메뉴 건너뛰기




Volumn 49, Issue 11, 2013, Pages 7598-7614

A benchmarking approach for comparing data splitting methods for modeling water resources parameters using artificial neural networks

Author keywords

artificial neural networks; benchmark; data splitting methods; data variability; validation

Indexed keywords

DATA SPLITTING; DATA VARIABILITY; DEVELOPMENT PROCESS; GENERALIZATION ABILITY; MODEL PERFORMANCE; PREDICTIVE PERFORMANCE; VALIDATION; VALIDATION ERRORS;

EID: 84887871464     PISSN: 00431397     EISSN: 19447973     Source Type: Journal    
DOI: 10.1002/2012WR012713     Document Type: Article
Times cited : (73)

References (44)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • Akaike, H., (1974), A new look at the statistical model identification, IEEE Trans. Autom. Control, 19 (6), 716-723.
    • (1974) IEEE Trans. Autom. Control , vol.19 , Issue.6 , pp. 716-723
    • Akaike, H.1
  • 3
    • 14344261493 scopus 로고    scopus 로고
    • Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
    • Anctil, F., and, N. Lauzon, (2004), Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940-958, doi: 10.5194/hess-8-940-2004. (Pubitemid 40294956)
    • (2004) Hydrology and Earth System Sciences , vol.8 , Issue.5 , pp. 940-958
    • Anctil, F.1    Lauzon, N.2
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. II: Hydrologic applications
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a), Artificial neural networks in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5 (2), 124-137.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
    • ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5 (2), 115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , Issue.2 , pp. 115-123
  • 6
    • 84880647559 scopus 로고    scopus 로고
    • Developing artificial neural network process models: A guide for drinking water utilities
    • Canadian Society for Civil Engineering (CSCE), London, Ontario, Canada
    • Baxter, C. W., S. J. Stanley, Q. Zhang, and, D. W. Smith, (2000), Developing artificial neural network process models: A guide for drinking water utilities, paper presented at the 6th Environmental Engineering Society Specialty Conference of the CSCE, pp. 376-383, Canadian Society for Civil Engineering (CSCE), London, Ontario, Canada.
    • (2000) 6th Environmental Engineering Society Specialty Conference of the CSCE , pp. 376-383
    • Baxter, C.W.1    Stanley, S.J.2    Zhang, Q.3    Smith, D.W.4
  • 7
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • doi: 10.1029/2001WR000266.
    • Bowden, G. J., H. R. Maier, and, G. C. Dandy, (2002), Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38 (2), 1010, doi: 10.1029/2001WR000266.
    • (2002) Water Resour. Res. , vol.38 , Issue.2 , pp. 1010
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 8
    • 84868621819 scopus 로고    scopus 로고
    • Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability
    • doi: 10.1029/2012WR011984.
    • Bowden, G. J., H. R. Maier, and, G. C. Dandy, (2012), Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability, Water Resour. Res., 48 (10), W10549, doi: 10.1029/2012WR011984.
    • (2012) Water Resour. Res. , vol.48 , Issue.10
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 9
    • 33745337472 scopus 로고    scopus 로고
    • Forecasting chlorine residuals in a water distribution system using a general regression neural network
    • DOI 10.1016/j.mcm.2006.01.006, PII S0895717706000070
    • Bowden, G. J., J. B. Nixon, G. C. Dandy, H. R. Maier, and, M. Holmes, (2006), Forecasting chlorine residuals in a water distribution system using a general regression neural network, Math. Comput. Modell., 44 (5-6), 469-484. (Pubitemid 43946635)
    • (2006) Mathematical and Computer Modelling , vol.44 , Issue.5-6 , pp. 469-484
    • Bowden, G.J.1    Nixon, J.B.2    Dandy, G.C.3    Maier, H.R.4    Holmes, M.5
  • 10
    • 0030211964 scopus 로고    scopus 로고
    • Bagging Inputs
    • Breiman, L., (1996), Bagging Inputs, Mach. Learn., 24, 123-140.
    • (1996) Mach. Learn. , vol.24 , pp. 123-140
    • Breiman, L.1
  • 12
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modelling using artificial neural networks
    • DOI 10.1191/030913301674775671
    • Dawson, C. W., and, R. L. Wilby, (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25 (1), 80-108. (Pubitemid 33028258)
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 13
    • 0031735568 scopus 로고    scopus 로고
    • Neural networks in multivariate calibration
    • Despagne, F., and, D. Luc Massart, (1998), Neural networks in multivariate calibration, Analyst, 123 (11), 157R-178R. (Pubitemid 28528625)
    • (1998) Analyst , vol.123 , Issue.11
    • Despagne, F.1
  • 14
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
    • doi: 10.5194/hess-14-1931-2010.
    • Elshorbagy, A., G. Corzo, S. Srinivasulu, and, D. P. Solomatine, (2010a), Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931-1941, doi: 10.5194/hess-14-1931-2010.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 15
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
    • doi: 10.5194/hess-14-1943-2010.
    • Elshorbagy, A., G. Corzo, S. Srinivasulu, and, D. P. Solomatine, (2010b), Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, doi: 10.5194/hess-14-1943-2010.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 16
    • 3342891563 scopus 로고    scopus 로고
    • Neural networks provide superior description of Giardia lamblia inactivation by free chlorine
    • DOI 10.1016/j.watres.2004.05.001, PII S0043135404002490
    • Haas, C. N., (2004), Neural networks provide superior description of Giardia lamblia inactivation by free chlorine, Water Res., 38 (14-15), 3449-3457, doi: 10.1016/j.watres.2004.05.001. (Pubitemid 38987724)
    • (2004) Water Research , vol.38 , Issue.14-15 , pp. 3449-3457
    • Haas, C.N.1
  • 17
    • 28844473522 scopus 로고    scopus 로고
    • Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
    • DOI 10.1016/j.jhydrol.2005.05.022, PII S0022169405002854
    • Jain, A., and, S. Srinivasulu, (2006), Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317 (3-4), 291-306, doi: 10.1016/j.jhydrol. 2005.05.022. (Pubitemid 41774118)
    • (2006) Journal of Hydrology , vol.317 , Issue.3-4 , pp. 291-306
    • Jain, A.1    Srinivasulu, S.2
  • 18
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W., and, L. A. Stone, (1969), Computer aided design of experiments, Technometrics, 11 (1), 137-148.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 19
    • 20844458468 scopus 로고    scopus 로고
    • Applicability of statistical learning algorithms in groundwater quality modeling
    • doi: 10.1029/2004WR 003608.
    • Khalil, A., M. N. Almasri, M. McKee, and, J. J. Kaluarachchi, (2005), Applicability of statistical learning algorithms in groundwater quality modeling, Water Resour. Res., 41, W05010, doi: 10.1029/2004WR 003608.
    • (2005) Water Resour. Res. , vol.41
    • Khalil, A.1    Almasri, M.N.2    McKee, M.3    Kaluarachchi, J.J.4
  • 21
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modeling
    • DOI 10.1016/j.jhydrol.2005.03.013, PII S0022169405001526
    • Kingston, G. B., H. R. Maier, and, M. F. Lambert, (2005), Calibration and validation of neural networks to ensure physically plausible hydrological modeling, J. Hydrol., 314 (1-4), 158-176, doi: 10.1016/j.jhydrol. 2005.03.013. (Pubitemid 41727778)
    • (2005) Journal of Hydrology , vol.314 , Issue.1-4 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 22
    • 0345404396 scopus 로고    scopus 로고
    • The self-organizing map
    • DOI 10.1016/S0925-2312(98)00030-7, PII S0925231298000307
    • Kohonen, T., (1998), The self-organizing map, Neurocomputing, 21 (1-3), 1-6, doi: 10.1016/s0925-2312(98)00030-7. (Pubitemid 28526808)
    • (1998) Neurocomputing , vol.21 , Issue.1-3 , pp. 1-6
    • Kohonen, T.1
  • 23
    • 0031701777 scopus 로고    scopus 로고
    • A bootstrap evaluation of the effect of data splitting on financial time series
    • PII S1045922798010480
    • LeBaron, B., and, A. S. Weigend, (1998), A bootstrap evaluation of the effect of data splitting on financial time series, IEEE Trans. Neural Networks, 9 (1), 213-220. (Pubitemid 128743627)
    • (1998) IEEE Transactions on Neural Networks , vol.9 , Issue.1 , pp. 213-220
    • LeBaron, B.1    Weigend, A.S.2
  • 26
    • 0029663621 scopus 로고    scopus 로고
    • The use of artificial neural networks for the prediction of water quality parameters
    • doi: 10.1029/96WR03529.
    • Maier, H. R., and, G. C. Dandy, (1996), The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32 (4), 1013-1022, doi: 10.1029/96WR03529.
    • (1996) Water Resour. Res. , vol.32 , Issue.4 , pp. 1013-1022
    • Maier, H.R.1    Dandy, G.C.2
  • 27
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R., and, G. C. Dandy, (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Modell. Software, 15 (1), 101-124. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 28
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • doi: 10.1016/j.envsoft. 2010.02.003.
    • Maier, H. R., A. Jain, G. C. Dandy, and, K. P. Sudheer, (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Modell. Software, 25 (8), 891-909, doi: 10.1016/j.envsoft. 2010.02.003.
    • (2010) Environ. Modell. Software , vol.25 , Issue.8 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 29
    • 1642336479 scopus 로고    scopus 로고
    • Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
    • DOI 10.1016/S1364-8152(03)00163-4, PII S1364815203001634
    • Maier, H. R., N. Morgan, and, C. W. K. Chow, (2004), Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters, Environ. Modell. Software, 19 (5), 485-494, doi: 10.1016/s1364-8152(03)00163-4. (Pubitemid 38355873)
    • (2004) Environmental Modelling and Software , vol.19 , Issue.5 , pp. 485-494
    • Maier, H.R.1    Morgan, N.2    Chow, C.W.K.3
  • 30
    • 44749087176 scopus 로고    scopus 로고
    • Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
    • doi: 10.1016/j.envsoft.2008.03.008.
    • May, R. J., G. C. Dandy, H. R. Maier, and, J. B. Nixon, (2008a), Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems, Environ. Modell. Software, 23 (10-11), 1289-1299, doi: 10.1016/j.envsoft.2008.03.008.
    • (2008) Environ. Modell. Software , vol.23 , Issue.1011 , pp. 1289-1299
    • May, R.J.1    Dandy, G.C.2    Maier, H.R.3    Nixon, J.B.4
  • 31
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May, R. J., H. R. Maier, and, G. C. Dandy, (2010), Data splitting for artificial neural networks using SOM-based stratified sampling, Neural Networks, 23 (2), 283-294.
    • (2010) Neural Networks , vol.23 , Issue.2 , pp. 283-294
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3
  • 32
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • doi: 10.1016/j.envsoft.2008.03.007.
    • May, R. J., H. R. Maier, G. C. Dandy, and, T. Fernando, (2008b), Non-linear variable selection for artificial neural networks using partial mutual information, Environ. Modell. Software, 23 (10-11), 1312-1326, doi: 10.1016/j.envsoft.2008.03.007.
    • (2008) Environ. Modell. Software , vol.23 , Issue.1011 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.4
  • 34
    • 84891491175 scopus 로고    scopus 로고
    • Legitimising neural network river forecasting models: A new data-driven mechanistic modelling framework
    • doi: 10.5194/hessd-10-145-2013.
    • Mount, N. J., C. W. Dawson, and, R. J. Abrahart, (2013), Legitimising neural network river forecasting models: A new data-driven mechanistic modelling framework, Hydrol. Earth Syst. Sci. Discuss., 10, 145-187, doi: 10.5194/hessd-10-145-2013.
    • (2013) Hydrol. Earth Syst. Sci. Discuss. , vol.10 , pp. 145-187
    • Mount, N.J.1    Dawson, C.W.2    Abrahart, R.J.3
  • 36
    • 84857653016 scopus 로고    scopus 로고
    • A data clustering algorithm for stratified data partitioning in artificial neural network
    • doi: 10.1016/j.eswa.2012.01.047.
    • Sahoo, A. K., M. J. Zuo, and, M. K. Tiwari, (2012), A data clustering algorithm for stratified data partitioning in artificial neural network, Exp. Syst. Appl., 39 (8), 7004-7014, doi: 10.1016/j.eswa.2012.01.047.
    • (2012) Exp. Syst. Appl. , vol.39 , Issue.8 , pp. 7004-7014
    • Sahoo, A.K.1    Zuo, M.J.2    Tiwari, M.K.3
  • 37
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • DOI 10.1061/(ASCE)0887-3801(2004)18:2(105)
    • Shahin, M., H. R. Maier, and, M. B. Jaksa, (2004), Data division for developing neural networks applied to geotechnical engineering, J. Comput. Civil Eng., 18, 105-114, doi: 10.1061/(ASCE)0887-3801(2004)18:2(105). (Pubitemid 40475427)
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 38
    • 6344243351 scopus 로고    scopus 로고
    • Artificial neural network ensembles and their application in pooled flood frequency analysis
    • doi: 10.1029/2003WR002816.
    • Shu, C., and, D. H. Burn, (2004), Artificial neural network ensembles and their application in pooled flood frequency analysis, Water Resour. Res., 40, W09301, doi: 10.1029/2003WR002816.
    • (2004) Water Resour. Res. , vol.40
    • Shu, C.1    Burn, D.H.2
  • 39
    • 84952126648 scopus 로고
    • Validation of regression models: Methods and examples
    • Snee, R. D., (1977), Validation of regression models: Methods and examples, Technometrics, 19 (4), 415-428.
    • (1977) Technometrics , vol.19 , Issue.4 , pp. 415-428
    • Snee, R.D.1
  • 40
    • 13444299871 scopus 로고
    • 3rd ed., Freeman, New York.
    • Sokal, R. R., and, F. J. Rohlf, (1994), Biometry, 3rd ed., Freeman, New York.
    • (1994) Biometry
    • Sokal, R.R.1    Rohlf, F.J.2
  • 41
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D. F., (1991), A general regression neural network, IEEE Trans. Neural Networks, 2 (6), 568-576.
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.6 , pp. 568-576
    • Specht, D.F.1
  • 42
    • 38049168357 scopus 로고    scopus 로고
    • SOM-based data visualization methods
    • DOI 10.1016/S1088-467X(99)00013-X
    • Vesanto, J., (1999), SOM-based data visualization methods, Intell. Data Anal., 3 (2), 111-126, doi: 10.1016/s1088-467x(99)00013-x. (Pubitemid 33260739)
    • (1999) Intelligent data analysis , vol.3 , Issue.2 , pp. 111-126
    • Vesanto, J.1
  • 43
    • 84891486272 scopus 로고    scopus 로고
    • Exploring the impact of data splitting methods on artificial neural network models
    • 14-18 July, Hamburg, Germany
    • Wu, W., H. R. Maier, G. C. Dandy, and, R. May, (2012), Exploring the impact of data splitting methods on artificial neural network models, paper presented at the 10th International Conference on Hydroinformatics, 14-18 July, Hamburg, Germany.
    • (2012) 10th International Conference on Hydroinformatics
    • Wu, W.1    Maier, H.R.2    Dandy, G.C.3    May, R.4
  • 44
    • 0035897294 scopus 로고    scopus 로고
    • Monte Carlo cross validation
    • DOI 10.1016/S0169-7439(00)00122-2, PII S0169743900001222
    • Xu, Q.-S., and, Y.-Z. Liang, (2001), Monte Carlo cross validation, Chem. Intell. Lab. Syst., 56 (1), 1-11, doi: 10.1016/s0169-7439(00)00122-2. (Pubitemid 32224844)
    • (2001) Chemometrics and Intelligent Laboratory Systems , vol.56 , Issue.1 , pp. 1-11
    • Xu, Q.-S.1    Liang, Y.-Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.