메뉴 건너뛰기




Volumn 23, Issue 19, 2016, Pages 19481-19494

Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks

Author keywords

Air pollution prediction; Artificial neural network; Back propagation; Generalization; Multiple linear regression; Sparse response

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ATMOSPHERIC POLLUTION; BACK PROPAGATION; CONCENTRATION (COMPOSITION); ENERGY USE; NEUROLOGY; PREDICTION; REGRESSION ANALYSIS; SPATIOTEMPORAL ANALYSIS;

EID: 84978161612     PISSN: 09441344     EISSN: 16147499     Source Type: Journal    
DOI: 10.1007/s11356-016-7149-4     Document Type: Article
Times cited : (41)

References (51)
  • 1
    • 47249108157 scopus 로고    scopus 로고
    • Prediction of sulfur dioxide (SO2) concentration levels from the mina Al-Fahal refinery in Oman using artificial neural networks
    • COI: 1:CAS:528:DC%2BD1MXkt12mt74%3D
    • Abdul-Wahab SA, Al-Alawi SM (2008) Prediction of sulfur dioxide (SO2) concentration levels from the mina Al-Fahal refinery in Oman using artificial neural networks. Am J Environ Sci 4:473–481
    • (2008) Am J Environ Sci , vol.4 , pp. 473-481
    • Abdul-Wahab, S.A.1    Al-Alawi, S.M.2
  • 2
    • 79551508219 scopus 로고    scopus 로고
    • Forecasting hourly PM10 concentration in Cyprus through ANN and multiple regression models: implications to local environmental management
    • 10 concentration in Cyprus through ANN and multiple regression models: implications to local environmental management. Environ Sci Pollut Res 18:316–327
    • (2011) Environ Sci Pollut Res , vol.18 , pp. 316-327
    • Anastasia, P.1    Karakitsios, S.K.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 3
    • 0015470611 scopus 로고
    • Single units and sensation: a neuron doctrine for perceptual psychology
    • COI: 1:STN:280:DyaE2M3hslehsA%3D%3D
    • Barlow HB (1972) Single units and sensation: a neuron doctrine for perceptual psychology. Perception 1 (4):371–394
    • (1972) Perception , vol.1 , Issue.4 , pp. 371-394
    • Barlow, H.B.1
  • 6
    • 0034657677 scopus 로고    scopus 로고
    • A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments
    • COI: 1:CAS:528:DC%2BD3cXjtVGis7k%3D
    • Briggs DJ, de Hoogh C, Gulliver J, Wills J, Elliott P, Kingham S, et al. (2000) A regression-based method for mapping traffic-related air pollution: application and testing in four contrasting urban environments. Sci Total Environ 253:151–167
    • (2000) Sci Total Environ , vol.253 , pp. 151-167
    • Briggs, D.J.1    de Hoogh, C.2    Gulliver, J.3    Wills, J.4    Elliott, P.5    Kingham, S.6
  • 7
    • 83555168148 scopus 로고    scopus 로고
    • Comparing spatio-temporal models for particulate matter in Piemonte
    • Cameletti M, Ignaccolo R, Bande S (2011) Comparing spatio-temporal models for particulate matter in Piemonte. Environmetrics 22:985–996
    • (2011) Environmetrics , vol.22 , pp. 985-996
    • Cameletti, M.1    Ignaccolo, R.2    Bande, S.3
  • 9
    • 84867870508 scopus 로고    scopus 로고
    • Identification of significant factors for air pollution levels using a neural network based knowledge discovery system
    • Chan KY, Jian L (2013) Identification of significant factors for air pollution levels using a neural network based knowledge discovery system. Neurocomputing 99:564–569
    • (2013) Neurocomputing , vol.99 , pp. 564-569
    • Chan, K.Y.1    Jian, L.2
  • 10
    • 84866278986 scopus 로고    scopus 로고
    • A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling
    • COI: 1:CAS:528:DC%2BC38XhsFSlsLjF
    • Cheng S, Li L, Chen D, Li J (2012) A neural network based ensemble approach for improving the accuracy of meteorological fields used for regional air quality modeling. J Environ Manag 112:404– 414
    • (2012) J Environ Manag , vol.112 , pp. 404-414
    • Cheng, S.1    Li, L.2    Chen, D.3    Li, J.4
  • 12
    • 33845422060 scopus 로고    scopus 로고
    • Hierarchical space-time modeling of PM10 pollution
    • COI: 1:CAS:528:DC%2BD28Xhtlajsr7F
    • Cocchi D, Greco F, Trivisano C (2007) Hierarchical space-time modeling of PM10 pollution. Atmos Environ 41:532–542
    • (2007) Atmos Environ , vol.41 , pp. 532-542
    • Cocchi, D.1    Greco, F.2    Trivisano, C.3
  • 13
    • 17644370689 scopus 로고    scopus 로고
    • Air quality prediction in Milan: neural networks, pruned neural networks and lazy learning
    • Corani G (2005) Air quality prediction in Milan: neural networks, pruned neural networks and lazy learning. Ecol Model 185:513–529
    • (2005) Ecol Model , vol.185 , pp. 513-529
    • Corani, G.1
  • 14
    • 0034284752 scopus 로고    scopus 로고
    • Uncertainty, ensembles and air quality dispersion modeling: applications and challenges
    • COI: 1:CAS:528:DC%2BD3cXmtVCgurk%3D
    • Dabberdt WF, Miller E (2000) Uncertainty, ensembles and air quality dispersion modeling: applications and challenges. Atmos Environ 34(27):4667–4673
    • (2000) Atmos Environ , vol.34 , Issue.27 , pp. 4667-4673
    • Dabberdt, W.F.1    Miller, E.2
  • 16
    • 53949114438 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile
    • COI: 1:CAS:528:DC%2BD1cXht1GrsLfM
    • Diaz-Robles LA, Ortega JC, Fu JS, Reed GD, Chow JC, Watson JG, Moncada-Herrera JA (2008) A hybrid ARIMA and artificial neural networks model to forecast particulate matter in urban areas: the case of Temuco, Chile. Atmos Environ 42:8331–8340
    • (2008) Atmos Environ , vol.42 , pp. 8331-8340
    • Diaz-Robles, L.A.1    Ortega, J.C.2    Fu, J.S.3    Reed, G.D.4    Chow, J.C.5    Watson, J.G.6    Moncada-Herrera, J.A.7
  • 17
    • 34147176086 scopus 로고    scopus 로고
    • A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions
    • Dutot AL, Rynkiewicz J, Steiner FE, Rude J (2007) A 24-h forecast of ozone peaks and exceedance levels using neural classifiers and weather predictions. Environ Modell Softw 22:1261–1269
    • (2007) Environ Modell Softw , vol.22 , pp. 1261-1269
    • Dutot, A.L.1    Rynkiewicz, J.2    Steiner, F.E.3    Rude, J.4
  • 18
    • 0002922219 scopus 로고    scopus 로고
    • Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach
    • COI: 1:CAS:528:DC%2BD3MXmvVektbg%3D
    • Elkamel A, Abdul-Wahab S, Bouhamra W, Alper E (2001) Measurement and prediction of ozone levels around a heavily industrialized area: a neural network approach. Adv Environ Res 5:47–59
    • (2001) Adv Environ Res , vol.5 , pp. 47-59
    • Elkamel, A.1    Abdul-Wahab, S.2    Bouhamra, W.3    Alper, E.4
  • 19
    • 0242266455 scopus 로고    scopus 로고
    • NO2, As a marker of air pollution, and recurrent wheezing in children: a nested case-control study within the BAMSE birth cohort
    • COI: 1:CAS:528:DC%2BD3sXps1KjtrY%3D
    • Emenius G, Pershagen G, Berglind N, Kwon HJ, Lewne M, Nordvall S, Wickman M (2003) NO2, As a marker of air pollution, and recurrent wheezing in children: a nested case-control study within the BAMSE birth cohort. Occup Environ Med 60:876–881
    • (2003) Occup Environ Med , vol.60 , pp. 876-881
    • Emenius, G.1    Pershagen, G.2    Berglind, N.3    Kwon, H.J.4    Lewne, M.5    Nordvall, S.6    Wickman, M.7
  • 20
    • 68949192783 scopus 로고    scopus 로고
    • Bayesian data fusion for space-time prediction of air pollutants: the case of NO2 in Belgium
    • COI: 1:CAS:528:DC%2BD1MXhtVaqsr%2FP
    • Fasbender D, Brasseur O, Bogaert P (2009) Bayesian data fusion for space-time prediction of air pollutants: the case of NO2 in Belgium. Atmos Environ 43:4632–4645
    • (2009) Atmos Environ , vol.43 , pp. 4632-4645
    • Fasbender, D.1    Brasseur, O.2    Bogaert, P.3
  • 21
    • 15044352085 scopus 로고    scopus 로고
    • Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models
    • Fuentes M, Raftery AE (2005) Model evaluation and spatial interpolation by Bayesian combination of observations with outputs from numerical models. Biometrics 61(1):36–45
    • (2005) Biometrics , vol.61 , Issue.1 , pp. 36-45
    • Fuentes, M.1    Raftery, A.E.2
  • 22
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences
    • COI: 1:CAS:528:DyaK1cXks1Crs7c%3D
    • Gardner MW, Dorling SR (1998) Artificial neural networks (the multilayer perceptron): a review of applications in the atmospheric sciences. Atmos Environ 32:2627–2636
    • (1998) Atmos Environ , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 24
    • 79954551454 scopus 로고    scopus 로고
    • Land use regression modeling to estimate historic (1962–1991) concentration of black smoke and sulfur dioxide for Great Britain
    • COI: 1:CAS:528:DC%2BC3MXjvVOlsLo%3D
    • Gulliver J, Morris C, Lee K, Vienneau D, Briggs D, Hansell A (2011) Land use regression modeling to estimate historic (1962–1991) concentration of black smoke and sulfur dioxide for Great Britain. Environ Sci Technol 45:3526–3532
    • (2011) Environ Sci Technol , vol.45 , pp. 3526-3532
    • Gulliver, J.1    Morris, C.2    Lee, K.3    Vienneau, D.4    Briggs, D.5    Hansell, A.6
  • 25
    • 0031260248 scopus 로고    scopus 로고
    • Comparison of model results obtained with several European regional air quality models
    • COI: 1:CAS:528:DyaK2sXltF2gtLg%3D
    • Hass H, Builtjes P, Simpson D, Stern R (1997) Comparison of model results obtained with several European regional air quality models. Atmos Environ 31(19):3259–3279
    • (1997) Atmos Environ , vol.31 , Issue.19 , pp. 3259-3279
    • Hass, H.1    Builtjes, P.2    Simpson, D.3    Stern, R.4
  • 26
    • 53849096305 scopus 로고    scopus 로고
    • A review of land-use regression models to assess spatial variation of outdoor air pollution
    • Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. (2008) A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ:7561–7578
    • (2008) Atmos Environ , pp. 7561-7578
    • Hoek, G.1    Beelen, R.2    de Hoogh, K.3    Vienneau, D.4    Gulliver, J.5    Fischer, P.6
  • 27
    • 0032146282 scopus 로고    scopus 로고
    • Development of a regression model to forecast ground-level ozone concentration in Louisville, KY
    • COI: 1:CAS:528:DyaK1cXks1CrsLs%3D
    • Hubbard M, Cobourn WG (1998) Development of a regression model to forecast ground-level ozone concentration in Louisville, KY. Atmos Environ 32:2637–2647
    • (1998) Atmos Environ , vol.32 , pp. 2637-2647
    • Hubbard, M.1    Cobourn, W.G.2
  • 28
    • 2342549244 scopus 로고    scopus 로고
    • A spatio-temporal model for Mexico City ozone levels
    • Huerta G, Sanso B, Stroud JR (2004) A spatio-temporal model for Mexico City ozone levels. J R Stat Soc Ser C 53:231–248
    • (2004) J R Stat Soc Ser C , vol.53 , pp. 231-248
    • Huerta, G.1    Sanso, B.2    Stroud, J.R.3
  • 29
    • 77955513948 scopus 로고    scopus 로고
    • Evaluation of land-use regression models used to predict air quality concentrations in an urban area
    • COI: 1:CAS:528:DC%2BC3cXpvVSqsrs%3D
    • Johnson M, Isakov V, Touma JS, Mukerjee S, Ozkaynak H (2010) Evaluation of land-use regression models used to predict air quality concentrations in an urban area. Atmos Environ 44:3660–3668
    • (2010) Atmos Environ , vol.44 , pp. 3660-3668
    • Johnson, M.1    Isakov, V.2    Touma, J.S.3    Mukerjee, S.4    Ozkaynak, H.5
  • 30
    • 3242677151 scopus 로고    scopus 로고
    • Statistical comparison of observed and CMAQ modeled daily sulfate levels
    • COI: 1:CAS:528:DC%2BD2cXlslCktL4%3D
    • Jun M, Stein ML (2004) Statistical comparison of observed and CMAQ modeled daily sulfate levels. Atmos Environ 38:4427–4436
    • (2004) Atmos Environ , vol.38 , pp. 4427-4436
    • Jun, M.1    Stein, M.L.2
  • 32
    • 0034324790 scopus 로고    scopus 로고
    • Forecasting air quality parameters using hybrid neural network modelling
    • COI: 1:CAS:528:DC%2BD3MXlt1emsQ%3D%3D
    • Kolehmainen M, Martikainen H, Hiltunen T, Ruuskanen J (2000) Forecasting air quality parameters using hybrid neural network modelling. Environ Monit Assess 65:277–286
    • (2000) Environ Monit Assess , vol.65 , pp. 277-286
    • Kolehmainen, M.1    Martikainen, H.2    Hiltunen, T.3    Ruuskanen, J.4
  • 33
    • 0000455229 scopus 로고
    • A statistical approach to some basic mine valuation problems on the Witwatersrand
    • Krige DG (1951) A statistical approach to some basic mine valuation problems on the Witwatersrand. J Chem Metall Min Soc S Afr 52(6):119–139
    • (1951) J Chem Metall Min Soc S Afr , vol.52 , Issue.6 , pp. 119-139
    • Krige, D.G.1
  • 34
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt A, Oktay AB (2010) Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst Appl 37:7986–7992
    • (2010) Expert Syst Appl , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 35
    • 44749093365 scopus 로고    scopus 로고
    • An online air pollution forecasting system using neural networks
    • COI: 1:CAS:528:DC%2BD1cXnslanu74%3D
    • Kurt A, Gulbagai B, Karaca F, Alagha O (2008) An online air pollution forecasting system using neural networks. Environ Int 34:592– 598
    • (2008) Environ Int , vol.34 , pp. 592-598
    • Kurt, A.1    Gulbagai, B.2    Karaca, F.3    Alagha, O.4
  • 36
    • 0042565834 scopus 로고    scopus 로고
    • Hierarchical Bayesian inference in the visual cortex
    • Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual cortex. Optical Society of America 20(7):1434–1448
    • (2003) Optical Society of America , vol.20 , Issue.7 , pp. 1434-1448
    • Lee, T.S.1    Mumford, D.2
  • 37
    • 0031875590 scopus 로고    scopus 로고
    • The role of the primary visual cortex in higher level vision
    • COI: 1:STN:280:DyaK1M%2FhsVOnsA%3D%3D
    • Lee TS, Mumford D, Romero R (1998) The role of the primary visual cortex in higher level vision. Vis Res 38(15):2429–2454
    • (1998) Vis Res , vol.38 , Issue.15 , pp. 2429-2454
    • Lee, T.S.1    Mumford, D.2    Romero, R.3
  • 39
    • 13844267702 scopus 로고    scopus 로고
    • A hierarchical Bayesian model to estimate and forecast ozone through space and time
    • COI: 1:CAS:528:DC%2BD2MXhsVGgsrg%3D
    • McMillan N, Bortnick SM, Irwin ME, Berliner M (2005) A hierarchical Bayesian model to estimate and forecast ozone through space and time. Atmos Environ 39:1373–1382
    • (2005) Atmos Environ , vol.39 , pp. 1373-1382
    • McMillan, N.1    Bortnick, S.M.2    Irwin, M.E.3    Berliner, M.4
  • 40
    • 0034324790 scopus 로고    scopus 로고
    • Forecasting air quality parameters using hybrid neural network modelling
    • Mikko K, Martikainen H, Hiltunen T, Ruuskanen J (2000) Forecasting air quality parameters using hybrid neural network modelling. Environ Monit Assess 65:277–286
    • (2000) Environ Monit Assess , vol.65 , pp. 277-286
    • Mikko, K.1    Martikainen, H.2    Hiltunen, T.3    Ruuskanen, J.4
  • 41
    • 77952241972 scopus 로고    scopus 로고
    • 3-day-ahead forecasting of reginal pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece
    • COI: 1:CAS:528:DC%2BC3cXlslylu7w%3D
    • Moustris KP, Ziomas IC, Paliatsos AG (2010) 3-day-ahead forecasting of reginal pollution index for the pollutants NO2, CO, SO2, and O3 using artificial neural networks in Athens, Greece. Water Air Soil Pollut 209:29–43
    • (2010) Water Air Soil Pollut , vol.209 , pp. 29-43
    • Moustris, K.P.1    Ziomas, I.C.2    Paliatsos, A.G.3
  • 42
    • 85161986162 scopus 로고    scopus 로고
    • Nair V, Hinton GE 3D object recognition with deep belief nets. In: Proceedings of the 24th annual conference on neural information processing systems, pp 1339–1347
    • Nair V, Hinton GE (2009) 3D object recognition with deep belief nets. In: Proceedings of the 24th annual conference on neural information processing systems, pp 1339–1347
    • (2009)
  • 44
    • 77955585620 scopus 로고    scopus 로고
    • Combining TRMM and surface observations of precipitation: technique and validation over South America
    • Rozante JR, Moreira DS, De Goncalves LGG, Vila DA (2010) Combining TRMM and surface observations of precipitation: technique and validation over South America. Am Meteorol Soc 25:885–894. doi:10.1175/2010WAF2222325.1
    • (2010) Am Meteorol Soc , vol.25 , pp. 885-894
    • Rozante, J.R.1    Moreira, D.S.2    De Goncalves, L.G.G.3    Vila, D.A.4
  • 47
    • 0035094109 scopus 로고    scopus 로고
    • Statistical modeling and prediction of atmospheric pollution by particulate material: two nonparametric approaches
    • COI: 1:CAS:528:DC%2BD3MXislagtLo%3D
    • Silva C, Perez P, Trier A (2001) Statistical modeling and prediction of atmospheric pollution by particulate material: two nonparametric approaches. Environmentrics 12:147–159
    • (2001) Environmentrics , vol.12 , pp. 147-159
    • Silva, C.1    Perez, P.2    Trier, A.3
  • 48
    • 0000565591 scopus 로고
    • A computer movie simulating urban growth in the Detroit region
    • Tobler W (1970) A computer movie simulating urban growth in the Detroit region. Econ Geogr 46(2):234–240
    • (1970) Econ Geogr , vol.46 , Issue.2 , pp. 234-240
    • Tobler, W.1
  • 49
    • 84937554140 scopus 로고    scopus 로고
    • Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China
    • COI: 1:CAS:528:DC%2BC2cXitVyjsr3J
    • Wu J, Li J, Peng J, Li W, Xu G, Dong C (2015) Applying land use regression model to estimate spatial variation of PM2.5 in Beijing, China. Environ Sci Pollut Res 22(9):7045–7061
    • (2015) Environ Sci Pollut Res , vol.22 , Issue.9 , pp. 7045-7061
    • Wu, J.1    Li, J.2    Peng, J.3    Li, W.4    Xu, G.5    Dong, C.6
  • 50
    • 84922243719 scopus 로고    scopus 로고
    • Enhancing performance of the backpropagation algorithm via sparse response regularization
    • Zhang J-S, Ji N-N, Liu J-M, Pan J-Y, Meng D-Y (2015) Enhancing performance of the backpropagation algorithm via sparse response regularization. Neurocomputing 153:20–40
    • (2015) Neurocomputing , vol.153 , pp. 20-40
    • Zhang, J.-S.1    Ji, N.-N.2    Liu, J.-M.3    Pan, J.-Y.4    Meng, D.-Y.5
  • 51
    • 84957790685 scopus 로고    scopus 로고
    • Spatial modeling of PM2.5 concentrations with a multi-factoral radial basis function neural network
    • COI: 1:CAS:528:DC%2BC2MXlslChurk%3D
    • Zou B, Wang M, Wan N, Gaines Wilson J, Fang X, Tang Y (2015) Spatial modeling of PM2.5 concentrations with a multi-factoral radial basis function neural network. Environ Sci Pollut Res 22(14):10395–10404
    • (2015) Environ Sci Pollut Res , vol.22 , Issue.14 , pp. 10395-10404
    • Zou, B.1    Wang, M.2    Wan, N.3    Gaines Wilson, J.4    Fang, X.5    Tang, Y.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.