메뉴 건너뛰기




Volumn 190, Issue 1-2, 2006, Pages 99-115

Artificial neural network approach for modelling nitrogen dioxide dispersion from vehicular exhaust emissions

Author keywords

Air quality management; Back propagation training; Meteorology; Traffic characteristic; Vehicular pollution

Indexed keywords

AIR POLLUTION; AIR QUALITY; DISPERSIONS; EXHAUST SYSTEMS (ENGINE); GAS EMISSIONS; METEOROLOGY; NEURAL NETWORKS;

EID: 27844608945     PISSN: 03043800     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ecolmodel.2005.01.062     Document Type: Article
Times cited : (97)

References (59)
  • 1
    • 0032188343 scopus 로고    scopus 로고
    • Artificial neural network approach for pavement maintenance
    • A.M. Alsugair, and A.A. Al-Qudrah Artificial neural network approach for pavement maintenance J. Comput. Civil Eng. ASCE 2 4 1998 249 255
    • (1998) J. Comput. Civil Eng. ASCE , vol.2 , Issue.4 , pp. 249-255
    • Alsugair, A.M.1    Al-Qudrah, A.A.2
  • 2
    • 0035866971 scopus 로고    scopus 로고
    • Modelling groundwater regime acceptable for the forest survival after the building of the hydro-electric power plant
    • O. Antonic, D. Hatic, J. Krian, and D. Bukocev Modelling groundwater regime acceptable for the forest survival after the building of the hydro-electric power plant Ecol. Model. 138 1-3 2001 277 288
    • (2001) Ecol. Model. , vol.138 , Issue.1-3 , pp. 277-288
    • Antonic, O.1    Hatic, D.2    Krian, J.3    Bukocev, D.4
  • 4
    • 0033578403 scopus 로고    scopus 로고
    • Modelling primary production in a costal embayment affected by upwelling using dynamic ecosystem models and artificial neural networks
    • R.M. Barciela, E. Garcia, and E. Fernandez Modelling primary production in a costal embayment affected by upwelling using dynamic ecosystem models and artificial neural networks Ecol. Model. 120 2-3 1999 199 211
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 199-211
    • Barciela, R.M.1    Garcia, E.2    Fernandez, E.3
  • 5
    • 0001024110 scopus 로고
    • First and second order methods for learning between steepest descent and Newton's method
    • R. Battiti First and second order methods for learning between steepest descent and Newton's method Neural Comput. 4 1992 141 166
    • (1992) Neural Comput. , vol.4 , pp. 141-166
    • Battiti, R.1
  • 8
    • 0027610496 scopus 로고
    • 2 concentrations in highly polluted industrial areas of complex terrain
    • 2 concentrations in highly polluted industrial areas of complex terrain Atmos. Environ. 27B 2 1993 221 230
    • (1993) Atmos. Environ. , vol.27 , Issue.2 , pp. 221-230
    • Boznar, M.1    Lesjak, M.2    Malker, P.3
  • 9
    • 0033578382 scopus 로고    scopus 로고
    • The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake
    • S. Brosse, J.F. Guegan, J.N. Tourenq, and S. Lek The use of artificial neural networks to assess fish abundance and spatial occupancy in the littoral zone of a mesotrophic lake Ecol. Model. 120 2-3 1999 299 311
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 299-311
    • Brosse, S.1    Guegan, J.F.2    Tourenq, J.N.3    Lek, S.4
  • 10
    • 0001920318 scopus 로고
    • Effect of highway configurations on environmental problems dynamics of highway associated air pollution
    • H.M. Englund T. Berry Academic Press NY
    • T. Chen, and C.F. March Effect of highway configurations on environmental problems dynamics of highway associated air pollution H.M. Englund T. Berry Second International Clean Air Congress 1971 Academic Press NY 35 40
    • (1971) Second International Clean Air Congress , pp. 35-40
    • Chen, T.1    March, C.F.2
  • 11
    • 0030426363 scopus 로고    scopus 로고
    • Patternizing communities by using an artificial neural network
    • T.S. Chon, Y.S. Park, K.H. Moon, and E.Y. Cha Patternizing communities by using an artificial neural network Ecol. Model. 90 1 1996 69 78
    • (1996) Ecol. Model. , vol.90 , Issue.1 , pp. 69-78
    • Chon, T.S.1    Park, Y.S.2    Moon, K.H.3    Cha, E.Y.4
  • 12
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression model for ozone forecasting
    • A.C. Comrie Comparing neural networks and regression model for ozone forecasting J. Air Waste Manage. Assoc. 47 1997 653 663
    • (1997) J. Air Waste Manage. Assoc. , vol.47 , pp. 653-663
    • Comrie, A.C.1
  • 13
    • 0033578441 scopus 로고    scopus 로고
    • Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece)
    • I. Dimopoulos, J. Chronopoulos, A.C. Sereli, and S. Lek Neural network models to study relationships between lead concentration in grasses and permanent urban descriptors in Athens city (Greece) Ecol. Model. 120 2-3 1999 157 165
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 157-165
    • Dimopoulos, I.1    Chronopoulos, J.2    Sereli, A.C.3    Lek, S.4
  • 14
    • 0031370367 scopus 로고    scopus 로고
    • A neural network based model for the analysis of carbon monoxide concentration in the urban area of Rosario
    • H. Power T. Tirabassis C.A. Brebbia Computational Mechanics Inc. Southampton, Boston
    • B. Dorzdowicz, S.J. Benz, A.S.M. Sonta, and N.J. Scenna A neural network based model for the analysis of carbon monoxide concentration in the urban area of Rosario H. Power T. Tirabassis C.A. Brebbia Air Pollution vol. V 1997 Computational Mechanics Inc. Southampton, Boston 677 685
    • (1997) Air Pollution , vol.5 , pp. 677-685
    • Dorzdowicz, B.1    Benz, S.J.2    Sonta, A.S.M.3    Scenna, N.J.4
  • 15
    • 0018315448 scopus 로고
    • Highway modelling. Part I: Prediction of velocity and turbulence fields in the wake of vehicles
    • R.E. Eskridge, and J.C.R. Hunt Highway modelling. Part I: prediction of velocity and turbulence fields in the wake of vehicles J. Appl. Meteorol. 18 4 1979 387 400
    • (1979) J. Appl. Meteorol. , vol.18 , Issue.4 , pp. 387-400
    • Eskridge, R.E.1    Hunt, J.C.R.2
  • 16
    • 0028989376 scopus 로고
    • Approximate explicit solution to the general line source problem
    • G.L. Esplin Approximate explicit solution to the general line source problem Atmos. Environ. 29 12 1995 1459 1463
    • (1995) Atmos. Environ. , vol.29 , Issue.12 , pp. 1459-1463
    • Esplin, G.L.1
  • 17
    • 0001457503 scopus 로고    scopus 로고
    • Neural network modelling of the influence of local meteorology on surface ozone concentrations
    • University of Leeds, UK
    • M.W. Gardner, and S.R. Dorling Neural network modelling of the influence of local meteorology on surface ozone concentrations Proceedings of International Conference on GeoComputation University of Leeds, UK 1996 359 370
    • (1996) Proceedings of International Conference on GeoComputation , pp. 359-370
    • Gardner, M.W.1    Dorling, S.R.2
  • 18
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks: The multilayer perceptron: A review of applications in atmospheric sciences
    • M.W. Gardner, and S.R. Dorling Artificial neural networks: the multilayer perceptron: a review of applications in atmospheric sciences Atmos. Environ. 32 14-15 1998 2627 2636
    • (1998) Atmos. Environ. , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 19
  • 20
    • 0033962994 scopus 로고    scopus 로고
    • Statistical surface ozone models: An improved methodology to account for non-linear behaviour
    • M.W. Gardner, and S.R. Dorling Statistical surface ozone models: an improved methodology to account for non-linear behaviour Atmos. Environ. 34 1 2000 21 34
    • (2000) Atmos. Environ. , vol.34 , Issue.1 , pp. 21-34
    • Gardner, M.W.1    Dorling, S.R.2
  • 21
    • 0037442845 scopus 로고    scopus 로고
    • Review and comparison of methods to study the contribution of variables in artificial neural network models
    • M. Gevrey, I. Dimopoulos, and S. Lek Review and comparison of methods to study the contribution of variables in artificial neural network models Ecol. Model. 160 3 2003 249 264
    • (2003) Ecol. Model. , vol.160 , Issue.3 , pp. 249-264
    • Gevrey, M.1    Dimopoulos, I.2    Lek, S.3
  • 24
    • 0034141255 scopus 로고    scopus 로고
    • A carbon flow model and network analysis of the northern Benguela upwelling system
    • J.J. Heymans, and D. Baird A carbon flow model and network analysis of the northern Benguela upwelling system Namibia Ecol. Model. 126 1 2000 9 32
    • (2000) Namibia Ecol. Model. , vol.126 , Issue.1 , pp. 9-32
    • Heymans, J.J.1    Baird, D.2
  • 25
    • 0024880831 scopus 로고
    • Multi layer feed forward networks are universal approximators
    • K. Hornik, M. Stinchcombe, and H. White Multi layer feed forward networks are universal approximators Neural Netw. 2 1989 359 366
    • (1989) Neural Netw. , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 26
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modelling
    • C. Karul, S. Soyupak, A.F. Cilesiz, N. Akbay, and E. Germen Case studies on the use of neural networks in eutrophication modelling Ecol. Model. 134 2-3 2000 145 452
    • (2000) Ecol. Model. , vol.134 , Issue.2-3 , pp. 145-452
    • Karul, C.1    Soyupak, S.2    Cilesiz, A.F.3    Akbay, N.4    Germen, E.5
  • 27
    • 0032913757 scopus 로고    scopus 로고
    • Performance evaluation of general finite line source model for Delhi traffic conditions
    • M. Khare, and P. Sharma Performance evaluation of general finite line source model for Delhi traffic conditions Transport. Res. D4 1999 65 70
    • (1999) Transport. Res. , vol.4 , pp. 65-70
    • Khare, M.1    Sharma, P.2
  • 29
    • 0033578393 scopus 로고    scopus 로고
    • Predicting fish yield of African lakes using neural networks
    • R. Lae, S. Lek, and J. Moreau Predicting fish yield of African lakes using neural networks Ecol. Model. 120 2-3 1999 325 335
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 325-335
    • Lae, R.1    Lek, S.2    Moreau, J.3
  • 30
    • 0030428001 scopus 로고    scopus 로고
    • Application of neural networks to modelling nonlinear relationships in ecology
    • S. Lek, M. Delacoste, P. Baran, I. Dimopoulos, J. Lauga, and S. Aulagnier Application of neural networks to modelling nonlinear relationships in ecology Ecol. Model. 90 1 1996 39 52
    • (1996) Ecol. Model. , vol.90 , Issue.1 , pp. 39-52
    • Lek, S.1    Delacoste, M.2    Baran, P.3    Dimopoulos, I.4    Lauga, J.5    Aulagnier, S.6
  • 31
    • 0344604541 scopus 로고    scopus 로고
    • Artificial neural networks as a tool in ecoligical modelling: An introduction
    • S. Lek, and J.F. Guegan Artificial neural networks as a tool in ecoligical modelling: an introduction Ecol. Model. 120 2-3 1999 65 73
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 65-73
    • Lek, S.1    Guegan, J.F.2
  • 32
    • 0030597222 scopus 로고    scopus 로고
    • Classifying soil structure using neural networks
    • E.R. Levine, D.S. Kimes, and V.G. Sigillito Classifying soil structure using neural networks Ecol. Model. 92 1 1996 101 108
    • (1996) Ecol. Model. , vol.92 , Issue.1 , pp. 101-108
    • Levine, E.R.1    Kimes, D.S.2    Sigillito, V.G.3
  • 33
    • 0030303348 scopus 로고    scopus 로고
    • The introduction of local air quality management in the United Kingdom: A review and theoretical framework
    • J.W.S. Longhurst, S.J. Lindley, A.F.R. Watson, and D.E. Conlan The introduction of local air quality management in the United Kingdom: a review and theoretical framework Atmos. Environ. 30 23 1996 3975 3985
    • (1996) Atmos. Environ. , vol.30 , Issue.23 , pp. 3975-3985
    • Longhurst, J.W.S.1    Lindley, S.J.2    Watson, A.F.R.3    Conlan, D.E.4
  • 34
    • 0033578449 scopus 로고    scopus 로고
    • Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: A case study with a Himalayan river bird
    • S. Manel, J.M. Dias, and S.J. Ormerod Comparing discriminant analysis, neural networks and logistic regression for predicting species distributions: a case study with a Himalayan river bird Ecol. Model. 120 2-3 1999 337 347
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 337-347
    • Manel, S.1    Dias, J.M.2    Ormerod, S.J.3
  • 35
    • 0028501572 scopus 로고
    • Regression and stochastic models for air pollution. Part I: Review comments and suggestions
    • A.E. Milionis, and T.D. Davis Regression and stochastic models for air pollution. Part I: review comments and suggestions Atmos. Environ. 28 17 1994 2801 2810
    • (1994) Atmos. Environ. , vol.28 , Issue.17 , pp. 2801-2810
    • Milionis, A.E.1    Davis, T.D.2
  • 36
    • 0030301575 scopus 로고    scopus 로고
    • Forecasting carbon monoxide concentration near a sheltered intersections using video traffic surveillance and neural networks
    • L. Moseholm, J. Silva, and T.C. Larson Forecasting carbon monoxide concentration near a sheltered intersections using video traffic surveillance and neural networks Transport. Res. D1 1996 15 28
    • (1996) Transport. Res. , vol.1 , pp. 15-28
    • Moseholm, L.1    Silva, J.2    Larson, T.C.3
  • 37
    • 0036564960 scopus 로고    scopus 로고
    • Line source emission modelling: Review
    • S.M.S. Nagendra, and M. Khare Line source emission modelling: review Atmos. Environ. 36 13 2002 2083 2098
    • (2002) Atmos. Environ. , vol.36 , Issue.13 , pp. 2083-2098
    • Nagendra, S.M.S.1    Khare, M.2
  • 38
    • 1842683778 scopus 로고    scopus 로고
    • Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway
    • S.M.S. Nagendra, and M. Khare Artificial neural network based line source models for vehicular exhaust emission predictions of an urban roadway J. Transport. Res. D Transport Environ. 9 3 2004 199 208
    • (2004) J. Transport. Res. D Transport Environ. , vol.9 , Issue.3 , pp. 199-208
    • Nagendra, S.M.S.1    Khare, M.2
  • 39
    • 0032170668 scopus 로고    scopus 로고
    • The application of neural techniques to the modelling of time-series of atmospheric pollution data
    • G. Nunnari, A.F.M. Nucifora, and C. Randieri The application of neural techniques to the modelling of time-series of atmospheric pollution data Ecol. Model. 111 2-3 1998 187 205
    • (1998) Ecol. Model. , vol.111 , Issue.2-3 , pp. 187-205
    • Nunnari, G.1    Nucifora, A.F.M.2    Randieri, C.3
  • 40
    • 0037102687 scopus 로고    scopus 로고
    • Illuminating the black box: A randomization approach for understanding variable contributions in artificial neural networks
    • J.D. Olden, and D.A. Jackson Illuminating the black box: a randomization approach for understanding variable contributions in artificial neural networks Ecol. Model. 154 1-2 2002 135 150
    • (2002) Ecol. Model. , vol.154 , Issue.1-2 , pp. 135-150
    • Olden, J.D.1    Jackson, D.A.2
  • 41
    • 0033105068 scopus 로고    scopus 로고
    • An artificial neural network approach to spatial habitat modelling with interspecific interaction
    • S.L. Ozesmi, and U. Ozesmi An artificial neural network approach to spatial habitat modelling with interspecific interaction Ecol. Model. 116 1 1999 15 31
    • (1999) Ecol. Model. , vol.116 , Issue.1 , pp. 15-31
    • Ozesmi, S.L.1    Ozesmi, U.2
  • 42
    • 0037442528 scopus 로고    scopus 로고
    • Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters
    • Y.S. Park, R. Cereghino, A. Compin, and S. Lek Applications of artificial neural networks for patterning and predicting aquatic insect species richness in running waters Ecol. Model. 160 3 2003 265 300
    • (2003) Ecol. Model. , vol.160 , Issue.3 , pp. 265-300
    • Park, Y.S.1    Cereghino, R.2    Compin, A.3    Lek, S.4
  • 43
    • 0031591149 scopus 로고    scopus 로고
    • Prediction of functional characteristics of ecosystems: A comparison of artificial neural networks and regression models
    • J.M. Paruelo, and F. Tomasel Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models Ecol. Model. 98 2-3 1997 173 186
    • (1997) Ecol. Model. , vol.98 , Issue.2-3 , pp. 173-186
    • Paruelo, J.M.1    Tomasel, F.2
  • 44
    • 0034744978 scopus 로고    scopus 로고
    • 2 concentrations near a street with heavy traffic in Santiago
    • 2 concentrations near a street with heavy traffic in Santiago Chile. Atmos. Environ. 35 10 2001 1783 1789
    • (2001) Chile. Atmos. Environ. , vol.35 , Issue.10 , pp. 1783-1789
    • Perez, P.1    Trier, A.2
  • 46
    • 0030272524 scopus 로고    scopus 로고
    • A simple neural network for estimating emission rates of hydrogen sulphide and ammonia from single point source
    • M.A. Rege, and R.W. Tock A simple neural network for estimating emission rates of hydrogen sulphide and ammonia from single point source J. Air Waste Manage. Assoc. 46 1996 953 962
    • (1996) J. Air Waste Manage. Assoc. , vol.46 , pp. 953-962
    • Rege, M.A.1    Tock, R.W.2
  • 48
    • 0000646059 scopus 로고
    • Learning internal representations by error propagation
    • D.E. Rumelhart J.L. McClelland eighth ed. MIT Press Cambridge, England
    • D.E. Rumelhart, G.E. Hinton, and R.J. Williams Learning internal representations by error propagation D.E. Rumelhart J.L. McClelland Parallel Distributed Processing eighth ed. 1986 MIT Press Cambridge, England 45 76
    • (1986) Parallel Distributed Processing , pp. 45-76
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 51
    • 0033578446 scopus 로고    scopus 로고
    • Developing an empirical model of phytoplankton primary production: A neural network case study
    • M. Scardi, and L.W. Harding Jr. Developing an empirical model of phytoplankton primary production: a neural network case study Ecol. Model. 120 2-3 1999 213 223
    • (1999) Ecol. Model. , vol.120 , Issue.2-3 , pp. 213-223
    • Scardi, M.1    Harding Jr., L.W.2
  • 54
    • 0343907347 scopus 로고    scopus 로고
    • 2 concentration in urban air in London
    • 2 concentration in urban air in London Atmos. Environ. 31 24 1997 4081 4094
    • (1997) Atmos. Environ. , vol.31 , Issue.24 , pp. 4081-4094
    • Shi, J.P.1    Harrison, R.M.2
  • 56
    • 0036468601 scopus 로고    scopus 로고
    • Atmospheric urban pollution: Applications of an artificial neural network (ANN) to the city of Perugia
    • P. Viotti, G. Liuti, and P.D. Genova Atmospheric urban pollution: applications of an artificial neural network (ANN) to the city of Perugia Ecol. Model. 148 1 2002 27 46
    • (2002) Ecol. Model. , vol.148 , Issue.1 , pp. 27-46
    • Viotti, P.1    Liuti, G.2    Genova, P.D.3
  • 58
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • C.J. Willmott Some comments on the evaluation of model performance Bull. Am. Meteorol. Soc. 63 1982 1309 1313
    • (1982) Bull. Am. Meteorol. Soc. , vol.63 , pp. 1309-1313
    • Willmott, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.