메뉴 건너뛰기




Volumn 119, Issue , 2019, Pages 285-304

A review of artificial neural network models for ambient air pollution prediction

Author keywords

Air pollution; Artificial neural networks; Backpropagation algorithm; Forecasting; Multilayer perceptron

Indexed keywords

AIR POLLUTION; BACKPROPAGATION; MULTILAYER NEURAL NETWORKS; MULTILAYERS; NEURAL NETWORKS; STRUCTURAL OPTIMIZATION;

EID: 85068167085     PISSN: 13648152     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.envsoft.2019.06.014     Document Type: Review
Times cited : (315)

References (200)
  • 1
    • 84954403054 scopus 로고    scopus 로고
    • Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks
    • Abderrahim, H., Chellali, M.R., Hamou, A., Forecasting PM10 in Algiers: efficacy of multilayer perceptron networks. Environ. Sci. Pollut. Control Ser. 23:2 (2016), 1634–1641 https://doi.org/10.1007/s11356-015-5406-6.
    • (2016) Environ. Sci. Pollut. Control Ser. , vol.23 , Issue.2 , pp. 1634-1641
    • Abderrahim, H.1    Chellali, M.R.2    Hamou, A.3
  • 2
    • 0036224943 scopus 로고    scopus 로고
    • Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks
    • Abdul-Wahab, S., Al-Alawi, S., Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environ. Model. Softw 17:3 (2002), 219–228 https://doi.org/10.1016/S1364-8152(01)00077-9.
    • (2002) Environ. Model. Softw , vol.17 , Issue.3 , pp. 219-228
    • Abdul-Wahab, S.1    Al-Alawi, S.2
  • 3
    • 32144432519 scopus 로고    scopus 로고
    • Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area
    • Agirre-Basurko, E., Ibarra-Berastegi, G., Madariaga, I., Regression and multilayer perceptron-based models to forecast hourly O3 and NO2 levels in the Bilbao area. Environ. Model. Softw 21:4 (2006), 430–446 https://doi.org/10.1016/j.envsoft.2004.07.008.
    • (2006) Environ. Model. Softw , vol.21 , Issue.4 , pp. 430-446
    • Agirre-Basurko, E.1    Ibarra-Berastegi, G.2    Madariaga, I.3
  • 4
    • 36148953966 scopus 로고    scopus 로고
    • Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone
    • Al-Alawi, S.M., Abdul-Wahab, S.A., Bakheit, C.S., Combining principal component regression and artificial neural networks for more accurate predictions of ground-level ozone. Environ. Model. Softw 23:4 (2008), 396–403 https://doi.org/10.1016/j.envsoft.2006.08.007.
    • (2008) Environ. Model. Softw , vol.23 , Issue.4 , pp. 396-403
    • Al-Alawi, S.M.1    Abdul-Wahab, S.A.2    Bakheit, C.S.3
  • 5
    • 84942597126 scopus 로고    scopus 로고
    • 10 concentrations on a daily basis
    • Alam, M.S., McNabola, A., Exploring the modeling of spatiotemporal variations in ambient air pollution within the land use regression framework: estimation of PM 10 concentrations on a daily basis. J. Air Waste Manag. Assoc. 65:5 (2015), 628–640 https://doi.org/10.1080/10962247.2015.1006377.
    • (2015) J. Air Waste Manag. Assoc. , vol.65 , Issue.5 , pp. 628-640
    • Alam, M.S.1    McNabola, A.2
  • 6
    • 85051382578 scopus 로고    scopus 로고
    • Spatial estimation of urban air pollution with the use of artificial neural network models
    • Alimissis, A., Philippopoulos, K., Tzanis, C.G., Deligiorgi, D., Spatial estimation of urban air pollution with the use of artificial neural network models. Atmos. Environ. 191 (2018), 205–213 https://doi.org/10.1016/J.ATMOSENV.2018.07.058.
    • (2018) Atmos. Environ. , vol.191 , pp. 205-213
    • Alimissis, A.1    Philippopoulos, K.2    Tzanis, C.G.3    Deligiorgi, D.4
  • 7
    • 85034969889 scopus 로고    scopus 로고
    • Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions
    • Antanasijević, D., Pocajt, V., Perić-Grujić, A., Ristić, M., Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions. Atmosph. Pollut. Res. 9:2 (2018), 388–397 https://doi.org/10.1016/j.apr.2017.10.011.
    • (2018) Atmosph. Pollut. Res. , vol.9 , Issue.2 , pp. 388-397
    • Antanasijević, D.1    Pocajt, V.2    Perić-Grujić, A.3    Ristić, M.4
  • 8
    • 84870298794 scopus 로고    scopus 로고
    • PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
    • Antanasijević, D.Z., Pocajt, V.V., Povrenović, D.S., Ristić, M.Đ., Perić-Grujić, A.A., PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 443 (2013), 511–519 https://doi.org/10.1016/j.scitotenv.2012.10.110.
    • (2013) Sci. Total Environ. , vol.443 , pp. 511-519
    • Antanasijević, D.Z.1    Pocajt, V.V.2    Povrenović, D.S.3    Ristić, M.Đ.4    Perić-Grujić, A.A.5
  • 9
    • 84879686138 scopus 로고    scopus 로고
    • Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations
    • Arhami, M., Kamali, N., Rajabi, M.M., Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. Control Ser. 20:7 (2013), 4777–4789 https://doi.org/10.1007/s11356-012-1451-6.
    • (2013) Environ. Sci. Pollut. Control Ser. , vol.20 , Issue.7 , pp. 4777-4789
    • Arhami, M.1    Kamali, N.2    Rajabi, M.M.3
  • 10
    • 0035238868 scopus 로고    scopus 로고
    • Modelling of indoor exposure to nitrogen dioxide in the UK
    • Retrieved from
    • Ashmore, M.R., Dimitroulopoulou, C., Byrne, M.A., Kinnersley, R.P., Modelling of indoor exposure to nitrogen dioxide in the UK. Atmos. Environ. 35 (2001), 269–279 Retrieved from https://pdf.sciencedirectassets.com/271798/1-s2.0-S1352231000X01549/1-s2.0-S135223100000176X/main.pdf?x-amz-security-token=AgoJb3JpZ2luX2VjEB8aCXVzLWVhc3QtMSJIMEYCIQD%2BBJkssu7s8wqKquYtpBljYPISp2VHr%2BT28DxjHvsH/gIhAKpDwMpcYXqzSVjS8emlqNIptxW3d9PtZFB/.
    • (2001) Atmos. Environ. , vol.35 , pp. 269-279
    • Ashmore, M.R.1    Dimitroulopoulou, C.2    Byrne, M.A.3    Kinnersley, R.P.4
  • 11
    • 84943589427 scopus 로고    scopus 로고
    • Prediction of the level of air pollution using principal component analysis and artificial neural network Techniques : a case study in Malaysia
    • Azid, A., Juahir, H., Toriman, M.E., Prediction of the level of air pollution using principal component analysis and artificial neural network Techniques : a case study in Malaysia. https://doi.org/10.1007/s11270-014-2063-1, 2014.
    • (2014)
    • Azid, A.1    Juahir, H.2    Toriman, M.E.3
  • 12
    • 84964952463 scopus 로고    scopus 로고
    • Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
    • Bai, Y., Li, Y., Wang, X., Xie, J., Li, C., Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmosph. Pollut. Res. 7:3 (2016), 557–566 https://doi.org/10.1016/j.apr.2016.01.004.
    • (2016) Atmosph. Pollut. Res. , vol.7 , Issue.3 , pp. 557-566
    • Bai, Y.1    Li, Y.2    Wang, X.3    Xie, J.4    Li, C.5
  • 13
    • 85060908111 scopus 로고    scopus 로고
    • An ensemble long short-term memory neural network for hourly PM 2.5 concentration forecasting
    • Bai, Y., Zeng, B., Li, C., Zhang, J., An ensemble long short-term memory neural network for hourly PM 2.5 concentration forecasting. Chemosphere, 2019 https://doi.org/10.1016/j.chemosphere.2019.01.121.
    • (2019) Chemosphere
    • Bai, Y.1    Zeng, B.2    Li, C.3    Zhang, J.4
  • 14
    • 33847234686 scopus 로고    scopus 로고
    • Integrated systems for forecasting urban meteorology, air pollution and population exposure
    • Retrieved from
    • Baklanov, A., Hänninen, O., Slørdal, L.H., Kukkonen, J., Bjergene, N., Fay, B., et al. Integrated systems for forecasting urban meteorology, air pollution and population exposure. Atmos. Chem. Phys. Atmosph. Chem. Phys. 7 (2007), 855–874 Retrieved from www.atmos-chem-phys.net/7/855/2007/.
    • (2007) Atmos. Chem. Phys. Atmosph. Chem. Phys. , vol.7 , pp. 855-874
    • Baklanov, A.1    Hänninen, O.2    Slørdal, L.H.3    Kukkonen, J.4    Bjergene, N.5    Fay, B.6
  • 15
    • 81855218667 scopus 로고    scopus 로고
    • Expert systems with applications unsupervised system to classify SO 2 pollutant concentrations in salamanca, Mexico
    • Barrón-adame, J.M., Cortina-januchs, M.G., Vega-corona, A., Andina, D., Expert systems with applications unsupervised system to classify SO 2 pollutant concentrations in salamanca, Mexico. Expert Syst. Appl. 39 (2012), 107–116 https://doi.org/10.1016/j.eswa.2011.05.083.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 107-116
    • Barrón-adame, J.M.1    Cortina-januchs, M.G.2    Vega-corona, A.3    Andina, D.4
  • 16
    • 85029793560 scopus 로고    scopus 로고
    • Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm
    • Bashir, F., Wei, H.-L., Handling missing data in multivariate time series using a vector autoregressive model-imputation (VAR-IM) algorithm. Neurocomputing 276 (2017), 23–30 https://doi.org/10.1016/j.neucom.2017.03.097.
    • (2017) Neurocomputing , vol.276 , pp. 23-30
    • Bashir, F.1    Wei, H.-L.2
  • 19
    • 84922566952 scopus 로고    scopus 로고
    • Science of the Total Environment Analysis of surface ozone using a recurrent neural network
    • Biancofiore, F., Verdecchia, M., Di, P., Tomassetti, B., Aruffo, E., Busilacchio, M., et al. Science of the Total Environment Analysis of surface ozone using a recurrent neural network. Sci. Total Environ. 514 (2015), 379–387 https://doi.org/10.1016/j.scitotenv.2015.01.106.
    • (2015) Sci. Total Environ. , vol.514 , pp. 379-387
    • Biancofiore, F.1    Verdecchia, M.2    Di, P.3    Tomassetti, B.4    Aruffo, E.5    Busilacchio, M.6
  • 20
    • 0003487601 scopus 로고
    • Neural Networks for Pattern Recognition
    • Oxford University Press, Inc New York, NY, USA
    • Bishop, C.M., Neural Networks for Pattern Recognition. 1995, Oxford University Press, Inc, New York, NY, USA.
    • (1995)
    • Bishop, C.M.1
  • 21
    • 44749085110 scopus 로고    scopus 로고
    • Procedures for estimation of modelling uncertainty in air quality assessment
    • Borrego, C., Monteiro, A., Ferreira, J., Miranda, A.I., Costa, A.M., Carvalho, A.C., Lopes, M., Procedures for estimation of modelling uncertainty in air quality assessment. Environ. Int. 34:5 (2008), 613–620 https://doi.org/10.1016/j.envint.2007.12.005.
    • (2008) Environ. Int. , vol.34 , Issue.5 , pp. 613-620
    • Borrego, C.1    Monteiro, A.2    Ferreira, J.3    Miranda, A.I.4    Costa, A.M.5    Carvalho, A.C.6    Lopes, M.7
  • 22
    • 85068138193 scopus 로고    scopus 로고
    • Data transformation for neural network models in water resources applications
    • Retrieved from
    • Bowden, G.J., Dandy, G.C., Maier, H.R., Data transformation for neural network models in water resources applications. Retrieved from https://iwaponline.com/jh/article-pdf/5/4/245/392619/245.pdf, 2003.
    • (2003)
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 23
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • 2-1-2–11
    • Bowden, G.J., Maier, H.R., Dandy, G.C., Optimal division of data for neural network models in water resources applications. Water Resour. Res., 38(2), 2002 2-1-2–11 https://doi.org/10.1029/2001WR000266.
    • (2002) Water Resour. Res. , vol.38 , Issue.2
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 24
    • 84868621819 scopus 로고    scopus 로고
    • Real-time deployment of artificial neural network forecasting models: understanding the range of applicability
    • Bowden, G.J., Maier, H.R., Dandy, G.C., Real-time deployment of artificial neural network forecasting models: understanding the range of applicability. Water Resour. Res. 48:10 (2012), 1–16 https://doi.org/10.1029/2012WR011984.
    • (2012) Water Resour. Res. , vol.48 , Issue.10 , pp. 1-16
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 25
    • 33947402188 scopus 로고    scopus 로고
    • Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
    • Brunelli, U., Piazza, V., Pignato, L., Sorbello, F., Vitabile, S., Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ. 41:14 (2007), 2967–2995 https://doi.org/10.1016/j.atmosenv.2006.12.013.
    • (2007) Atmos. Environ. , vol.41 , Issue.14 , pp. 2967-2995
    • Brunelli, U.1    Piazza, V.2    Pignato, L.3    Sorbello, F.4    Vitabile, S.5
  • 26
    • 85041491911 scopus 로고    scopus 로고
    • Hybrid artificial neural network models for effective prediction and mitigation of urban roadside NO2 pollution
    • Cabaneros, S.M.S., Calautit, J.K.S., Hughes, B.R., Hybrid artificial neural network models for effective prediction and mitigation of urban roadside NO2 pollution. Energy Procedia 142 (2017), 3524–3530 https://doi.org/10.1016/J.EGYPRO.2017.12.240.
    • (2017) Energy Procedia , vol.142 , pp. 3524-3530
    • Cabaneros, S.M.S.1    Calautit, J.K.S.2    Hughes, B.R.3
  • 27
    • 84962273773 scopus 로고    scopus 로고
    • Improving the prediction of air pollution peak episodes generated by urban transport networks
    • Catalano, M., Galatioto, F., Bell, M., Namdeo, A., Bergantino, A.S., Improving the prediction of air pollution peak episodes generated by urban transport networks. Environ. Sci. Policy 60 (2016), 69–83 https://doi.org/10.1016/j.envsci.2016.03.008.
    • (2016) Environ. Sci. Policy , vol.60 , pp. 69-83
    • Catalano, M.1    Galatioto, F.2    Bell, M.3    Namdeo, A.4    Bergantino, A.S.5
  • 28
    • 0034321004 scopus 로고    scopus 로고
    • Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia
    • 1995
    • Chang, M.E., Cardelino, C., Application of the Urban Airshed Model to forecasting next-day peak ozone concentrations in Atlanta, Georgia. J. Air Waste Manag. Assoc. 50:11 (2000), 2010–2024 1995 https://doi.org/10.1080/10473289.2000.10464219.
    • (2000) J. Air Waste Manag. Assoc. , vol.50 , Issue.11 , pp. 2010-2024
    • Chang, M.E.1    Cardelino, C.2
  • 29
    • 84866916636 scopus 로고    scopus 로고
    • Modeling and prediction of monthly total ozone concentrations by use of an artificial neural network based on principal component analysis
    • Chattopadhyay, S., Chattopadhyay, G., Modeling and prediction of monthly total ozone concentrations by use of an artificial neural network based on principal component analysis. Pure Appl. Geophys. 169 (2012), 1891–1908 https://doi.org/10.1007/s00024-011-0437-5.
    • (2012) Pure Appl. Geophys. , vol.169 , pp. 1891-1908
    • Chattopadhyay, S.1    Chattopadhyay, G.2
  • 30
  • 31
    • 44649134996 scopus 로고    scopus 로고
    • Prediction of sulphur dioxide concentration using artificial neural networks
    • Chelani, A.B., Chalapati Rao, C., Phadke, K., Hasan, M., Prediction of sulphur dioxide concentration using artificial neural networks. Environ. Model. Softw 17:2 (2002), 159–166 https://doi.org/10.1016/S1364-8152(01)00061-5.
    • (2002) Environ. Model. Softw , vol.17 , Issue.2 , pp. 159-166
    • Chelani, A.B.1    Chalapati Rao, C.2    Phadke, K.3    Hasan, M.4
  • 32
    • 24644501172 scopus 로고    scopus 로고
    • Nonlinear dynamical characterization and prediction of ambient nitrogen dioxide concentration
    • Chelani, A.B., Singh, R.N., Devotta, S., Nonlinear dynamical characterization and prediction of ambient nitrogen dioxide concentration. Water Air Soil Pollut. 166:1–4 (2005), 121–138 https://doi.org/10.1007/s11270-005-7384-7.
    • (2005) Water Air Soil Pollut. , vol.166 , Issue.1-4 , pp. 121-138
    • Chelani, A.B.1    Singh, R.N.2    Devotta, S.3
  • 33
    • 84961999775 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers
    • Chellali, M.R., Abderrahim, H., Hamou, A., Nebatti, A., Janovec, J., Artificial neural network models for prediction of daily fine particulate matter concentrations in Algiers. Environ. Sci. Pollut. Control Ser., 2016, 14008–14017 https://doi.org/10.1007/s11356-016-6565-9.
    • (2016) Environ. Sci. Pollut. Control Ser. , pp. 14008-14017
    • Chellali, M.R.1    Abderrahim, H.2    Hamou, A.3    Nebatti, A.4    Janovec, J.5
  • 34
    • 43449100655 scopus 로고    scopus 로고
    • Artificial Intelligence techniques: an introduction to their use for modelling environmental systems
    • Chen, S.H., Jakeman, A.J., Norton, J.P., Artificial Intelligence techniques: an introduction to their use for modelling environmental systems. Math. Comput. Simulat. 78:2–3 (2008), 379–400 https://doi.org/10.1016/j.matcom.2008.01.028.
    • (2008) Math. Comput. Simulat. , vol.78 , Issue.2-3 , pp. 379-400
    • Chen, S.H.1    Jakeman, A.J.2    Norton, J.P.3
  • 35
    • 80052642742 scopus 로고    scopus 로고
    • Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States
    • Chuang, M.T., Zhang, Y., Kang, D., Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States. Atmos. Environ. 45:34 (2011), 6241–6250 https://doi.org/10.1016/j.atmosenv.2011.06.071.
    • (2011) Atmos. Environ. , vol.45 , Issue.34 , pp. 6241-6250
    • Chuang, M.T.1    Zhang, Y.2    Kang, D.3
  • 36
    • 0004068726 scopus 로고    scopus 로고
    • second ed. Spon Press West 35th Street, New York, NY 10001
    • Colls, J., second ed. Air Pollution, vol 29, 2001, Spon Press, West 35th Street, New York, NY 10001.
    • (2001) Air Pollution , vol.29
    • Colls, J.1
  • 37
    • 47849095687 scopus 로고    scopus 로고
    • Hourly ozone prediction for a 24-h horizon using neural networks
    • Coman, A., Ionescu, A., Candau, Y., Hourly ozone prediction for a 24-h horizon using neural networks. Environ. Model. Softw 23:12 (2008), 1407–1421 https://doi.org/10.1016/J.ENVSOFT.2008.04.004.
    • (2008) Environ. Model. Softw , vol.23 , Issue.12 , pp. 1407-1421
    • Coman, A.1    Ionescu, A.2    Candau, Y.3
  • 38
    • 84936763818 scopus 로고    scopus 로고
    • Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico
    • Cortina-Januchs, M.G., Dominguez, J.Q., Corona, A.V., Andina, D., Development of a model for forecasting of PM10 concentrations in Salamanca, Mexico. Atmosph. Pollut. Res. 6:4 (2015), 626–634 https://doi.org/10.5094/APR.2015.071.
    • (2015) Atmosph. Pollut. Res. , vol.6 , Issue.4 , pp. 626-634
    • Cortina-Januchs, M.G.1    Dominguez, J.Q.2    Corona, A.V.3    Andina, D.4
  • 39
    • 33846798345 scopus 로고    scopus 로고
    • HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts
    • Dawson, C.W., Abrahart, R.J., See, L.M., HydroTest: a web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw 22:7 (2007), 1034–1052 https://doi.org/10.1016/J.ENVSOFT.2006.06.008.
    • (2007) Environ. Model. Softw , vol.22 , Issue.7 , pp. 1034-1052
    • Dawson, C.W.1    Abrahart, R.J.2    See, L.M.3
  • 40
    • 77958011900 scopus 로고    scopus 로고
    • An Artificial Neural Network (ANN) based model for short-term predictions of daily mean PM10 concentrations. An Artificial Neural Network-based model
    • 2010
    • Demir, G., Ozcan, K., Ucan, O.N., Bayat, C., An Artificial Neural Network (ANN) based model for short-term predictions of daily mean PM10 concentrations. An Artificial Neural Network-based model. J. Environ. Protect. Ecol. 11:3 (2010), 1163–1171 2010.
    • (2010) J. Environ. Protect. Ecol. , vol.11 , Issue.3 , pp. 1163-1171
    • Demir, G.1    Ozcan, K.2    Ucan, O.N.3    Bayat, C.4
  • 41
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Retrieved from
    • Dempster, A.P., Laird, N.M., Rubin, D.B., Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B, 39, 1977 Retrieved from http://web.mit.edu/6.435/www/Dempster77.pdf.
    • (1977) J. R. Stat. Soc. Ser. B , vol.39
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 42
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • Díaz-Robles, L.A., Ortega, J.C., Fu, J.S., Reed, G.D., Chow, J.C., Watson, J.G., Moncada-Herrera, J.A., A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos. Environ. 42:35 (2008), 8331–8340 https://doi.org/10.1016/j.atmosenv.2008.07.020.
    • (2008) Atmos. Environ. , vol.42 , Issue.35 , pp. 8331-8340
    • Díaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 43
    • 84978161612 scopus 로고    scopus 로고
    • Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks
    • Ding, W., Zhang, J., Leung, Y., Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks. Environ. Sci. Pollut. Control Ser., 2016, 19481–19494 https://doi.org/10.1007/s11356-016-7149-4.
    • (2016) Environ. Sci. Pollut. Control Ser. , pp. 19481-19494
    • Ding, W.1    Zhang, J.2    Leung, Y.3
  • 44
    • 84894527842 scopus 로고    scopus 로고
    • An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia
    • Dominick, D., Talib Latif, M., Juahir, H., Aris, A.Z., Zain, S., An assessment of influence of meteorological factors on PM10 and NO2 at selected stations in Malaysia. Sustain. Environ. Res. 22:5 (2012), 305–315.
    • (2012) Sustain. Environ. Res. , vol.22 , Issue.5 , pp. 305-315
    • Dominick, D.1    Talib Latif, M.2    Juahir, H.3    Aris, A.Z.4    Zain, S.5
  • 45
    • 85034585535 scopus 로고    scopus 로고
    • Application of computational intelligence techniques to forecast daily PM10exceedances in Brunei Darussalam
    • Dotse, S.Q., Petra, M.I., Dagar, L., De Silva, L.C., Application of computational intelligence techniques to forecast daily PM10exceedances in Brunei Darussalam. Atmosph. Pollut. Res. 9:2 (2018), 358–368 https://doi.org/10.1016/j.apr.2017.11.004.
    • (2018) Atmosph. Pollut. Res. , vol.9 , Issue.2 , pp. 358-368
    • Dotse, S.Q.1    Petra, M.I.2    Dagar, L.3    De Silva, L.C.4
  • 46
    • 34547993162 scopus 로고    scopus 로고
    • C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling
    • Retrieved from
    • Drummond, C., Holte, R.C., C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. Retrieved from https://pdfs.semanticscholar.org/144b/bbafe2f0876c23295019b6e380c9fe4feda3.pdf, 2003.
    • (2003)
    • Drummond, C.1    Holte, R.C.2
  • 47
    • 84933504534 scopus 로고    scopus 로고
    • Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments
    • Dunea, D., Pohoata, A., Iordache, S., Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess., 187(7), 2015 https://doi.org/10.1007/s10661-015-4697-x.
    • (2015) Environ. Monit. Assess. , vol.187 , Issue.7
    • Dunea, D.1    Pohoata, A.2    Iordache, S.3
  • 48
    • 84994453356 scopus 로고    scopus 로고
    • Forecasting O3 levels in industrial area surroundings up to 24??h in advance, combining classification trees and MLP models
    • Durao, R.M., Mendes, M.T., Joao Pereira, M., Forecasting O3 levels in industrial area surroundings up to 24??h in advance, combining classification trees and MLP models. Atmosph. Pollut. Res. 7:6 (2016), 961–970 https://doi.org/10.1016/j.apr.2016.05.008.
    • (2016) Atmosph. Pollut. Res. , vol.7 , Issue.6 , pp. 961-970
    • Durao, R.M.1    Mendes, M.T.2    Joao Pereira, M.3
  • 49
    • 84942915960 scopus 로고    scopus 로고
    • Modelling sulphur dioxide levels of Konya city using artificial intelligent related to ozone, nitrogen dioxide and meteorological factors
    • Dursun, S., Taylan, F.K.O., Modelling sulphur dioxide levels of Konya city using artificial intelligent related to ozone, nitrogen dioxide and meteorological factors. Int. J. Environ. Sci. Technol. 12:12 (2015), 3915–3928 https://doi.org/10.1007/s13762-015-0821-2.
    • (2015) Int. J. Environ. Sci. Technol. , vol.12 , Issue.12 , pp. 3915-3928
    • Dursun, S.1    Taylan, F.K.O.2
  • 50
    • 34147176086 scopus 로고    scopus 로고
    • A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot, A.-L., Rynkiewicz, J., Steiner, F.E., Rude, J., A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Softw 22:9 (2007), 1261–1269 https://doi.org/10.1016/J.ENVSOFT.2006.08.002.
    • (2007) Environ. Model. Softw , vol.22 , Issue.9 , pp. 1261-1269
    • Dutot, A.-L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 51
    • 34147176086 scopus 로고    scopus 로고
    • A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot, A.L., Rynkiewicz, J., Steiner, F.E., Rude, J., A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ. Model. Softw 22:9 (2007), 1261–1269 https://doi.org/10.1016/j.envsoft.2006.08.002.
    • (2007) Environ. Model. Softw , vol.22 , Issue.9 , pp. 1261-1269
    • Dutot, A.L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 52
    • 84907578344 scopus 로고    scopus 로고
    • Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis
    • Elangasinghe, M.A., Singhal, N., Dirks, K.N., Salmond, J.A., Development of an ANN–based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmosph. Pollut. Res. 5:4 (2014), 696–708 https://doi.org/10.5094/APR.2014.079.
    • (2014) Atmosph. Pollut. Res. , vol.5 , Issue.4 , pp. 696-708
    • Elangasinghe, M.A.1    Singhal, N.2    Dirks, K.N.3    Salmond, J.A.4
  • 53
    • 69149093076 scopus 로고    scopus 로고
    • Emissions inventory, ISCST, and neural network modelling of air pollution in Kuwait Emissions inventory, ISCST, and neural network modelling of air pollution in Kuwait
    • Ettouney, R.S., Wahab, S.A., Elkilani, A.S., Emissions inventory, ISCST, and neural network modelling of air pollution in Kuwait Emissions inventory, ISCST, and neural network modelling of air pollution in Kuwait. Int. J. Environ. Stud., 2009, 7233 https://doi.org/10.1080/00207230902859929.
    • (2009) Int. J. Environ. Stud. , pp. 7233
    • Ettouney, R.S.1    Wahab, S.A.2    Elkilani, A.S.3
  • 54
    • 84923017379 scopus 로고    scopus 로고
    • Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation
    • Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107 (2015), 118–128 https://doi.org/10.1016/j.atmosenv.2015.02.030.
    • (2015) Atmos. Environ. , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Hou, J.4    Jin, L.5    Wang, J.6
  • 55
    • 79952246361 scopus 로고    scopus 로고
    • Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classi fi cation
    • Feng, Y., Zhang, W., Sun, D., Zhang, L., Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classi fi cation. Atmos. Environ. 45:11 (2011), 1979–1985 https://doi.org/10.1016/j.atmosenv.2011.01.022.
    • (2011) Atmos. Environ. , vol.45 , Issue.11 , pp. 1979-1985
    • Feng, Y.1    Zhang, W.2    Sun, D.3    Zhang, L.4
  • 57
    • 84929578031 scopus 로고    scopus 로고
    • PCA model building with missing data: new proposals and a comparative study
    • Folch-Fortuny, A., Arteaga, F., Ferrer, A., PCA model building with missing data: new proposals and a comparative study. Chemometr. Intell. Lab. Syst. 146 (2015), 77–88 https://doi.org/10.1016/J.CHEMOLAB.2015.05.006.
    • (2015) Chemometr. Intell. Lab. Syst. , vol.146 , pp. 77-88
    • Folch-Fortuny, A.1    Arteaga, F.2    Ferrer, A.3
  • 58
    • 84900308360 scopus 로고    scopus 로고
    • Can artificial neural networks be used to predict the origin of ozone episodes?
    • Fontes, T., Silva, L.M., Silva, M.P., Barros, N., Carvalho, A.C., Can artificial neural networks be used to predict the origin of ozone episodes?. Sci. Total Environ. 488–489 (2014), 197–207 https://doi.org/10.1016/J.SCITOTENV.2014.04.077.
    • (2014) Sci. Total Environ. , vol.488-489 , pp. 197-207
    • Fontes, T.1    Silva, L.M.2    Silva, M.P.3    Barros, N.4    Carvalho, A.C.5
  • 59
    • 85043314161 scopus 로고    scopus 로고
    • Discovering relationships and forecasting PM10and PM2.5concentrations in bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering
    • February), 0–1
    • Franceschi, F., Cobo, M., Figueredo, M., Discovering relationships and forecasting PM10and PM2.5concentrations in bogotá, Colombia, using artificial neural networks, principal component analysis, and k-means clustering. Atmosph. Pollut. Res., 2018 February), 0–1 https://doi.org/10.1016/j.apr.2018.02.006.
    • (2018) Atmosph. Pollut. Res.
    • Franceschi, F.1    Cobo, M.2    Figueredo, M.3
  • 60
    • 85047433901 scopus 로고    scopus 로고
    • Forecasting air quality time series using deep learning
    • Freeman, B.S., Taylor, G., Gharabaghi, B., Thé, J., Forecasting air quality time series using deep learning. J. Air Waste Manag. Assoc. 68:8 (2018), 866–886 https://doi.org/10.1080/10962247.2018.1459956.
    • (2018) J. Air Waste Manag. Assoc. , vol.68 , Issue.8 , pp. 866-886
    • Freeman, B.S.1    Taylor, G.2    Gharabaghi, B.3    Thé, J.4
  • 61
    • 67349119054 scopus 로고    scopus 로고
    • Traffic parameters estimation to predict road side pollutant concentrations using neural networks
    • Galatioto, F., Zito, P., Traffic parameters estimation to predict road side pollutant concentrations using neural networks. Environmental modeling & assessment, 2009, 365–374 https://doi.org/10.1007/s10666-007-9129-z.
    • (2009) Environmental modeling & assessment , pp. 365-374
    • Galatioto, F.1    Zito, P.2
  • 62
    • 84907068377 scopus 로고    scopus 로고
    • An evaluation framework for input variable selection algorithms for environmental data-driven models
    • Galelli, S., Humphrey, G.B., Maier, H.R., Castelletti, A., Dandy, G.C., Gibbs, M.S., An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Model. Softw 62 (2014), 33–51 https://doi.org/10.1016/J.ENVSOFT.2014.08.015.
    • (2014) Environ. Model. Softw , vol.62 , pp. 33-51
    • Galelli, S.1    Humphrey, G.B.2    Maier, H.R.3    Castelletti, A.4    Dandy, G.C.5    Gibbs, M.S.6
  • 63
    • 85046134663 scopus 로고    scopus 로고
    • Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
    • Gao, M., Yin, L., Ning, J., Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. https://doi.org/10.1016/j.atmosenv.2018.03.027, 2018.
    • (2018)
    • Gao, M.1    Yin, L.2    Ning, J.3
  • 64
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences
    • Gardner, M., Dorling, S., Artificial neural networks (the multilayer perceptron)—a review of applications in the atmospheric sciences. Atmos. Environ. 32:14–15 (1998), 2627–2636 https://doi.org/10.1016/S1352-2310(97)00447-0.
    • (1998) Atmos. Environ. , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.1    Dorling, S.2
  • 65
    • 0020790254 scopus 로고
    • Feature article-decision-aiding models: validation, assessment, and related issues for policy analysis
    • Gass, S.I., Feature article-decision-aiding models: validation, assessment, and related issues for policy analysis. https://doi.org/10.1287/opre.31.4.603, 1983.
    • (1983)
    • Gass, S.I.1
  • 66
    • 84880661569 scopus 로고    scopus 로고
    • Science of the Total Environment Neural network model for the prediction of PM 10 daily concentrations in two sites in the Western Mediterranean
    • The
    • Gennaro, G. De, Trizio, L., Di, A., Pey, J., Pérez, N., Cusack, M., et al. Science of the Total Environment Neural network model for the prediction of PM 10 daily concentrations in two sites in the Western Mediterranean. Sci. Total Environ. 463–464 (2013), 875–883 The https://doi.org/10.1016/j.scitotenv.2013.06.093.
    • (2013) Sci. Total Environ. , vol.463-464 , pp. 875-883
    • Gennaro, G.D.1    Trizio, L.2    Di, A.3    Pey, J.4    Pérez, N.5    Cusack, M.6
  • 67
    • 84978224460 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: case study of Hong Kong
    • Gong, B., Ordieres-Meré, J., Prediction of daily maximum ozone threshold exceedances by preprocessing and ensemble artificial intelligence techniques: case study of Hong Kong. Environ. Model. Softw 84 (2016), 290–303 https://doi.org/10.1016/j.envsoft.2016.06.020.
    • (2016) Environ. Model. Softw , vol.84 , pp. 290-303
    • Gong, B.1    Ordieres-Meré, J.2
  • 68
    • 31044433834 scopus 로고    scopus 로고
    • Artificial neural network models for prediction of PM 10 hourly concentrations, in the Greater Area of Athens, Greece
    • Grivas, G., Chaloulakou, A.Ã., Artificial neural network models for prediction of PM 10 hourly concentrations, in the Greater Area of Athens, Greece. Atmos. Environ. 40 (2006), 1216–1229 https://doi.org/10.1016/j.atmosenv.2005.10.036.
    • (2006) Atmos. Environ. , vol.40 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.Ã.2
  • 69
    • 0033104966 scopus 로고    scopus 로고
    • Journal of the air & Waste management association study of atmospheric ozone formation by means of a neural network-based model study of atmospheric ozone formation by means of a neural network-based model
    • Guardani, R., Nascimento, C.A.O., Guardani, M.L.G., Martins, M.H.R.B., Romano, J., Journal of the air & Waste management association study of atmospheric ozone formation by means of a neural network-based model study of atmospheric ozone formation by means of a neural network-based model. J. Air Waste Manag. Assoc. 49 (1999), 316–323 https://doi.org/10.1080/10473289.1999.10463806.
    • (1999) J. Air Waste Manag. Assoc. , vol.49 , pp. 316-323
    • Guardani, R.1    Nascimento, C.A.O.2    Guardani, M.L.G.3    Martins, M.H.R.B.4    Romano, J.5
  • 70
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: the state of the art
    • Guoqiang Zhang, B., Eddy Patuwo, M.Y.H., Forecasting with artificial neural networks: the state of the art. Int. J. Forecast. 14 (1998), 35–62 https://doi.org/10.1016/S0169-2070(97)00044-7.
    • (1998) Int. J. Forecast. , vol.14 , pp. 35-62
    • Guoqiang Zhang, B.1    Eddy Patuwo, M.Y.H.2
  • 72
    • 33646475454 scopus 로고    scopus 로고
    • Modeling of hourly NO x concentrations using artificial neural networks 1
    • Hasham, F.A., Kindzierski, W.B., Stanley, S.J., Modeling of hourly NO x concentrations using artificial neural networks 1. J. Environ. Eng. Sci. 3:x (2004), 111–119 https://doi.org/10.1139/S03-084.
    • (2004) J. Environ. Eng. Sci. , vol.3 , Issue.10 , pp. 111-119
    • Hasham, F.A.1    Kindzierski, W.B.2    Stanley, S.J.3
  • 73
    • 84900323020 scopus 로고    scopus 로고
    • Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm
    • He, H., Lu, W.-Z., Xue, Y., Prediction of particulate matter at street level using artificial neural networks coupling with chaotic particle swarm optimization algorithm. Build. Environ. 78 (2014), 111–117 https://doi.org/10.1016/J.BUILDENV.2014.04.011.
    • (2014) Build. Environ. , vol.78 , pp. 111-117
    • He, H.1    Lu, W.-Z.2    Xue, Y.3
  • 74
    • 84975832635 scopus 로고    scopus 로고
    • Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality
    • He, J., Yu, Y., Xie, Y., Mao, H., Wu, L., Liu, N., Zhao, S., Numerical model-based artificial neural network model and its application for quantifying impact factors of urban air quality. Water Air Soil Pollut., 227(7), 2016, 235 https://doi.org/10.1007/s11270-016-2930-z.
    • (2016) Water Air Soil Pollut. , vol.227 , Issue.7 , pp. 235
    • He, J.1    Yu, Y.2    Xie, Y.3    Mao, H.4    Wu, L.5    Liu, N.6    Zhao, S.7
  • 76
    • 19544377320 scopus 로고    scopus 로고
    • A neural network forecast for daily average PM10concentrations in Belgium
    • Hooyberghs, J., Mensink, C., Dumont, G., Fierens, F., Brasseur, O., A neural network forecast for daily average PM10concentrations in Belgium. Atmos. Environ. 39:18 (2005), 3279–3289 https://doi.org/10.1016/j.atmosenv.2005.01.050.
    • (2005) Atmos. Environ. , vol.39 , Issue.18 , pp. 3279-3289
    • Hooyberghs, J.1    Mensink, C.2    Dumont, G.3    Fierens, F.4    Brasseur, O.5
  • 77
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik, K., Stinchcombe, M., White, H., Multilayer feedforward networks are universal approximators. Neural Network. 2:5 (1989), 359–366 https://doi.org/10.1016/0893-6080(89)90020-8.
    • (1989) Neural Network. , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 78
    • 84989196071 scopus 로고    scopus 로고
    • Prediction of ground-level ozone concentration in S??o Paulo, Brazil: deterministic versus statistic models
    • Hoshyaripour, G., Brasseur, G., Andrade, M.F., Gavidia-Calder, M., Bouarar, I., Ynoue, R.Y., Prediction of ground-level ozone concentration in S??o Paulo, Brazil: deterministic versus statistic models. Atmos. Environ. 145 (2016), 365–375 https://doi.org/10.1016/j.atmosenv.2016.09.061.
    • (2016) Atmos. Environ. , vol.145 , pp. 365-375
    • Hoshyaripour, G.1    Brasseur, G.2    Andrade, M.F.3    Gavidia-Calder, M.4    Bouarar, I.5    Ynoue, R.Y.6
  • 79
    • 70449405008 scopus 로고    scopus 로고
    • Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations
    • Hrust, L., Klaić, Z.B., Križan, J., Antonić, O., Hercog, P., Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmos. Environ. 43:35 (2009), 5588–5596 https://doi.org/10.1016/J.ATMOSENV.2009.07.048.
    • (2009) Atmos. Environ. , vol.43 , Issue.35 , pp. 5588-5596
    • Hrust, L.1    Klaić, Z.B.2    Križan, J.3    Antonić, O.4    Hercog, P.5
  • 80
    • 85050087079 scopus 로고    scopus 로고
    • A deep cnn-lstm model for particulate matter (Pm2.5) forecasting in smart cities
    • Huang, C.J., Kuo, P.H., A deep cnn-lstm model for particulate matter (Pm2.5) forecasting in smart cities. Sensors, 18(7), 2018 https://doi.org/10.3390/s18072220.
    • (2018) Sensors , vol.18 , Issue.7
    • Huang, C.J.1    Kuo, P.H.2
  • 82
    • 85047523487 scopus 로고    scopus 로고
    • Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems
    • Hunter, J.M., Maier, H.R., Gibbs, M.S., Foale, E.R., Grosvenor, N.A., Harders, N.P., Kikuchi-Miller, T.C., Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems. Hydrol. Earth Syst. Sci. 22:5 (2018), 2987–3006 https://doi.org/10.5194/hess-22-2987-2018.
    • (2018) Hydrol. Earth Syst. Sci. , vol.22 , Issue.5 , pp. 2987-3006
    • Hunter, J.M.1    Maier, H.R.2    Gibbs, M.S.3    Foale, E.R.4    Grosvenor, N.A.5    Harders, N.P.6    Kikuchi-Miller, T.C.7
  • 83
    • 38149109707 scopus 로고    scopus 로고
    • From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao
    • Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J., Ezcurra, A., Diaz de Argandoña, J., From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao. Environ. Model. Softw 23:5 (2008), 622–637 https://doi.org/10.1016/J.ENVSOFT.2007.09.003.
    • (2008) Environ. Model. Softw , vol.23 , Issue.5 , pp. 622-637
    • Ibarra-Berastegi, G.1    Elias, A.2    Barona, A.3    Saenz, J.4    Ezcurra, A.5    Diaz de Argandoña, J.6
  • 84
    • 84979927986 scopus 로고    scopus 로고
    • The 2018 top programming languages - IEEE Spectrum
    • Retrieved May 10, 2019, from
    • IEEE Spectrum, The 2018 top programming languages - IEEE Spectrum. Retrieved May 10, 2019, from https://spectrum.ieee.org/at-work/innovation/the-2018-top-programming-languages, 2018.
    • (2018)
    • IEEE Spectrum1
  • 85
    • 84873296206 scopus 로고    scopus 로고
    • IEEE Xplore Digital Library
    • Retrieved (Accessed 27 October 2017)
    • IEEE Xplore, IEEE Xplore Digital Library. 2017 Retrieved http://ieeexplore.ieee.org/Xplore/home.jsp. (Accessed 27 October 2017)
    • (2017)
    • IEEE Xplore1
  • 86
    • 85017434067 scopus 로고    scopus 로고
    • Artificial neural network prediction of tropospheric ozone concentrations in istanbul, Turkey
    • Inal, F., Artificial neural network prediction of tropospheric ozone concentrations in istanbul, Turkey. Clean. - Soil, Air, Water 38:10 (2010), 897–908 https://doi.org/10.1002/clen.201000138.
    • (2010) Clean. - Soil, Air, Water , vol.38 , Issue.10 , pp. 897-908
    • Inal, F.1
  • 88
    • 33645947036 scopus 로고    scopus 로고
    • Ten iterative steps in development and evaluation of environmental models
    • Jakeman, A.J., Letcher, R.A., Norton, J.P., Ten iterative steps in development and evaluation of environmental models. Environ. Model. Softw 21:5 (2006), 602–614 https://doi.org/10.1016/J.ENVSOFT.2006.01.004.
    • (2006) Environ. Model. Softw , vol.21 , Issue.5 , pp. 602-614
    • Jakeman, A.J.1    Letcher, R.A.2    Norton, J.P.3
  • 89
    • 9544219714 scopus 로고    scopus 로고
    • Progress in developing an ANN model for air pollution index forecast
    • Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., Shao, D., Progress in developing an ANN model for air pollution index forecast. Atmos. Environ. 38 (2004), 7055–7064 https://doi.org/10.1016/j.atmosenv.2003.10.066.
    • (2004) Atmos. Environ. , vol.38 , pp. 7055-7064
    • Jiang, D.1    Zhang, Y.2    Hu, X.3    Zeng, Y.4    Tan, J.5    Shao, D.6
  • 90
    • 85015946028 scopus 로고    scopus 로고
    • A novel hybrid strategy for PM2.5 concentration analysis and prediction
    • Jiang, P., Dong, Q., Li, P., A novel hybrid strategy for PM2.5 concentration analysis and prediction. J. Environ. Manag. 196 (2017), 443–457 https://doi.org/10.1016/j.jenvman.2017.03.046.
    • (2017) J. Environ. Manag. , vol.196 , pp. 443-457
    • Jiang, P.1    Dong, Q.2    Li, P.3
  • 91
    • 85057039914 scopus 로고    scopus 로고
    • An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation
    • Jiang, P., Li, C., Li, R., Yang, H., An innovative hybrid air pollution early-warning system based on pollutants forecasting and Extenics evaluation. Knowl. Based Syst., 2018 https://doi.org/10.1016/J.KNOSYS.2018.10.036.
    • (2018) Knowl. Based Syst.
    • Jiang, P.1    Li, C.2    Li, R.3    Yang, H.4
  • 92
    • 59449098688 scopus 로고    scopus 로고
    • The behaviour of the multi-layer perceptron and the support vector regression learning methods in the prediction of NO and NO2 concentrations in Szeged, Hungary
    • Juhos, I., Makra, L., Tóth, B., The behaviour of the multi-layer perceptron and the support vector regression learning methods in the prediction of NO and NO2 concentrations in Szeged, Hungary. Neural Comput. Appl. 18:2 (2009), 193–205 https://doi.org/10.1007/s00521-007-0171-1.
    • (2009) Neural Comput. Appl. , vol.18 , Issue.2 , pp. 193-205
    • Juhos, I.1    Makra, L.2    Tóth, B.3
  • 94
    • 0034131752 scopus 로고    scopus 로고
    • Forecasts using neural network versus box-jenkins methodology for ambient air quality monitoring data
    • Kao, J.J., Huang, S.S., Forecasts using neural network versus box-jenkins methodology for ambient air quality monitoring data. J. Air Waste Manag. Assoc. 50:2 (2000), 219–226 https://doi.org/10.1080/10473289.2000.10463997.
    • (2000) J. Air Waste Manag. Assoc. , vol.50 , Issue.2 , pp. 219-226
    • Kao, J.J.1    Huang, S.S.2
  • 95
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian training of artificial neural networks used for water resources modeling
    • Kingston, G.B., Lambert, M.F., Maier, H.R., Bayesian training of artificial neural networks used for water resources modeling. Water Resour. Res. 41:12 (2005), 1–11 https://doi.org/10.1029/2005WR004152.
    • (2005) Water Resour. Res. , vol.41 , Issue.12 , pp. 1-11
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 96
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • Kingston, G.B., Maier, H.R., Lambert, M.F., Calibration and validation of neural networks to ensure physically plausible hydrological modeling. J. Hydrol. 314:1–4 (2005), 158–176 https://doi.org/10.1016/J.JHYDROL.2005.03.013.
    • (2005) J. Hydrol. , vol.314 , Issue.1-4 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 97
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modeling
    • Kingston, G.B., Maier, H.R., Lambert, M.F., Bayesian model selection applied to artificial neural networks used for water resources modeling. Water Resour. Res., 44(4), 2008 https://doi.org/10.1029/2007WR006155.
    • (2008) Water Resour. Res. , vol.44 , Issue.4
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 98
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • Kolehmainen, M., Martikainen, H., Ruuskanen, J., Neural networks and periodic components used in air quality forecasting. Atmos. Environ. 35:5 (2001), 815–825 https://doi.org/10.1016/S1352-2310(00)00385-X.
    • (2001) Atmos. Environ. , vol.35 , Issue.5 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 100
    • 0043282649 scopus 로고    scopus 로고
    • Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki
    • Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., et al. Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 37:32 (2003), 4539–4550 https://doi.org/10.1016/S1352-2310(03)00583-1.
    • (2003) Atmos. Environ. , vol.37 , Issue.32 , pp. 4539-4550
    • Kukkonen, J.1    Partanen, L.2    Karppinen, A.3    Ruuskanen, J.4    Junninen, H.5    Kolehmainen, M.6
  • 101
    • 85017237161 scopus 로고    scopus 로고
    • Prediction and examination of seasonal variation of ozone with meteorological parameter through artificial neural network at NEERI, Nagpur, India
    • Kumar, N., Middey, A., Rao, P.S., Prediction and examination of seasonal variation of ozone with meteorological parameter through artificial neural network at NEERI, Nagpur, India. Urban Clim. 20:2 (2017), 148–167 https://doi.org/10.1016/j.uclim.2017.04.003.
    • (2017) Urban Clim. , vol.20 , Issue.2 , pp. 148-167
    • Kumar, N.1    Middey, A.2    Rao, P.S.3
  • 102
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt, A., Oktay, A.B., Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 37:12 (2010), 7986–7992 https://doi.org/10.1016/j.eswa.2010.05.093.
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 103
    • 85042916445 scopus 로고    scopus 로고
    • Research and application of a novel hybrid air quality early-warning system: a case study in China
    • Li, C., Zhu, Z., Research and application of a novel hybrid air quality early-warning system: a case study in China. Sci. Total Environ. 626 (2018), 1421–1438 https://doi.org/10.1016/j.scitotenv.2018.01.195.
    • (2018) Sci. Total Environ. , vol.626 , pp. 1421-1438
    • Li, C.1    Zhu, Z.2
  • 104
    • 85037526810 scopus 로고    scopus 로고
    • Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach
    • 11,985-11,993
    • Li, T., Shen, H., Yuan, Q., Zhang, X., Zhang, L., Estimating ground-level PM2.5 by fusing satellite and station observations: a geo-intelligent deep learning approach. Geophys. Res. Lett., 44(23), 2017 11,985-11,993 https://doi.org/10.1002/2017GL075710.
    • (2017) Geophys. Res. Lett. , vol.44 , Issue.23
    • Li, T.1    Shen, H.2    Yuan, Q.3    Zhang, X.4    Zhang, L.5
  • 105
    • 84991071427 scopus 로고    scopus 로고
    • Deep learning architecture for air quality predictions
    • Li, X., Peng, L., Hu, Y., Shao, J., Chi, T., Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Control Ser. 23:22 (2016), 22408–22417 https://doi.org/10.1007/s11356-016-7812-9.
    • (2016) Environ. Sci. Pollut. Control Ser. , vol.23 , Issue.22 , pp. 22408-22417
    • Li, X.1    Peng, L.2    Hu, Y.3    Shao, J.4    Chi, T.5
  • 106
    • 85029860128 scopus 로고    scopus 로고
    • Comparing CMAQ forecasts with a neural network forecast model for PM2.5 in New York
    • Lightstone, S.D., Moshary, F., Gross, B., Comparing CMAQ forecasts with a neural network forecast model for PM2.5 in New York. Atmosphere, 8(9), 2017 https://doi.org/10.3390/atmos8090161.
    • (2017) Atmosphere , vol.8 , Issue.9
    • Lightstone, S.D.1    Moshary, F.2    Gross, B.3
  • 107
    • 85061803557 scopus 로고    scopus 로고
    • An intelligent hybrid model for air pollutant concentrations forecasting: case of Beijing in China Keywords: air pollutant concentrations forecasting Empirical wavelet transform Multi-agent evolutionary genetic algorithm Nonlinear auto regressive models w
    • Liu, H., Wu, H., Lv, X., Ren, Z., Liu, M., Li, Y., Shi, H., An intelligent hybrid model for air pollutant concentrations forecasting: case of Beijing in China Keywords: air pollutant concentrations forecasting Empirical wavelet transform Multi-agent evolutionary genetic algorithm Nonlinear auto regressive models w. Sustain. Cities Soc., 2019 https://doi.org/10.1016/j.scs.2019.101471.
    • (2019) Sustain. Cities Soc.
    • Liu, H.1    Wu, H.2    Lv, X.3    Ren, Z.4    Liu, M.5    Li, Y.6    Shi, H.7
  • 108
    • 84856964446 scopus 로고    scopus 로고
    • Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics
    • López, V., Fernández, A., Moreno-Torres, J.G., Herrera, F., Analysis of preprocessing vs. cost-sensitive learning for imbalanced classification. Open problems on intrinsic data characteristics. Expert Syst. Appl. 39:7 (2012), 6585–6608 https://doi.org/10.1016/J.ESWA.2011.12.043.
    • (2012) Expert Syst. Appl. , vol.39 , Issue.7 , pp. 6585-6608
    • López, V.1    Fernández, A.2    Moreno-Torres, J.G.3    Herrera, F.4
  • 109
    • 0041695282 scopus 로고    scopus 로고
    • Using improved neural network model to analyze rsp, NOx and NO2 levels in urban air in mong kok, Hong Kong
    • Lu, W.Z., Wang, W.J., Wang, X.K., Xu, Z.B., T Leung, A.Y., Using improved neural network model to analyze rsp, NOx and NO2 levels in urban air in mong kok, Hong Kong. Environ. Monit. Assess. 87:2 (2003), 235–254.
    • (2003) Environ. Monit. Assess. , vol.87 , Issue.2 , pp. 235-254
    • Lu, W.Z.1    Wang, W.J.2    Wang, X.K.3    Xu, Z.B.4    T Leung, A.Y.5
  • 110
    • 84906761463 scopus 로고    scopus 로고
    • Prediction of ozone concentration in tropospheric levels using arti fi cial neural networks and support vector machine at Rio de
    • Luna, A.S., Prediction of ozone concentration in tropospheric levels using arti fi cial neural networks and support vector machine at Rio de. Atmos. Environ. 98 (2014), 98–104 https://doi.org/10.1016/j.atmosenv.2014.08.060.
    • (2014) Atmos. Environ. , vol.98 , pp. 98-104
    • Luna, A.S.1
  • 111
    • 77957662817 scopus 로고    scopus 로고
    • Prediction of daily ground-level ozone concentration
    • Mahapatra, A., Prediction of daily ground-level ozone concentration. Environ. Monit. Assess. 170 (2010), 159–170 https://doi.org/10.1007/s10661-009-1223-z.
    • (2010) Environ. Monit. Assess. , vol.170 , pp. 159-170
    • Mahapatra, A.1
  • 112
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier, H.R., Dandy, G.C., Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Model. Softw 15:1 (2000), 101–124 https://doi.org/10.1016/S1364-8152(99)00007-9.
    • (2000) Environ. Model. Softw , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 113
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions
    • Maier, H.R., Jain, A., Dandy, G.C., Sudheer, K.P., Methods used for the development of neural networks for the prediction of water resource variables in river systems: current status and future directions. Environ. Model. Softw 25:8 (2010), 891–909 https://doi.org/10.1016/J.ENVSOFT.2010.02.003.
    • (2010) Environ. Model. Softw , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 114
    • 85048705073 scopus 로고    scopus 로고
    • The M4 Competition: results, findings, conclusion and way forward
    • Makridakis, S., Spiliotis, E., Assimakopoulos, V., The M4 Competition: results, findings, conclusion and way forward. Int. J. Forecast. 34:4 (2018), 802–808 https://doi.org/10.1016/j.ijforecast.2018.06.001.
    • (2018) Int. J. Forecast. , vol.34 , Issue.4 , pp. 802-808
    • Makridakis, S.1    Spiliotis, E.2    Assimakopoulos, V.3
  • 115
    • 85017438053 scopus 로고    scopus 로고
    • Prediction of hourly ground-level PM2.5concentrations 3 days in advance using neural networks with satellite data in eastern China
    • Mao, X., Shen, T., Feng, X., Prediction of hourly ground-level PM2.5concentrations 3 days in advance using neural networks with satellite data in eastern China. Atmosph. Pollut. Res. 8:6 (2017), 1005–1015 https://doi.org/10.1016/j.apr.2017.04.002.
    • (2017) Atmosph. Pollut. Res. , vol.8 , Issue.6 , pp. 1005-1015
    • Mao, X.1    Shen, T.2    Feng, X.3
  • 116
    • 37549000626 scopus 로고    scopus 로고
    • Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks
    • Martín, M.L., Turias, I.J., González, F.J., Galindo, P.L., Trujillo, F.J., Puntonet, C.G., Gorriz, J.M., Prediction of CO maximum ground level concentrations in the Bay of Algeciras, Spain using artificial neural networks. Chemosphere 70:7 (2008), 1190–1195 https://doi.org/10.1016/j.chemosphere.2007.08.039.
    • (2008) Chemosphere , vol.70 , Issue.7 , pp. 1190-1195
    • Martín, M.L.1    Turias, I.J.2    González, F.J.3    Galindo, P.L.4    Trujillo, F.J.5    Puntonet, C.G.6    Gorriz, J.M.7
  • 117
    • 84952759442 scopus 로고    scopus 로고
    • Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra
    • Mishra, D., Goyal, P., Development of artificial intelligence based NO2 forecasting models at Taj Mahal, Agra. Atmosph. Pollut. Res. 6:1 (2015), 99–106 https://doi.org/10.5094/APR.2015.012.
    • (2015) Atmosph. Pollut. Res. , vol.6 , Issue.1 , pp. 99-106
    • Mishra, D.1    Goyal, P.2
  • 118
    • 84962732983 scopus 로고    scopus 로고
    • Neuro-Fuzzy approach to forecasting Ozone Episodes over the urban area of Delhi, India
    • Mishra, D., Goyal, P., Neuro-Fuzzy approach to forecasting Ozone Episodes over the urban area of Delhi, India. Environ. Technol. Innov. 5 (2016), 83–94 https://doi.org/10.1016/J.ETI.2016.01.001.
    • (2016) Environ. Technol. Innov. , vol.5 , pp. 83-94
    • Mishra, D.1    Goyal, P.2
  • 119
    • 84880675185 scopus 로고    scopus 로고
    • Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework
    • Mount, N.J., Dawson, C.W., Abrahart, R.J., Legitimising data-driven models: exemplification of a new data-driven mechanistic modelling framework. Hydrol. Earth Syst. Sci. 17 (2013), 2827–2843 https://doi.org/10.5194/hess-17-2827-2013.
    • (2013) Hydrol. Earth Syst. Sci. , vol.17 , pp. 2827-2843
    • Mount, N.J.1    Dawson, C.W.2    Abrahart, R.J.3
  • 120
    • 84883732315 scopus 로고    scopus 로고
    • Development and application of artificial neural network modeling in forecasting PM 10 levels in a mediterranean city
    • Moustris, K.P., Larissi, I.K., Nastos, P.T., Koukouletsos, K.V., Paliatsos, A.G., Development and application of artificial neural network modeling in forecasting PM 10 levels in a mediterranean city. https://doi.org/10.1007/s11270-013-1634-x, 2013.
    • (2013)
    • Moustris, K.P.1    Larissi, I.K.2    Nastos, P.T.3    Koukouletsos, K.V.4    Paliatsos, A.G.5
  • 121
    • 77952241972 scopus 로고    scopus 로고
    • 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in athens, Greece
    • Moustris, Konstantinos P., Ziomas, I.C., Paliatsos, A.G., 3-day-ahead forecasting of regional pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in athens, Greece. Water Air Soil Pollut. 209:1–4 (2010), 29–43 https://doi.org/10.1007/s11270-009-0179-5.
    • (2010) Water Air Soil Pollut. , vol.209 , Issue.1-4 , pp. 29-43
    • Moustris, K.P.1    Ziomas, I.C.2    Paliatsos, A.G.3
  • 122
    • 79957870345 scopus 로고    scopus 로고
    • Contributions of natural emissions to ozone and PM2.5 as simulated by the community multiscale air quality (CMAQ) model
    • Mueller, S.F., Mallard, J.W., Contributions of natural emissions to ozone and PM2.5 as simulated by the community multiscale air quality (CMAQ) model. Environ. Sci. Technol. 45:11 (2011), 4817–4823 https://doi.org/10.1021/es103645m.
    • (2011) Environ. Sci. Technol. , vol.45 , Issue.11 , pp. 4817-4823
    • Mueller, S.F.1    Mallard, J.W.2
  • 123
    • 27844608945 scopus 로고    scopus 로고
    • Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions
    • Nagendra, S.M.S., Khare, M., Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions. Ecol. Model. 190:1–2 (2006), 99–115 https://doi.org/10.1016/j.ecolmodel.2005.01.062.
    • (2006) Ecol. Model. , vol.190 , Issue.1-2 , pp. 99-115
    • Nagendra, S.M.S.1    Khare, M.2
  • 124
    • 85047653946 scopus 로고    scopus 로고
    • Application of artificial neural networks in the prediction of PM10levels in thewinter months: a case study in the Tricity Agglomeration, Poland
    • Nidzgorska-Lencewicz, J., Application of artificial neural networks in the prediction of PM10levels in thewinter months: a case study in the Tricity Agglomeration, Poland. Atmosphere, 9(6), 2018 https://doi.org/10.3390/atmos9060203.
    • (2018) Atmosphere , vol.9 , Issue.6
    • Nidzgorska-Lencewicz, J.1
  • 125
    • 2042510997 scopus 로고    scopus 로고
    • Evolving the neural network model for forecasting air pollution time series
    • Niska, H., Hiltunen, T., Karppinen, A., Ruuskanen, J., Kolehmainen, M., Evolving the neural network model for forecasting air pollution time series. Eng. Appl. Artif. Intell. 17:2 (2004), 159–167 https://doi.org/10.1016/J.ENGAPPAI.2004.02.002.
    • (2004) Eng. Appl. Artif. Intell. , vol.17 , Issue.2 , pp. 159-167
    • Niska, H.1    Hiltunen, T.2    Karppinen, A.3    Ruuskanen, J.4    Kolehmainen, M.5
  • 126
    • 26444607469 scopus 로고    scopus 로고
    • Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations
    • Niska, H., Rantam, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J., Kolehmainen, M., Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmos. Environ. 39:35 (2005), 6524–6536 https://doi.org/10.1016/j.atmosenv.2005.07.035.
    • (2005) Atmos. Environ. , vol.39 , Issue.35 , pp. 6524-6536
    • Niska, H.1    Rantam, M.2    Hiltunen, T.3    Karppinen, A.4    Kukkonen, J.5    Ruuskanen, J.6    Kolehmainen, M.7
  • 127
    • 25844526645 scopus 로고    scopus 로고
    • Modelling air pollution time-series by using wavelet functions and genetic algorithms
    • Nunnari, G., Modelling air pollution time-series by using wavelet functions and genetic algorithms. Soft Comput. 8 (2004), 173–178 https://doi.org/10.1007/s00500-002-0260-0.
    • (2004) Soft Comput. , vol.8 , pp. 173-178
    • Nunnari, G.1
  • 128
    • 5444237060 scopus 로고    scopus 로고
    • A method to estimate emission rates from industrial stacks based on neural networks
    • Olcese, L.E., Toselli, B.M., A method to estimate emission rates from industrial stacks based on neural networks. Chemosphere 57 (2004), 691–696 https://doi.org/10.1016/j.chemosphere.2004.07.045.
    • (2004) Chemosphere , vol.57 , pp. 691-696
    • Olcese, L.E.1    Toselli, B.M.2
  • 129
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks
    • Olden, J.D., Jackson, D.A., Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks. Ecol. Model. 154:1–2 (2002), 135–150 https://doi.org/10.1016/S0304-3800(02)00064-9.
    • (2002) Ecol. Model. , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 130
    • 9944223325 scopus 로고    scopus 로고
    • Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua)
    • Ordieres, J.B., Vergara, E.P., Capuz, R.S., Salazar, R.E., Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw 20:5 (2005), 547–559 https://doi.org/10.1016/J.ENVSOFT.2004.03.010.
    • (2005) Environ. Model. Softw , vol.20 , Issue.5 , pp. 547-559
    • Ordieres, J.B.1    Vergara, E.P.2    Capuz, R.S.3    Salazar, R.E.4
  • 131
    • 85068118048 scopus 로고    scopus 로고
    • Policy Highlights - the Economic Consequences of Outdoor Air Pollution
    • Organisation for Economic Co-operation and Development, Policy Highlights - the Economic Consequences of Outdoor Air Pollution. 2016.
    • (2016)
    • Organisation for Economic Co-operation and Development1
  • 132
    • 34250715899 scopus 로고    scopus 로고
    • Forecasting of the daily meteorological pollution using wavelets and support vector machine
    • Osowski, S., Garanty, K., Forecasting of the daily meteorological pollution using wavelets and support vector machine. Eng. Appl. Artif. Intell. 20:6 (2007), 745–755 https://doi.org/10.1016/j.engappai.2006.10.008.
    • (2007) Eng. Appl. Artif. Intell. , vol.20 , Issue.6 , pp. 745-755
    • Osowski, S.1    Garanty, K.2
  • 133
    • 84908376161 scopus 로고    scopus 로고
    • Impacts of meteorological factors on PM 10 : artificial neural networks (ANN) and multiple linear regression (MLR) approaches contributed articles impacts of meteorological factors on PM 10 : artificial neural networks (ANN) and multiple linear regr. Environmental Forensics
    • 5922
    • Özdemir, U., Taner, S., Impacts of meteorological factors on PM 10 : artificial neural networks (ANN) and multiple linear regression (MLR) approaches contributed articles impacts of meteorological factors on PM 10 : artificial neural networks (ANN) and multiple linear regr. Environmental Forensics. 5922 https://doi.org/10.1080/15275922.2014.950774, 2014.
    • (2014)
    • Özdemir, U.1    Taner, S.2
  • 134
    • 85052074367 scopus 로고    scopus 로고
    • A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction
    • Pak, U., Kim, C., Ryu, U., Sok, K., Pak, S., A hybrid model based on convolutional neural networks and long short-term memory for ozone concentration prediction. Air Qual. Atmosph. Health 11:8 (2018), 883–895 https://doi.org/10.1007/s11869-018-0585-1.
    • (2018) Air Qual. Atmosph. Health , vol.11 , Issue.8 , pp. 883-895
    • Pak, U.1    Kim, C.2    Ryu, U.3    Sok, K.4    Pak, S.5
  • 135
    • 84887480472 scopus 로고    scopus 로고
    • Neurocomputing Techniques to Dynamically Forecast Spatiotemporal Air Pollution Data
    • Papaleonidas, A., Iliadis, L., Neurocomputing Techniques to Dynamically Forecast Spatiotemporal Air Pollution Data. 2013, 221–233 https://doi.org/10.1007/s12530-013-9078-5.
    • (2013) , pp. 221-233
    • Papaleonidas, A.1    Iliadis, L.2
  • 136
    • 79551508219 scopus 로고    scopus 로고
    • Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management
    • Paschalidou, A.K., Karakitsios, S., Kleanthous, S., Kassomenos, P.A., Forecasting hourly PM10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ. Sci. Pollut. Control Ser. 18:2 (2011), 316–327 https://doi.org/10.1007/s11356-010-0375-2.
    • (2011) Environ. Sci. Pollut. Control Ser. , vol.18 , Issue.2 , pp. 316-327
    • Paschalidou, A.K.1    Karakitsios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 137
    • 84978878255 scopus 로고    scopus 로고
    • Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods
    • Peng, H., Lima, A.R., Teakles, A., Jin, J., Cannon, A.J., Hsieh, W.W., Evaluating hourly air quality forecasting in Canada with nonlinear updatable machine learning methods. Air Qual. Atmosph. Health 10:2 (2017), 195–211 https://doi.org/10.1007/s11869-016-0414-3.
    • (2017) Air Qual. Atmosph. Health , vol.10 , Issue.2 , pp. 195-211
    • Peng, H.1    Lima, A.R.2    Teakles, A.3    Jin, J.4    Cannon, A.J.5    Hsieh, W.W.6
  • 138
    • 0034744978 scopus 로고    scopus 로고
    • Prediction of NO and NO 2 concentrations near a street with heavy traf c in Santiago. Chile
    • Perez, P., Trier, A., Prediction of NO and NO 2 concentrations near a street with heavy traf c in Santiago. Chile. Atmos. Environ. 35:10 (2001), 1783–1789.
    • (2001) Atmos. Environ. , vol.35 , Issue.10 , pp. 1783-1789
    • Perez, P.1    Trier, A.2
  • 139
    • 84864065954 scopus 로고    scopus 로고
    • Combined model for PM10 forecasting in a large city
    • Perez, Patricio, Combined model for PM10 forecasting in a large city. Atmos. Environ. 60 (2012), 271–276 https://doi.org/10.1016/j.atmosenv.2012.06.024.
    • (2012) Atmos. Environ. , vol.60 , pp. 271-276
    • Perez, P.1
  • 140
    • 53749089242 scopus 로고    scopus 로고
    • PM2.5forecasting in a large city: comparison of three methods
    • Perez, Patricio, Salini, G., PM2.5forecasting in a large city: comparison of three methods. Atmos. Environ. 42:35 (2008), 8219–8224 https://doi.org/10.1016/j.atmosenv.2008.07.035.
    • (2008) Atmos. Environ. , vol.42 , Issue.35 , pp. 8219-8224
    • Perez, P.1    Salini, G.2
  • 141
    • 79953268069 scopus 로고    scopus 로고
    • Atmospheric Pollution Research Evolutionary procedure based model to predict ground – level ozone concentrations
    • Pires, J.C.M., Ferraz, M.C.M.A., Pereira, M.C., Martins, F.G., Martins, F.G., Atmospheric Pollution Research Evolutionary procedure based model to predict ground – level ozone concentrations. Atmosph. Pollut. Res. 1:4 (2010), 215–219 https://doi.org/10.5094/APR.2010.028.
    • (2010) Atmosph. Pollut. Res. , vol.1 , Issue.4 , pp. 215-219
    • Pires, J.C.M.1    Ferraz, M.C.M.A.2    Pereira, M.C.3    Martins, F.G.4    Martins, F.G.5
  • 142
    • 67349143619 scopus 로고    scopus 로고
    • Forecasting peak air pollution levels using NARX models
    • Pisoni, E., Farina, M., Carnevale, C., Piroddi, L., Forecasting peak air pollution levels using NARX models. Eng. Appl. Artif. Intell. 22:4–5 (2009), 593–602 https://doi.org/10.1016/j.engappai.2009.04.002.
    • (2009) Eng. Appl. Artif. Intell. , vol.22 , Issue.4-5 , pp. 593-602
    • Pisoni, E.1    Farina, M.2    Carnevale, C.3    Piroddi, L.4
  • 143
    • 33750013519 scopus 로고    scopus 로고
    • Single imputation method of missing values in environmental pollution data sets
    • Plaia, A.Ã., Bondı, A.L., Single imputation method of missing values in environmental pollution data sets. Atmos. Environ. 40 (2006), 7316–7330 https://doi.org/10.1016/j.atmosenv.2006.06.040.
    • (2006) Atmos. Environ. , vol.40 , pp. 7316-7330
    • Plaia, A.Ã.1    Bondı, A.L.2
  • 144
    • 80052290632 scopus 로고    scopus 로고
    • A wavelet-based neural network model to predict ambient air pollutants' concentration
    • Prakash, A., Kumar, U., Kumar, K., Jain, V.K., A wavelet-based neural network model to predict ambient air pollutants' concentration. Environ. Model. Assess. 16:5 (2011), 503–517 https://doi.org/10.1007/s10666-011-9270-6.
    • (2011) Environ. Model. Assess. , vol.16 , Issue.5 , pp. 503-517
    • Prakash, A.1    Kumar, U.2    Kumar, K.3    Jain, V.K.4
  • 145
    • 85068110550 scopus 로고    scopus 로고
    • ProQuest | Databases, EBooks and Technology for Research
    • Retrieved (Accessed 27 October 2017)
    • ProQuest, ProQuest | Databases, EBooks and Technology for Research. 2017 Retrieved http://www.proquest.com/. (Accessed 27 October 2017)
    • (2017)
    • ProQuest1
  • 146
    • 85061200096 scopus 로고    scopus 로고
    • A hybrid model for spatiotemporal forecasting of PM 2.5 based on graph convolutional neural network and long short-term memory
    • Qi, Y., Li, Q., Karimian, H., Liu, D., A hybrid model for spatiotemporal forecasting of PM 2.5 based on graph convolutional neural network and long short-term memory. Sci. Total Environ. 664 (2019), 1–10 https://doi.org/10.1016/j.scitotenv.2019.01.333.
    • (2019) Sci. Total Environ. , vol.664 , pp. 1-10
    • Qi, Y.1    Li, Q.2    Karimian, H.3    Liu, D.4
  • 147
    • 85063897674 scopus 로고    scopus 로고
    • 2.5 concentration
    • Qin, D., Yu, J., Zou, G., Yong, R., Zhao, Q., Zhang, B., A novel combined prediction scheme based on CNN and LSTM for urban PM 2.5 concentration. IEEE Access 7 (2019), 20050–20059 https://doi.org/10.1109/ACCESS.2019.2897028.
    • (2019) IEEE Access , vol.7 , pp. 20050-20059
    • Qin, D.1    Yu, J.2    Zou, G.3    Yong, R.4    Zhao, Q.5    Zhang, B.6
  • 148
    • 85061674055 scopus 로고    scopus 로고
    • The significance of periodic parameters for ANN modeling of daily SO2 and NOx concentrations: a case study of Belgrade, Serbia. Atmospheric Pollution Research
    • Radojević, D., Antanasijević, D., Perić-Grujić, A., Ristić, M., Pocajt, V., The significance of periodic parameters for ANN modeling of daily SO2 and NOx concentrations: a case study of Belgrade, Serbia. Atmospheric Pollution Research. https://doi.org/10.1016/J.APR.2018.11.004, 2018.
    • (2018)
    • Radojević, D.1    Antanasijević, D.2    Perić-Grujić, A.3    Ristić, M.4    Pocajt, V.5
  • 149
    • 85043828919 scopus 로고    scopus 로고
    • Short-term prediction of NO2 and NO x concentrations using multilayer perceptron neural network: a case study of Tabriz, Iran
    • Rahimi, A., Short-term prediction of NO2 and NO x concentrations using multilayer perceptron neural network: a case study of Tabriz, Iran. Ecol. Process., 6(1), 2017, 4 https://doi.org/10.1186/s13717-016-0069-x.
    • (2017) Ecol. Process. , vol.6 , Issue.1 , pp. 4
    • Rahimi, A.1
  • 150
    • 80053625918 scopus 로고    scopus 로고
    • A new formulation for feedforward neural networks
    • Razavi, S., Tolson, B.A., A new formulation for feedforward neural networks. IEEE Trans. Neural Netw. 22:10 (2011), 1588–1598 https://doi.org/10.1109/TNN.2011.2163169.
    • (2011) IEEE Trans. Neural Netw. , vol.22 , Issue.10 , pp. 1588-1598
    • Razavi, S.1    Tolson, B.A.2
  • 151
    • 84927944185 scopus 로고    scopus 로고
    • Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales
    • Russo, A., Lind, P.G., Raischel, F., Trigo, R., Mendes, M., Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmosph. Pollut. Res. 6:3 (2015), 540–549 https://doi.org/10.5094/APR.2015.060.
    • (2015) Atmosph. Pollut. Res. , vol.6 , Issue.3 , pp. 540-549
    • Russo, A.1    Lind, P.G.2    Raischel, F.3    Trigo, R.4    Mendes, M.5
  • 152
    • 84882768416 scopus 로고    scopus 로고
    • Air quality prediction using optimal neural networks with stochastic variables
    • Russo, A., Raischel, F., Lind, P.G., Air quality prediction using optimal neural networks with stochastic variables. Atmos. Environ. 79 (2013), 822–830 https://doi.org/10.1016/j.atmosenv.2013.07.072.
    • (2013) Atmos. Environ. , vol.79 , pp. 822-830
    • Russo, A.1    Raischel, F.2    Lind, P.G.3
  • 153
    • 84906705476 scopus 로고    scopus 로고
    • Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach
    • Russo, A., Soares, A.O., Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach. Math. Geosci. 46:1 (2014), 75–93 https://doi.org/10.1007/s11004-013-9483-0.
    • (2014) Math. Geosci. , vol.46 , Issue.1 , pp. 75-93
    • Russo, A.1    Soares, A.O.2
  • 154
    • 34247548180 scopus 로고    scopus 로고
    • Neural Networks for Applied Sciences and Engineering
    • Taylor & Francis
    • Samarasinghe, S., Neural Networks for Applied Sciences and Engineering. 2006, Taylor & Francis https://doi.org/10.1017/CBO9781107415324.004.
    • (2006)
    • Samarasinghe, S.1
  • 155
    • 84938060791 scopus 로고    scopus 로고
    • Estimation of PM 10 -bound as, Cd, Ni and Pb levels by means of statistical Modelling : PLSR and ANN approaches
    • Santos, G., Fernández-olmo, I., Estimation of PM 10 -bound as, Cd, Ni and Pb levels by means of statistical Modelling : PLSR and ANN approaches. Water, Air, & Soil Pollution, 2015 https://doi.org/10.1007/s11270-015-2526-z.
    • (2015) Water, Air, & Soil Pollution
    • Santos, G.1    Fernández-olmo, I.2
  • 156
    • 84887622153 scopus 로고    scopus 로고
    • Chemical product and process modeling a modified kennard-stone algorithm for optimal division of data for developing artificial neural network models a modified kennard-stone algorithm for optimal division of data for developing artificial neural network
    • Saptoro, A., Tadé, M.O., Vuthaluru, H., Chemical product and process modeling a modified kennard-stone algorithm for optimal division of data for developing artificial neural network models a modified kennard-stone algorithm for optimal division of data for developing artificial neural network. Chem. Prod. Process Model., 7(1), 2012, 13 https://doi.org/10.1515/1934-2659.1645.
    • (2012) Chem. Prod. Process Model. , vol.7 , Issue.1 , pp. 13
    • Saptoro, A.1    Tadé, M.O.2    Vuthaluru, H.3
  • 157
    • 32144456452 scopus 로고    scopus 로고
    • Statistical models to assess the health effects and to forecast ground-level ozone
    • Schlink, U., Herbarth, O., Richter, M., Dorling, S., Nunnari, G., Cawley, G., Pelikan, E., Statistical models to assess the health effects and to forecast ground-level ozone. Environ. Model. Softw 21:4 (2006), 547–558 https://doi.org/10.1016/J.ENVSOFT.2004.12.002.
    • (2006) Environ. Model. Softw , vol.21 , Issue.4 , pp. 547-558
    • Schlink, U.1    Herbarth, O.2    Richter, M.3    Dorling, S.4    Nunnari, G.5    Cawley, G.6    Pelikan, E.7
  • 158
    • 0035284320 scopus 로고    scopus 로고
    • Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values
    • Retrieved from
    • Schneider, T., Analysis of incomplete climate data: estimation of mean values and covariance matrices and imputation of missing values. J. Clim., 2001 Retrieved from https://journals.ametsoc.org/doi/pdf/10.1175/1520-0442%282001%29014%3C0853%3AAOICDE%3E2.0.CO%3B2.
    • (2001) J. Clim.
    • Schneider, T.1
  • 159
    • 85068194393 scopus 로고    scopus 로고
    • ScienceDirect.com | Science, Health and Medical Journals, Full Text Articles and Books
    • Retrieved (Accessed 27 October 2017)
    • ScienceDirect, ScienceDirect.com | Science, Health and Medical Journals, Full Text Articles and Books. 2017 Retrieved http://www.sciencedirect.com/. (Accessed 27 October 2017)
    • (2017)
    • ScienceDirect1
  • 160
    • 84959542151 scopus 로고    scopus 로고
    • Statistical modeling approaches for pm10 prediction in urban areas; A review of 21st-century studies
    • Shahraiyni, H.T., Sodoudi, S., Statistical modeling approaches for pm10 prediction in urban areas; A review of 21st-century studies. Atmosphere 7:2 (2016), 10–13 https://doi.org/10.3390/atmos7020015.
    • (2016) Atmosphere , vol.7 , Issue.2 , pp. 10-13
    • Shahraiyni, H.T.1    Sodoudi, S.2
  • 161
    • 84925933906 scopus 로고    scopus 로고
    • New technique for ranking of air pollution monitoring stations in the urban areas based upon spatial representativity (Case study: PM monitoring stations in Berlin)
    • Shahraiyni, H.T., Sodoudi, S., Kerschbaumer, A., Cubasch, U., New technique for ranking of air pollution monitoring stations in the urban areas based upon spatial representativity (Case study: PM monitoring stations in Berlin). Aerosol Air Qual. Res. 15:2 (2015), 743–748 https://doi.org/10.4209/aaqr.2014.12.0317.
    • (2015) Aerosol Air Qual. Res. , vol.15 , Issue.2 , pp. 743-748
    • Shahraiyni, H.T.1    Sodoudi, S.2    Kerschbaumer, A.3    Cubasch, U.4
  • 162
    • 24744467172 scopus 로고    scopus 로고
    • Vehicular pollution modeling using artificial neural network technique : a review
    • Sharma, N., Chaudhry, K.K., Rao, C.V.C., Vehicular pollution modeling using artificial neural network technique : a review. J. Sci. Ind. Res. (India) 64:September (2005), 637–647.
    • (2005) J. Sci. Ind. Res. (India) , vol.64 , Issue.September , pp. 637-647
    • Sharma, N.1    Chaudhry, K.K.2    Rao, C.V.C.3
  • 163
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh, K.P., Gupta, S., Kumar, A., Shukla, S.P., Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 426 (2012), 244–255 https://doi.org/10.1016/j.scitotenv.2012.03.076.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 164
    • 84864744928 scopus 로고    scopus 로고
    • Engineering Applications of Artificial Intelligence Improving the accuracy of prediction of PM 10 pollution by the wavelet transformation and an ensemble of neural predictors
    • Siwek, K., Osowski, S., Engineering Applications of Artificial Intelligence Improving the accuracy of prediction of PM 10 pollution by the wavelet transformation and an ensemble of neural predictors. Eng. Appl. Artif. Intell. 25:6 (2012), 1246–1258 https://doi.org/10.1016/j.engappai.2011.10.013.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , Issue.6 , pp. 1246-1258
    • Siwek, K.1    Osowski, S.2
  • 165
    • 32144443181 scopus 로고    scopus 로고
    • PM10 forecasting for Thessaloniki, Greece
    • Slini, T., Kaprara, A., Karatzas, K., Moussiopoulos, N., PM10 forecasting for Thessaloniki, Greece. Environ. Model. Softw 21:4 (2006), 559–565 https://doi.org/10.1016/J.ENVSOFT.2004.06.011.
    • (2006) Environ. Model. Softw , vol.21 , Issue.4 , pp. 559-565
    • Slini, T.1    Kaprara, A.2    Karatzas, K.3    Moussiopoulos, N.4
  • 166
    • 79952944317 scopus 로고    scopus 로고
    • Ground-level ozone forecasting using data-driven methods
    • Solaiman, T.A., Coulibaly, P., Kanaroglou, P., Ground-level ozone forecasting using data-driven methods. Air Qual. Atmosph. Health 1:4 (2008), 179–193 https://doi.org/10.1007/s11869-008-0023-x.
    • (2008) Air Qual. Atmosph. Health , vol.1 , Issue.4 , pp. 179-193
    • Solaiman, T.A.1    Coulibaly, P.2    Kanaroglou, P.3
  • 167
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa, S.I.V., Martins, F.G., Alvim-Ferraz, M.C.M., Pereira, M.C., Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environ. Model. Softw 22:1 (2007), 97–103 https://doi.org/10.1016/J.ENVSOFT.2005.12.002.
    • (2007) Environ. Model. Softw , vol.22 , Issue.1 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 168
    • 84963739228 scopus 로고    scopus 로고
    • Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model
    • Stamenković, L.J., Antanasijević, D.Z., Ristić, M., Perić-Grujić, A.A., Pocajt, V.V., Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Qual. Atmosph. Health 10:1 (2017), 15–23 https://doi.org/10.1007/s11869-016-0403-6.
    • (2017) Air Qual. Atmosph. Health , vol.10 , Issue.1 , pp. 15-23
    • Stamenković, L.J.1    Antanasijević, D.Z.2    Ristić, M.3    Perić-Grujić, A.A.4    Pocajt, V.V.5
  • 169
    • 84869884924 scopus 로고    scopus 로고
    • Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California
    • Sun, W., Zhang, H., Palazoglu, A., Singh, A., Zhang, W., Liu, S., Prediction of 24-hour-average PM2.5 concentrations using a hidden Markov model with different emission distributions in Northern California. Sci. Total Environ. 443 (2013), 93–103 https://doi.org/10.1016/J.SCITOTENV.2012.10.070.
    • (2013) Sci. Total Environ. , vol.443 , pp. 93-103
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3    Singh, A.4    Zhang, W.5    Liu, S.6
  • 170
    • 84963632445 scopus 로고    scopus 로고
    • Development of an England-wide indoor overheating and air pollution model using artificial neural networks
    • SymoCnds, P., Taylor, J., Chalabi, Z., Mavrogianni, A., Davies, M., Hamilton, I., et al. Development of an England-wide indoor overheating and air pollution model using artificial neural networks. J. Build. Perform. Simul. 1493:June (2016), 1–14 https://doi.org/10.1080/19401493.2016.1166265.
    • (2016) J. Build. Perform. Simul. , vol.1493 , Issue.June , pp. 1-14
    • SymoCnds, P.1    Taylor, J.2    Chalabi, Z.3    Mavrogianni, A.4    Davies, M.5    Hamilton, I.6
  • 171
    • 85006165941 scopus 로고    scopus 로고
    • Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality
    • Taylan, O., Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 150 (2017), 356–365 https://doi.org/10.1016/j.atmosenv.2016.11.030.
    • (2017) Atmos. Environ. , vol.150 , pp. 356-365
    • Taylan, O.1
  • 172
    • 85068183448 scopus 로고    scopus 로고
    • MATLAB Documentation - MathWorks United Kingdom
    • Retrieved (Accessed 30 October 2017)
    • The MathWorks, I., MATLAB Documentation - MathWorks United Kingdom. 2017 Retrieved https://uk.mathworks.com/help/matlab/. (Accessed 30 October 2017)
    • (2017)
    • The MathWorks, I.1
  • 173
    • 85068169235 scopus 로고    scopus 로고
    • StarPlus
    • Retrieved April 3, 2017, from
    • The University of Sheffield, StarPlus. Retrieved April 3, 2017, from https://find.shef.ac.uk/primo_library/libweb/action/search.do?vid=SFD_VU2&samlLogin=true&dscnt=0&dstmp=1556889134776&fromLogin=true, 2017.
    • (2017)
    • The University of Sheffield1
  • 174
    • 60249092433 scopus 로고    scopus 로고
    • Forecasting of ozone episode days by cost-sensitive neural network methods
    • Tsai, C., Chang, L., Chiang, H., Forecasting of ozone episode days by cost-sensitive neural network methods. Sci. Total Environ. 407:6 (2009), 2124–2135 https://doi.org/10.1016/j.scitotenv.2008.12.007.
    • (2009) Sci. Total Environ. , vol.407 , Issue.6 , pp. 2124-2135
    • Tsai, C.1    Chang, L.2    Chiang, H.3
  • 175
    • 85057589215 scopus 로고    scopus 로고
    • Applying linear and nonlinear models for the estimation of particulate matter variability
    • Tzanis, C.G., Alimissis, A., Philippopoulos, K., Deligiorgi, D., Applying linear and nonlinear models for the estimation of particulate matter variability. Environ. Pollut. 246 (2019), 89–98 https://doi.org/10.1016/J.ENVPOL.2018.11.080.
    • (2019) Environ. Pollut. , vol.246 , pp. 89-98
    • Tzanis, C.G.1    Alimissis, A.2    Philippopoulos, K.3    Deligiorgi, D.4
  • 176
    • 84879735938 scopus 로고    scopus 로고
    • Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA)
    • Ul-Saufie, A.Z., Yahaya, A.S., Ramli, N.A., Rosaida, N., Hamid, H.A., Future daily PM10 concentrations prediction by combining regression models and feedforward backpropagation models with principle component analysis (PCA). Atmos. Environ. 77 (2013), 621–630 https://doi.org/10.1016/J.ATMOSENV.2013.05.017.
    • (2013) Atmos. Environ. , vol.77 , pp. 621-630
    • Ul-Saufie, A.Z.1    Yahaya, A.S.2    Ramli, N.A.3    Rosaida, N.4    Hamid, H.A.5
  • 177
    • 85059663453 scopus 로고    scopus 로고
    • Forecast of daily PM 2.5 concentrations applying artificial neural networks and Holt-Winters models. Air Quality, Atmosphere & Health
    • Ventura, L.M.B., Fellipe De Oliveira Pinto, Laiza, Soares, M., Luna, A.S., Gioda, A., Forecast of daily PM 2.5 concentrations applying artificial neural networks and Holt-Winters models. Air Quality, Atmosphere & Health. https://doi.org/10.1007/s11869-018-00660-x, 2019.
    • (2019)
    • Ventura, L.M.B.1    Fellipe De Oliveira Pinto2    Laiza3    Soares, M.4    Luna, A.S.5    Gioda, A.6
  • 178
    • 79951811720 scopus 로고    scopus 로고
    • Science of the Total Environment Evaluation of a multiple regression model for the forecasting of the concentrations of NO x and PM 10 in Athens and Helsinki
    • Vlachogianni, A., Kassomenos, P., Karppinen, A., Karakitsios, S., Kukkonen, J., Science of the Total Environment Evaluation of a multiple regression model for the forecasting of the concentrations of NO x and PM 10 in Athens and Helsinki. Sci. Total Environ. 409:8 (2011), 1559–1571 https://doi.org/10.1016/j.scitotenv.2010.12.040.
    • (2011) Sci. Total Environ. , vol.409 , Issue.8 , pp. 1559-1571
    • Vlachogianni, A.1    Kassomenos, P.2    Karppinen, A.3    Karakitsios, S.4    Kukkonen, J.5
  • 179
    • 79851508856 scopus 로고    scopus 로고
    • Science of the Total Environment Intercomparison of air quality data using principal component analysis, and forecasting of PM 10 and PM 2. 5 concentrations using arti fi cial neural networks, in Thessaloniki and Helsinki
    • Voukantsis, D., Karatzas, K., Kukkonen, J., Räsänen, T., Science of the Total Environment Intercomparison of air quality data using principal component analysis, and forecasting of PM 10 and PM 2. 5 concentrations using arti fi cial neural networks, in Thessaloniki and Helsinki. Sci. Total Environ. 409:7 (2011), 1266–1276 https://doi.org/10.1016/j.scitotenv.2010.12.039.
    • (2011) Sci. Total Environ. , vol.409 , Issue.7 , pp. 1266-1276
    • Voukantsis, D.1    Karatzas, K.2    Kukkonen, J.3    Räsänen, T.4
  • 180
    • 85049832090 scopus 로고    scopus 로고
    • A deep spatial-temporal ensemble model for air quality prediction
    • Wang, J., Song, G., A deep spatial-temporal ensemble model for air quality prediction. Neurocomputing 314 (2018), 198–206 https://doi.org/10.1016/J.NEUCOM.2018.06.049.
    • (2018) Neurocomputing , vol.314 , pp. 198-206
    • Wang, J.1    Song, G.2
  • 181
    • 0037255890 scopus 로고    scopus 로고
    • Three improved neural network models for air quality forecasting
    • Wang, W., Xu, Z., Weizhen Lu, J., Three improved neural network models for air quality forecasting. Eng. Comput. 20:2 (2003), 192–210 https://doi.org/10.1108/02644400310465317.
    • (2003) Eng. Comput. , vol.20 , Issue.2 , pp. 192-210
    • Wang, W.1    Xu, Z.2    Weizhen Lu, J.3
  • 182
    • 85056648784 scopus 로고    scopus 로고
    • A novel spatiotemporal convolutional long short-term neural network for air pollution prediction
    • Wen, C., Liu, S., Yao, X., Peng, L., Li, X., Hu, Y., Chi, T., A novel spatiotemporal convolutional long short-term neural network for air pollution prediction. Sci. Total Environ. 654 (2019), 1091–1099 https://doi.org/10.1016/j.scitotenv.2018.11.086.
    • (2019) Sci. Total Environ. , vol.654 , pp. 1091-1099
    • Wen, C.1    Liu, S.2    Yao, X.3    Peng, L.4    Li, X.5    Hu, Y.6    Chi, T.7
  • 183
    • 85042942538 scopus 로고    scopus 로고
    • A comparison of data imputation methods using Bayesian compressive sensing and Empirical Mode Decomposition for environmental temperature data
    • Williams, D.A., Nelsen, B., Berrett, C., Williams, G.P., Moon, T.K., A comparison of data imputation methods using Bayesian compressive sensing and Empirical Mode Decomposition for environmental temperature data. https://doi.org/10.1016/j.envsoft.2018.01.012, 2018.
    • (2018)
    • Williams, D.A.1    Nelsen, B.2    Berrett, C.3    Williams, G.P.4    Moon, T.K.5
  • 184
    • 84884938972 scopus 로고    scopus 로고
    • World Health Organization Retrieved from
    • World Health Organization, Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project, vol 309, 2013, World Health Organization Retrieved from http://www.euro.who.int/en/health-topics/environment-and-health/air-quality/publications/2013/review-of-evidence-on-health-aspects-of-air-pollution-revihaap-project-final-technical-report.
    • (2013) Review of Evidence on Health Aspects of Air Pollution – REVIHAAP Project , vol.309
    • World Health Organization1
  • 185
    • 84902315848 scopus 로고    scopus 로고
    • WHO | Ambient (Outdoor) Air Quality and Health
    • Retrieved (Accessed 14 September 2017)
    • World Health Organization, WHO | Ambient (Outdoor) Air Quality and Health. 2016 Retrieved http://www.who.int/mediacentre/factsheets/fs313/en/. (Accessed 14 September 2017)
    • (2016)
    • World Health Organization1
  • 186
    • 85051239152 scopus 로고    scopus 로고
    • WHO | Ambient Air Pollution
    • Retrieved (Accessed 10 September 2018)
    • World Health Organization, WHO | Ambient Air Pollution. 2018 Retrieved http://www.who.int/airpollution/ambient/en/. (Accessed 10 September 2018)
    • (2018)
    • World Health Organization1
  • 187
    • 84892886293 scopus 로고    scopus 로고
    • Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling
    • Wu, W., Dandy, G.C., Maier, H.R., Protocol for developing ANN models and its application to the assessment of the quality of the ANN model development process in drinking water quality modelling. Environ. Model. Softw 54 (2014), 108–127 https://doi.org/10.1016/J.ENVSOFT.2013.12.016.
    • (2014) Environ. Model. Softw , vol.54 , pp. 108-127
    • Wu, W.1    Dandy, G.C.2    Maier, H.R.3
  • 188
    • 84887871464 scopus 로고    scopus 로고
    • A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks
    • Wu, W., May, R.J., Maier, H.R., Dandy, G.C., A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks. Water Resour. Res. 49:11 (2013), 7598–7614 https://doi.org/10.1002/2012WR012713.
    • (2013) Water Resour. Res. , vol.49 , Issue.11 , pp. 7598-7614
    • Wu, W.1    May, R.J.2    Maier, H.R.3    Dandy, G.C.4
  • 189
    • 84867870508 scopus 로고    scopus 로고
    • Neurocomputing Identification of significant factors for air pollution levels using a neural network based knowledge discovery system
    • Yan, K., Jian, L., Neurocomputing Identification of significant factors for air pollution levels using a neural network based knowledge discovery system. Neurocomputing 99 (2013), 564–569 https://doi.org/10.1016/j.neucom.2012.06.003.
    • (2013) Neurocomputing , vol.99 , pp. 564-569
    • Yan, K.1    Jian, L.2
  • 190
    • 84998717644 scopus 로고    scopus 로고
    • A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques
    • Yeganeh, B., Hewson, M.G., Clifford, S., Knibbs, L.D., Morawska, L., A satellite-based model for estimating PM2.5 concentration in a sparsely populated environment using soft computing techniques. Environ. Model. Softw 88 (2017), 84–92 https://doi.org/10.1016/J.ENVSOFT.2016.11.017.
    • (2017) Environ. Model. Softw , vol.88 , pp. 84-92
    • Yeganeh, B.1    Hewson, M.G.2    Clifford, S.3    Knibbs, L.D.4    Morawska, L.5
  • 191
    • 85035799017 scopus 로고    scopus 로고
    • Estimating the spatiotemporal variation of NO2concentration using an adaptive neuro-fuzzy inference system
    • Yeganeh, B., Hewson, M.G., Clifford, S., Tavassoli, A., Knibbs, L.D., Morawska, L., Estimating the spatiotemporal variation of NO2concentration using an adaptive neuro-fuzzy inference system. Environ. Model. Softw 100:2 (2018), 222–235 https://doi.org/10.1016/j.envsoft.2017.11.031.
    • (2018) Environ. Model. Softw , vol.100 , Issue.2 , pp. 222-235
    • Yeganeh, B.1    Hewson, M.G.2    Clifford, S.3    Tavassoli, A.4    Knibbs, L.D.5    Morawska, L.6
  • 192
    • 79960918087 scopus 로고    scopus 로고
    • Artificial intelligence-based prediction models for environmental engineering
    • Yetilmezsoy, K., Ozkaya, B., Cakmakci, M., Artificial intelligence-based prediction models for environmental engineering. Neural Netw. World 21:3 (2011), 193–218.
    • (2011) Neural Netw. World , vol.21 , Issue.3 , pp. 193-218
    • Yetilmezsoy, K.1    Ozkaya, B.2    Cakmakci, M.3
  • 193
    • 84881631778 scopus 로고    scopus 로고
    • Evaluation of PM 10 forecasting based on the artificial neural network model and intake fraction in an urban area : a case study in Taiyuan City, Evaluation of PM 10 forecasting based on the artificial neural network model and intake fraction in an urban
    • Zhang, H., Liu, Y., Shi, R., Yao, Q., Evaluation of PM 10 forecasting based on the artificial neural network model and intake fraction in an urban area : a case study in Taiyuan City, Evaluation of PM 10 forecasting based on the artificial neural network model and intake fraction in an urban. J. Air Waste Manag. Assoc., 2247, 2013 https://doi.org/10.1080/10962247.2012.755940.
    • (2013) J. Air Waste Manag. Assoc. , vol.2247
    • Zhang, H.1    Liu, Y.2    Shi, R.3    Yao, Q.4
  • 194
    • 85011096722 scopus 로고    scopus 로고
    • Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong
    • Zhang, J., Ding, W., Prediction of air pollutants concentration based on an extreme learning machine: the case of Hong Kong. Int. J. Environ. Res. Public Health 14:2 (2017), 1–19 https://doi.org/10.3390/ijerph14020114.
    • (2017) Int. J. Environ. Res. Public Health , vol.14 , Issue.2 , pp. 1-19
    • Zhang, J.1    Ding, W.2
  • 195
    • 84961392890 scopus 로고    scopus 로고
    • Imbalanced classification by learning hidden data structure
    • Zhao, Y., Shrivastava, A.K., Tsui, K.L., Imbalanced classification by learning hidden data structure. IIE Trans. 48:7 (2016), 614–628 https://doi.org/10.1080/0740817X.2015.1110269.
    • (2016) IIE Trans. , vol.48 , Issue.7 , pp. 614-628
    • Zhao, Y.1    Shrivastava, A.K.2    Tsui, K.L.3
  • 196
    • 84905443514 scopus 로고    scopus 로고
    • A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network
    • Zhou, Q., Jiang, H., Wang, J., Zhou, J., A hybrid model for PM2.5 forecasting based on ensemble empirical mode decomposition and a general regression neural network. Sci. Total Environ. 496 (2014), 264–274 https://doi.org/10.1016/J.SCITOTENV.2014.07.051.
    • (2014) Sci. Total Environ. , vol.496 , pp. 264-274
    • Zhou, Q.1    Jiang, H.2    Wang, J.3    Zhou, J.4
  • 197
    • 84954564686 scopus 로고    scopus 로고
    • Forecasting traf fi c-related nitrogen oxides within a street canyon by combining a genetic algorithm-back propagation arti fi cial neural network and parametric models
    • Zhu, G., Zhang, P., Tshukudu, T., Yin, J., Fan, G., Zheng, X., Forecasting traf fi c-related nitrogen oxides within a street canyon by combining a genetic algorithm-back propagation arti fi cial neural network and parametric models. Atmosph. Pollut. Res. 6:6 (2015), 1087–1097 https://doi.org/10.1016/j.apr.2015.06.006.
    • (2015) Atmosph. Pollut. Res. , vol.6 , Issue.6 , pp. 1087-1097
    • Zhu, G.1    Zhang, P.2    Tshukudu, T.3    Yin, J.4    Fan, G.5    Zheng, X.6
  • 198
    • 85045378706 scopus 로고    scopus 로고
    • PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
    • Zhu, S., Lian, X., Wei, L., Che, J., Shen, X., Yang, L., et al. PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos. Environ. 183 (2018), 20–32 https://doi.org/10.1016/J.ATMOSENV.2018.04.004.
    • (2018) Atmos. Environ. , vol.183 , pp. 20-32
    • Zhu, S.1    Lian, X.2    Wei, L.3    Che, J.4    Shen, X.5    Yang, L.6
  • 199
    • 50649107463 scopus 로고    scopus 로고
    • Predicting real-time roadside CO and NO2 concentrations using neural networks
    • Zito, P., Chen, H., Bell, M.C., Predicting real-time roadside CO and NO2 concentrations using neural networks. IEEE Trans. Intell. Transp. Syst. 9:3 (2008), 514–522 https://doi.org/10.1109/TITS.2008.928259.
    • (2008) IEEE Trans. Intell. Transp. Syst. , vol.9 , Issue.3 , pp. 514-522
    • Zito, P.1    Chen, H.2    Bell, M.C.3
  • 200
    • 84957790685 scopus 로고    scopus 로고
    • Spatial Modeling of PM 2.5 Concentrations with a Multifactoral Radial Basis Function Neural Network
    • Zou, B., Wang, M., Wan, N., Wilson, J.G., Fang, X., Tang, Y., Spatial Modeling of PM 2.5 Concentrations with a Multifactoral Radial Basis Function Neural Network. 2015, 10395–10404 https://doi.org/10.1007/s11356-015-4380-3.
    • (2015) , pp. 10395-10404
    • Zou, B.1    Wang, M.2    Wan, N.3    Wilson, J.G.4    Fang, X.5    Tang, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.