminase KE59. Proc. Natl. Acad. Sci. USA 109:10358-63
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 10358-10363
    • Khersonsky, O.1    Kiss, G.2    Röthlisberger, D.3    Dym, O.4    Albeck, S.5
  • 79
    • 78049316762 scopus 로고    scopus 로고
    • Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase
    • Frushicheva MP, Cao J, Chu ZT, Warshel A. 2010. Exploring challenges in rational enzyme design by simulating the catalysis in artificial Kemp eliminase. Proc. Natl. Acad. Sci. USA 107:16869-74
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 16869-16874
    • Frushicheva, M.P.1    Cao, J.2    Chu, Z.T.3    Warshel, A.4
  • 80
    • 0035543093 scopus 로고    scopus 로고
    • The depth of chemical time and the power of enzymes as catalysts
    • Wolfenden R, Snider MJ. 2001. The depth of chemical time and the power of enzymes as catalysts. Acc. Chem. Res. 34:938-45
    • (2001) Acc. Chem. Res. , vol.34 , pp. 938-945
    • Wolfenden, R.1    Snider, M.J.2
  • 81
    • 84865405490 scopus 로고    scopus 로고
    • Comparison of designed and randomly generated catalysts for simple chemical reactions
    • Kipnis Y, Baker D. 2012. Comparison of designed and randomly generated catalysts for simple chemical reactions. Protein Sci. 21:1388-95
    • (2012) Protein Sci. , vol.21 , pp. 1388-1395
    • Kipnis, Y.1    Baker, D.2
  • 83
    • 0029444684 scopus 로고
    • Class i aldolases: Substrate specificity, mechanism, inhibitors and structural aspects
    • Gefflaut T, Blonski C, Perie J, Willson M. 1995. Class I aldolases: substrate specificity, mechanism, inhibitors and structural aspects. Prog. Biophys. Mol. Biol. 63:301-40
    • (1995) Prog. Biophys. Mol. Biol. , vol.63 , pp. 301-340
    • Gefflaut, T.1    Blonski, C.2    Perie, J.3    Willson, M.4
  • 85
    • 84855858058 scopus 로고    scopus 로고
    • Structural analyses of covalent enzymesubstrate analog complexes reveal strengths and limitations of de novo enzyme design
    • Wang L, Althoff EA, Bolduc J, Jiang L, Moody J, et al. 2012. Structural analyses of covalent enzymesubstrate analog complexes reveal strengths and limitations of de novo enzyme design. J. Mol. Biol. 415:615-25
    • (2012) J. Mol. Biol. , vol.415 , pp. 615-625
    • Wang, L.1    Althoff, E.A.2    Bolduc, J.3    Jiang, L.4    Moody, J.5
  • 86
    • 18844456318 scopus 로고    scopus 로고
    • Development of small designer aldolase enzymes: Catalytic activity, folding, and substrate specificity
    • Tanaka F, Fuller R, Barbas CF III. 2005. Development of small designer aldolase enzymes: catalytic activity, folding, and substrate specificity. Biochemistry 44:7583-92
    • (2005) Biochemistry , vol.44 , pp. 7583-7592
    • Tanaka, F.1    Fuller, R.2    Barbas Iii, C.F.3
  • 88
    • 77950437360 scopus 로고    scopus 로고
    • Origins of catalysis by computationally designed retroaldolase enzymes
    • Lassila JK, Baker D, Herschlag D. 2010. Origins of catalysis by computationally designed retroaldolase enzymes. Proc. Natl. Acad. Sci. USA 107:4937-42
    • (2010) Proc. Natl. Acad. Sci. USA , vol.107 , pp. 4937-4942
    • Lassila, J.K.1    Baker, D.2    Herschlag, D.3
  • 89
    • 0029590066 scopus 로고
    • Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes
    • Wagner J, Lerner RA, Barbas CF III. 1995. Efficient aldolase catalytic antibodies that use the enamine mechanism of natural enzymes. Science 270:1797-800
    • (1995) Science , vol.270 , pp. 1797-1800
    • Wagner, J.1    Lerner, R.A.2    Barbas Iii, C.F.3
  • 90
    • 0031457319 scopus 로고    scopus 로고
    • Immune versus natural selection: Antibody aldolases with enzymic rates but broader scope
    • Barbas CF III, Heine A, Zhong G, Hoffmann T, Gramatikova S, et al. 1997. Immune versus natural selection: antibody aldolases with enzymic rates but broader scope. Science 278:2085-92
    • (1997) Science , vol.278 , pp. 2085-2092
    • Barbas Iii, C.F.1    Heine, A.2    Zhong, G.3    Hoffmann, T.4    Gramatikova, S.5
  • 91
    • 0032416718 scopus 로고    scopus 로고
    • Aldol sensors for the rapid generation of tunable fluorescence by antibody catalysis
    • List B, Barbas CF III, Lerner RA. 1998. Aldol sensors for the rapid generation of tunable fluorescence by antibody catalysis. Proc. Natl. Acad. Sci. USA 95:15351-55
    • (1998) Proc. Natl. Acad. Sci. USA , vol.95 , pp. 15351-15355
    • List, B.1    Barbas Iii, C.F.2    Lerner, R.A.3
  • 94
    • 70349632843 scopus 로고    scopus 로고
    • The influence of protein dynamics on the success of computational enzyme design
    • Ruscio JZ, Kohn JE, Ball KA, Head-Gordon T. 2009. The influence of protein dynamics on the success of computational enzyme design. J. Am. Chem. Soc. 131:14111-15
    • (2009) J. Am. Chem. Soc. , vol.131 , pp. 14111-14115
    • Ruscio, J.Z.1    Kohn, J.E.2    Ball, K.A.3    Head-Gordon, T.4
  • 96
    • 77949860707 scopus 로고    scopus 로고
    • Designing artificial enzymes by intuition and computation
    • Nanda V, Koder RL. 2010. Designing artificial enzymes by intuition and computation. Nat. Chem. 2:15-24
    • (2010) Nat. Chem. , vol.2 , pp. 15-24
    • Nanda, V.1    Koder, R.L.2
  • 97
    • 0026335211 scopus 로고
    • Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry
    • Hellinga HW, Richards FM. 1991. Construction of new ligand binding sites in proteins of known structure. I. Computer-aided modeling of sites with pre-defined geometry. J. Mol. Biol. 222:763-85
    • (1991) J. Mol. Biol. , vol.222 , pp. 763-785
    • Hellinga, H.W.1    Richards, F.M.2
  • 98
    • 0028818241 scopus 로고
    • Metal Search: A computer program that helps design tetrahedral metalbinding sites
    • Clarke ND, Yuan SM. 1995. Metal Search: a computer program that helps design tetrahedral metalbinding sites. Proteins 23:256-63
    • (1995) Proteins , vol.23 , pp. 256-263
    • Clarke, N.D.1    Yuan, S.M.2
  • 99
    • 58149476770 scopus 로고    scopus 로고
    • OptGraft: A computational procedure for transferring a binding site onto an existing protein scaffold
    • Fazelinia H, Cirino PC, Maranas CD. 2009. OptGraft: a computational procedure for transferring a binding site onto an existing protein scaffold. Protein Sci. 18:180-95
    • (2009) Protein Sci. , vol.18 , pp. 180-195
    • Fazelinia, H.1    Cirino, P.C.2    Maranas, C.D.3
  • 101
    • 0030978103 scopus 로고    scopus 로고
    • Construction of a catalytically active iron superoxide dismutase by rational protein design
    • Pinto AL, Hellinga HW, Caradonna JP. 1997. Construction of a catalytically active iron superoxide dismutase by rational protein design. Proc. Natl. Acad. Sci. USA 94:5562-67
    • (1997) Proc. Natl. Acad. Sci. USA , vol.94 , pp. 5562-5567
    • Pinto, A.L.1    Hellinga, H.W.2    Caradonna, J.P.3
  • 102
    • 84860773275 scopus 로고    scopus 로고
    • Catalysis by a de novo zinc-mediated protein interface: Implications for natural enzyme evolution and rational enzyme engineering
    • Der BS, Edwards DR, Kuhlman B. 2012. Catalysis by a de novo zinc-mediated protein interface: implications for natural enzyme evolution and rational enzyme engineering. Biochemistry 51:3933-40
    • (2012) Biochemistry , vol.51 , pp. 3933-3940
    • Der Edwards, B.S.D.R.1    Kuhlman, B.2
  • 103
    • 78751573957 scopus 로고    scopus 로고
    • Directed evolution of hydrolases for prevention of G-type nerve agent intoxication
    • Gupta RD, Goldsmith M, Ashani Y, Simo Y, Mullokandov G, et al. 2011. Directed evolution of hydrolases for prevention of G-type nerve agent intoxication. Nat. Chem. Biol. 7:120-25
    • (2011) Nat. Chem. Biol. , vol.7 , pp. 120-125
    • Gupta, R.D.1    Goldsmith, M.2    Ashani, Y.3    Simo, Y.4    Mullokandov, G.5
  • 104
    • 0034923923 scopus 로고    scopus 로고
    • Divergent evolution of enzymatic function: Mechanistically diverse superfamilies and functionally distinct suprafamilies
    • Gerlt JA, Babbitt PC. 2001. Divergent evolution of enzymatic function: mechanistically diverse superfamilies and functionally distinct suprafamilies. Annu. Rev. Biochem. 70:209-46
    • (2001) Annu. Rev. Biochem. , vol.70 , pp. 209-246
    • Gerlt, J.A.1    Babbitt, P.C.2
  • 106
    • 84867053249 scopus 로고    scopus 로고
    • Computational design of catalytic dyads and oxyanion holes for ester hydrolysis
    • Richter F, Blomberg R, Khare SD, Kiss G, Kuzin AP, et al. 2012. Computational design of catalytic dyads and oxyanion holes for ester hydrolysis. J. Am. Chem. Soc. 134:16197-206
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 16197-16206
    • Richter, F.1    Blomberg, R.2    Khare, S.D.3    Kiss, G.4    Kuzin, A.P.5
  • 107
    • 77957316716 scopus 로고    scopus 로고
    • An exciting but challenging road ahead for computational enzyme design
    • Baker D. 2010. An exciting but challenging road ahead for computational enzyme design. Protein Sci. 19:181719
    • (2010) Protein Sci. , vol.19 , pp. 1817-1819
    • Baker, D.1
  • 108
    • 34548445989 scopus 로고    scopus 로고
    • How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design
    • Dechancie J, Clemente FR, Smith AJ, Gunaydin H, Zhao YL, et al. 2007. How similar are enzyme active site geometries derived from quantum mechanical theozymes to crystal structures of enzyme-inhibitor complexes? Implications for enzyme design. Protein Sci. 16:1851-66
    • (2007) Protein Sci. , vol.16 , pp. 1851-1866
    • Dechancie, J.1    Clemente, F.R.2    Smith, A.J.3    Gunaydin, H.4    Zhao, Y.L.5
  • 110
    • 75449116384 scopus 로고    scopus 로고
    • Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions
    • Acevedo O, Jorgensen WL. 2010. Advances in quantum and molecular mechanical (QM/MM) simulations for organic and enzymatic reactions. Acc. Chem. Res. 43:142-51
    • (2010) Acc. Chem. Res. , vol.43 , pp. 142-151
    • Acevedo, O.1    Jorgensen, W.L.2
  • 111
    • 0034641749 scopus 로고    scopus 로고
    • Native protein sequences are close to optimal for their structures
    • Kuhlman B, Baker D. 2000. Native protein sequences are close to optimal for their structures. Proc. Natl. Acad. Sci. USA 97:10383-88
    • (2000) Proc. Natl. Acad. Sci. USA , vol.97 , pp. 10383-10388
    • Kuhlman, B.1    Baker, D.2
  • 113
    • 0037470581 scopus 로고    scopus 로고
    • An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes
    • Kortemme T, Morozov AV, Baker D. 2003. An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes. J. Mol. Biol. 326:1239-59
    • (2003) J. Mol. Biol. , vol.326 , pp. 1239-1259
    • Kortemme, T.1    Morozov, A.V.2    Baker, D.3
  • 114
    • 0033135638 scopus 로고    scopus 로고
    • Effective energy function for proteins in solution
    • Lazaridis T, Karplus M. 1999. Effective energy function for proteins in solution. Proteins 35:132-52
    • (1999) Proteins , vol.35 , pp. 132-152
    • Lazaridis, T.1    Karplus, M.2
  • 115
    • 84862025262 scopus 로고    scopus 로고
    • Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing
    • Whitehead TA, Chevalier A, Song YF, Dreyfus C, Fleishman SJ, et al. 2012. Optimization of affinity, specificity and function of designed influenza inhibitors using deep sequencing. Nat. Biotechnol. 30:543-48
    • (2012) Nat. Biotechnol. , vol.30 , pp. 543-548
    • Whitehead, T.A.1    Chevalier, A.2    Song, Y.F.3    Dreyfus, C.4    Fleishman, S.J.5
  • 116
    • 56749170877 scopus 로고    scopus 로고
    • Catalyticmechanism and performance of computationally designed enzymes for Kemp elimination
    • Alexandrova AN, Rothlisberger D, Baker D, Jorgensen WL. 2008. Catalyticmechanism and performance of computationally designed enzymes for Kemp elimination. J. Am. Chem. Soc. 130:15907-15
    • (2008) J. Am. Chem. Soc. , vol.130 , pp. 15907-15915
    • Alexandrova, A.N.1    Rothlisberger, D.2    Baker, D.3    Jorgensen, W.L.4
  • 117
    • 79955625862 scopus 로고    scopus 로고
    • Challenges and advances in validating enzyme design proposals: The case of Kemp eliminase catalysis
    • Frushicheva MP, Cao J, Warshel A. 2011. Challenges and advances in validating enzyme design proposals: the case of Kemp eliminase catalysis. Biochemistry 50:3849-58
    • (2011) Biochemistry , vol.50 , pp. 3849-3858
    • Frushicheva, M.P.1    Cao, J.2    Warshel, A.3
  • 119
    • 68049085675 scopus 로고    scopus 로고
    • A 21st century revisionists view at a turning point in enzymology
    • Nagel ZD, Klinman JP. 2009. A 21st century revisionists view at a turning point in enzymology. Nat. Chem. Biol. 5:543-50
    • (2009) Nat. Chem. Biol. , vol.5 , pp. 543-550
    • Nagel, Z.D.1    Klinman, J.P.2
  • 120
    • 64849101493 scopus 로고    scopus 로고
    • Protein dynamism and evolvability
    • Tokuriki N, Tawfik DS. 2009. Protein dynamism and evolvability. Science 324:203-7
    • (2009) Science , vol.324 , pp. 203-207
    • Tokuriki, N.1    Tawfik, D.S.2
  • 122
    • 14844325784 scopus 로고    scopus 로고
    • Robustness, evolvability, and neutrality
    • Wagner A. 2005. Robustness, evolvability, and neutrality. FEBS Lett. 579:1772-78
    • (2005) FEBS Lett. , vol.579 , pp. 1772-1778
    • Wagner, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.