-
1
-
-
84863764389
-
Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting
-
Abrahart, R. J., F. Anctil, P. Coulibaly, C. W. Dawson, N. J. Mount, L. M. See, A. Y. Shamseldin, D. P. Solomatine, E. Toth, and, R. L. Wilby, (2012), Two decades of anarchy? Emerging themes and outstanding challenges for neural network river forecasting, Prog. Phys. Geogr., 36, 480-513.
-
(2012)
Prog. Phys. Geogr.
, vol.36
, pp. 480-513
-
-
Abrahart, R.J.1
Anctil, F.2
Coulibaly, P.3
Dawson, C.W.4
Mount, N.J.5
See, L.M.6
Shamseldin, A.Y.7
Solomatine, D.P.8
Toth, E.9
Wilby, R.L.10
-
2
-
-
0016355478
-
A new look at the statistical model identification
-
Akaike, H., (1974), A new look at the statistical model identification, IEEE Trans. Autom. Control, 19 (6), 716-723.
-
(1974)
IEEE Trans. Autom. Control
, vol.19
, Issue.6
, pp. 716-723
-
-
Akaike, H.1
-
3
-
-
14344261493
-
Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions
-
Anctil, F., and, N. Lauzon, (2004), Generalisation for neural networks through data sampling and training procedures, with applications to streamflow predictions, Hydrol. Earth Syst. Sci., 8, 940-958, doi: 10.5194/hess-8-940-2004. (Pubitemid 40294956)
-
(2004)
Hydrology and Earth System Sciences
, vol.8
, Issue.5
, pp. 940-958
-
-
Anctil, F.1
Lauzon, N.2
-
4
-
-
0034174396
-
Artificial neural networks in hydrology. II: Hydrologic applications
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000a), Artificial neural networks in hydrology. II: Hydrologic applications, J. Hydrol. Eng., 5 (2), 124-137.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 124-137
-
-
-
5
-
-
0034174280
-
Artificial neural networks in hydrology. I: Preliminary concepts
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology
-
ASCE Task Committee on Application of Artificial Neural Networks in Hydrology (2000b), Artificial neural networks in hydrology. I: Preliminary concepts, J. Hydrol. Eng., 5 (2), 115-123.
-
(2000)
J. Hydrol. Eng.
, vol.5
, Issue.2
, pp. 115-123
-
-
-
6
-
-
84880647559
-
Developing artificial neural network process models: A guide for drinking water utilities
-
Canadian Society for Civil Engineering (CSCE), London, Ontario, Canada
-
Baxter, C. W., S. J. Stanley, Q. Zhang, and, D. W. Smith, (2000), Developing artificial neural network process models: A guide for drinking water utilities, paper presented at the 6th Environmental Engineering Society Specialty Conference of the CSCE, pp. 376-383, Canadian Society for Civil Engineering (CSCE), London, Ontario, Canada.
-
(2000)
6th Environmental Engineering Society Specialty Conference of the CSCE
, pp. 376-383
-
-
Baxter, C.W.1
Stanley, S.J.2
Zhang, Q.3
Smith, D.W.4
-
7
-
-
0036221122
-
Optimal division of data for neural network models in water resources applications
-
doi: 10.1029/2001WR000266.
-
Bowden, G. J., H. R. Maier, and, G. C. Dandy, (2002), Optimal division of data for neural network models in water resources applications, Water Resour. Res., 38 (2), 1010, doi: 10.1029/2001WR000266.
-
(2002)
Water Resour. Res.
, vol.38
, Issue.2
, pp. 1010
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
8
-
-
84868621819
-
Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability
-
doi: 10.1029/2012WR011984.
-
Bowden, G. J., H. R. Maier, and, G. C. Dandy, (2012), Real-time deployment of artificial neural network forecasting models: Understanding the range of applicability, Water Resour. Res., 48 (10), W10549, doi: 10.1029/2012WR011984.
-
(2012)
Water Resour. Res.
, vol.48
, Issue.10
-
-
Bowden, G.J.1
Maier, H.R.2
Dandy, G.C.3
-
9
-
-
33745337472
-
Forecasting chlorine residuals in a water distribution system using a general regression neural network
-
DOI 10.1016/j.mcm.2006.01.006, PII S0895717706000070
-
Bowden, G. J., J. B. Nixon, G. C. Dandy, H. R. Maier, and, M. Holmes, (2006), Forecasting chlorine residuals in a water distribution system using a general regression neural network, Math. Comput. Modell., 44 (5-6), 469-484. (Pubitemid 43946635)
-
(2006)
Mathematical and Computer Modelling
, vol.44
, Issue.5-6
, pp. 469-484
-
-
Bowden, G.J.1
Nixon, J.B.2
Dandy, G.C.3
Maier, H.R.4
Holmes, M.5
-
10
-
-
0030211964
-
Bagging Inputs
-
Breiman, L., (1996), Bagging Inputs, Mach. Learn., 24, 123-140.
-
(1996)
Mach. Learn.
, vol.24
, pp. 123-140
-
-
Breiman, L.1
-
11
-
-
0004087058
-
-
Dover, New York.
-
Crow, E. L., F. A. Davis, and, M. W. Maxfield, (1960), Statistics Manual, Dover, New York.
-
(1960)
Statistics Manual
-
-
Crow, E.L.1
Davis, F.A.2
Maxfield, M.W.3
-
12
-
-
0034749335
-
Hydrological modelling using artificial neural networks
-
DOI 10.1191/030913301674775671
-
Dawson, C. W., and, R. L. Wilby, (2001), Hydrological modelling using artificial neural networks, Prog. Phys. Geogr., 25 (1), 80-108. (Pubitemid 33028258)
-
(2001)
Progress in Physical Geography
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
13
-
-
0031735568
-
Neural networks in multivariate calibration
-
Despagne, F., and, D. Luc Massart, (1998), Neural networks in multivariate calibration, Analyst, 123 (11), 157R-178R. (Pubitemid 28528625)
-
(1998)
Analyst
, vol.123
, Issue.11
-
-
Despagne, F.1
-
14
-
-
77958183722
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
-
doi: 10.5194/hess-14-1931-2010.
-
Elshorbagy, A., G. Corzo, S. Srinivasulu, and, D. P. Solomatine, (2010a), Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931-1941, doi: 10.5194/hess-14-1931-2010.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1931-1941
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
15
-
-
77958199170
-
Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
-
doi: 10.5194/hess-14-1943-2010.
-
Elshorbagy, A., G. Corzo, S. Srinivasulu, and, D. P. Solomatine, (2010b), Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, doi: 10.5194/hess-14-1943-2010.
-
(2010)
Hydrol. Earth Syst. Sci.
, vol.14
, pp. 1943-1961
-
-
Elshorbagy, A.1
Corzo, G.2
Srinivasulu, S.3
Solomatine, D.P.4
-
16
-
-
3342891563
-
Neural networks provide superior description of Giardia lamblia inactivation by free chlorine
-
DOI 10.1016/j.watres.2004.05.001, PII S0043135404002490
-
Haas, C. N., (2004), Neural networks provide superior description of Giardia lamblia inactivation by free chlorine, Water Res., 38 (14-15), 3449-3457, doi: 10.1016/j.watres.2004.05.001. (Pubitemid 38987724)
-
(2004)
Water Research
, vol.38
, Issue.14-15
, pp. 3449-3457
-
-
Haas, C.N.1
-
17
-
-
28844473522
-
Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques
-
DOI 10.1016/j.jhydrol.2005.05.022, PII S0022169405002854
-
Jain, A., and, S. Srinivasulu, (2006), Integrated approach to model decomposed flow hydrograph using artificial neural network and conceptual techniques, J. Hydrol., 317 (3-4), 291-306, doi: 10.1016/j.jhydrol. 2005.05.022. (Pubitemid 41774118)
-
(2006)
Journal of Hydrology
, vol.317
, Issue.3-4
, pp. 291-306
-
-
Jain, A.1
Srinivasulu, S.2
-
18
-
-
84894887900
-
Computer aided design of experiments
-
Kennard, R. W., and, L. A. Stone, (1969), Computer aided design of experiments, Technometrics, 11 (1), 137-148.
-
(1969)
Technometrics
, vol.11
, Issue.1
, pp. 137-148
-
-
Kennard, R.W.1
Stone, L.A.2
-
19
-
-
20844458468
-
Applicability of statistical learning algorithms in groundwater quality modeling
-
doi: 10.1029/2004WR 003608.
-
Khalil, A., M. N. Almasri, M. McKee, and, J. J. Kaluarachchi, (2005), Applicability of statistical learning algorithms in groundwater quality modeling, Water Resour. Res., 41, W05010, doi: 10.1029/2004WR 003608.
-
(2005)
Water Resour. Res.
, vol.41
-
-
Khalil, A.1
Almasri, M.N.2
McKee, M.3
Kaluarachchi, J.J.4
-
20
-
-
40649102141
-
-
PhD thesis, The Univ. of Adelaide, Adelaide, Australia
-
Kingston, G. B., (2006), Bayesian artificial neural networks in water resources engineering, PhD thesis, The Univ. of Adelaide, Adelaide, Australia.
-
(2006)
Bayesian Artificial Neural Networks in Water Resources Engineering
-
-
Kingston, G.B.1
-
21
-
-
28444444200
-
Calibration and validation of neural networks to ensure physically plausible hydrological modeling
-
DOI 10.1016/j.jhydrol.2005.03.013, PII S0022169405001526
-
Kingston, G. B., H. R. Maier, and, M. F. Lambert, (2005), Calibration and validation of neural networks to ensure physically plausible hydrological modeling, J. Hydrol., 314 (1-4), 158-176, doi: 10.1016/j.jhydrol. 2005.03.013. (Pubitemid 41727778)
-
(2005)
Journal of Hydrology
, vol.314
, Issue.1-4
, pp. 158-176
-
-
Kingston, G.B.1
Maier, H.R.2
Lambert, M.F.3
-
22
-
-
0345404396
-
The self-organizing map
-
DOI 10.1016/S0925-2312(98)00030-7, PII S0925231298000307
-
Kohonen, T., (1998), The self-organizing map, Neurocomputing, 21 (1-3), 1-6, doi: 10.1016/s0925-2312(98)00030-7. (Pubitemid 28526808)
-
(1998)
Neurocomputing
, vol.21
, Issue.1-3
, pp. 1-6
-
-
Kohonen, T.1
-
23
-
-
0031701777
-
A bootstrap evaluation of the effect of data splitting on financial time series
-
PII S1045922798010480
-
LeBaron, B., and, A. S. Weigend, (1998), A bootstrap evaluation of the effect of data splitting on financial time series, IEEE Trans. Neural Networks, 9 (1), 213-220. (Pubitemid 128743627)
-
(1998)
IEEE Transactions on Neural Networks
, vol.9
, Issue.1
, pp. 213-220
-
-
LeBaron, B.1
Weigend, A.S.2
-
24
-
-
21144438694
-
Model selection with cross-validations and bootstraps: Application to time series prediction with RBFN models
-
Springer, Istanbul, Turkey
-
Lendasse, A., V. Wertz, and, M. Verleysen, (2003), Model selection with cross-validations and bootstraps: Application to time series prediction with RBFN models, paper presented at the 2003 joint International Conference on Artificial Neural Networks and Neural Information Processing, Springer, Istanbul, Turkey.
-
(2003)
2003 Joint International Conference on Artificial Neural Networks and Neural Information Processing
-
-
Lendasse, A.1
Wertz, V.2
Verleysen, M.3
-
26
-
-
0029663621
-
The use of artificial neural networks for the prediction of water quality parameters
-
doi: 10.1029/96WR03529.
-
Maier, H. R., and, G. C. Dandy, (1996), The use of artificial neural networks for the prediction of water quality parameters, Water Resour. Res., 32 (4), 1013-1022, doi: 10.1029/96WR03529.
-
(1996)
Water Resour. Res.
, vol.32
, Issue.4
, pp. 1013-1022
-
-
Maier, H.R.1
Dandy, G.C.2
-
27
-
-
0033957764
-
Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
-
DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
-
Maier, H. R., and, G. C. Dandy, (2000), Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications, Environ. Modell. Software, 15 (1), 101-124. (Pubitemid 30018318)
-
(2000)
Environmental Modelling and Software
, vol.15
, Issue.1
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
28
-
-
77951175284
-
Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
-
doi: 10.1016/j.envsoft. 2010.02.003.
-
Maier, H. R., A. Jain, G. C. Dandy, and, K. P. Sudheer, (2010), Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions, Environ. Modell. Software, 25 (8), 891-909, doi: 10.1016/j.envsoft. 2010.02.003.
-
(2010)
Environ. Modell. Software
, vol.25
, Issue.8
, pp. 891-909
-
-
Maier, H.R.1
Jain, A.2
Dandy, G.C.3
Sudheer, K.P.4
-
29
-
-
1642336479
-
Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters
-
DOI 10.1016/S1364-8152(03)00163-4, PII S1364815203001634
-
Maier, H. R., N. Morgan, and, C. W. K. Chow, (2004), Use of artificial neural networks for predicting optimal alum doses and treated water quality parameters, Environ. Modell. Software, 19 (5), 485-494, doi: 10.1016/s1364-8152(03)00163-4. (Pubitemid 38355873)
-
(2004)
Environmental Modelling and Software
, vol.19
, Issue.5
, pp. 485-494
-
-
Maier, H.R.1
Morgan, N.2
Chow, C.W.K.3
-
30
-
-
44749087176
-
Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems
-
doi: 10.1016/j.envsoft.2008.03.008.
-
May, R. J., G. C. Dandy, H. R. Maier, and, J. B. Nixon, (2008a), Application of partial mutual information variable selection to ANN forecasting of water quality in water distribution systems, Environ. Modell. Software, 23 (10-11), 1289-1299, doi: 10.1016/j.envsoft.2008.03.008.
-
(2008)
Environ. Modell. Software
, vol.23
, Issue.1011
, pp. 1289-1299
-
-
May, R.J.1
Dandy, G.C.2
Maier, H.R.3
Nixon, J.B.4
-
31
-
-
74149090502
-
Data splitting for artificial neural networks using SOM-based stratified sampling
-
May, R. J., H. R. Maier, and, G. C. Dandy, (2010), Data splitting for artificial neural networks using SOM-based stratified sampling, Neural Networks, 23 (2), 283-294.
-
(2010)
Neural Networks
, vol.23
, Issue.2
, pp. 283-294
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
-
32
-
-
44749087316
-
Non-linear variable selection for artificial neural networks using partial mutual information
-
doi: 10.1016/j.envsoft.2008.03.007.
-
May, R. J., H. R. Maier, G. C. Dandy, and, T. Fernando, (2008b), Non-linear variable selection for artificial neural networks using partial mutual information, Environ. Modell. Software, 23 (10-11), 1312-1326, doi: 10.1016/j.envsoft.2008.03.007.
-
(2008)
Environ. Modell. Software
, vol.23
, Issue.1011
, pp. 1312-1326
-
-
May, R.J.1
Maier, H.R.2
Dandy, G.C.3
Fernando, T.4
-
33
-
-
67649649336
-
-
Birkhäuser, Basel-Boston-Berlin, Basel, Switzerland.
-
Meester, R., (2008), A Natural Introduction to Probability Theory, Birkhäuser, Basel-Boston-Berlin, Basel, Switzerland.
-
(2008)
A Natural Introduction to Probability Theory
-
-
Meester, R.1
-
34
-
-
84891491175
-
Legitimising neural network river forecasting models: A new data-driven mechanistic modelling framework
-
doi: 10.5194/hessd-10-145-2013.
-
Mount, N. J., C. W. Dawson, and, R. J. Abrahart, (2013), Legitimising neural network river forecasting models: A new data-driven mechanistic modelling framework, Hydrol. Earth Syst. Sci. Discuss., 10, 145-187, doi: 10.5194/hessd-10-145-2013.
-
(2013)
Hydrol. Earth Syst. Sci. Discuss.
, vol.10
, pp. 145-187
-
-
Mount, N.J.1
Dawson, C.W.2
Abrahart, R.J.3
-
35
-
-
0003474751
-
-
Cambridge Univ. Press, Cambridge.
-
Press, W. H., S. A. Tuekolsky, W. T. Vetterling, and, B. P. Falnnery, (1992), Numerical Recipes: The Art of Scientific Computing, Cambridge Univ. Press, Cambridge.
-
(1992)
Numerical Recipes: The Art of Scientific Computing
-
-
Press, W.H.1
Tuekolsky, S.A.2
Vetterling, W.T.3
Falnnery, B.P.4
-
36
-
-
84857653016
-
A data clustering algorithm for stratified data partitioning in artificial neural network
-
doi: 10.1016/j.eswa.2012.01.047.
-
Sahoo, A. K., M. J. Zuo, and, M. K. Tiwari, (2012), A data clustering algorithm for stratified data partitioning in artificial neural network, Exp. Syst. Appl., 39 (8), 7004-7014, doi: 10.1016/j.eswa.2012.01.047.
-
(2012)
Exp. Syst. Appl.
, vol.39
, Issue.8
, pp. 7004-7014
-
-
Sahoo, A.K.1
Zuo, M.J.2
Tiwari, M.K.3
-
37
-
-
16444364474
-
Data division for developing neural networks applied to geotechnical engineering
-
DOI 10.1061/(ASCE)0887-3801(2004)18:2(105)
-
Shahin, M., H. R. Maier, and, M. B. Jaksa, (2004), Data division for developing neural networks applied to geotechnical engineering, J. Comput. Civil Eng., 18, 105-114, doi: 10.1061/(ASCE)0887-3801(2004)18:2(105). (Pubitemid 40475427)
-
(2004)
Journal of Computing in Civil Engineering
, vol.18
, Issue.2
, pp. 105-114
-
-
Shahin, M.A.1
Maier, H.R.2
Jaksa, M.B.3
-
38
-
-
6344243351
-
Artificial neural network ensembles and their application in pooled flood frequency analysis
-
doi: 10.1029/2003WR002816.
-
Shu, C., and, D. H. Burn, (2004), Artificial neural network ensembles and their application in pooled flood frequency analysis, Water Resour. Res., 40, W09301, doi: 10.1029/2003WR002816.
-
(2004)
Water Resour. Res.
, vol.40
-
-
Shu, C.1
Burn, D.H.2
-
39
-
-
84952126648
-
Validation of regression models: Methods and examples
-
Snee, R. D., (1977), Validation of regression models: Methods and examples, Technometrics, 19 (4), 415-428.
-
(1977)
Technometrics
, vol.19
, Issue.4
, pp. 415-428
-
-
Snee, R.D.1
-
40
-
-
13444299871
-
-
3rd ed., Freeman, New York.
-
Sokal, R. R., and, F. J. Rohlf, (1994), Biometry, 3rd ed., Freeman, New York.
-
(1994)
Biometry
-
-
Sokal, R.R.1
Rohlf, F.J.2
-
41
-
-
0026254768
-
A general regression neural network
-
Specht, D. F., (1991), A general regression neural network, IEEE Trans. Neural Networks, 2 (6), 568-576.
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, Issue.6
, pp. 568-576
-
-
Specht, D.F.1
-
42
-
-
38049168357
-
SOM-based data visualization methods
-
DOI 10.1016/S1088-467X(99)00013-X
-
Vesanto, J., (1999), SOM-based data visualization methods, Intell. Data Anal., 3 (2), 111-126, doi: 10.1016/s1088-467x(99)00013-x. (Pubitemid 33260739)
-
(1999)
Intelligent data analysis
, vol.3
, Issue.2
, pp. 111-126
-
-
Vesanto, J.1
-
43
-
-
84891486272
-
Exploring the impact of data splitting methods on artificial neural network models
-
14-18 July, Hamburg, Germany
-
Wu, W., H. R. Maier, G. C. Dandy, and, R. May, (2012), Exploring the impact of data splitting methods on artificial neural network models, paper presented at the 10th International Conference on Hydroinformatics, 14-18 July, Hamburg, Germany.
-
(2012)
10th International Conference on Hydroinformatics
-
-
Wu, W.1
Maier, H.R.2
Dandy, G.C.3
May, R.4
-
44
-
-
0035897294
-
Monte Carlo cross validation
-
DOI 10.1016/S0169-7439(00)00122-2, PII S0169743900001222
-
Xu, Q.-S., and, Y.-Z. Liang, (2001), Monte Carlo cross validation, Chem. Intell. Lab. Syst., 56 (1), 1-11, doi: 10.1016/s0169-7439(00)00122-2. (Pubitemid 32224844)
-
(2001)
Chemometrics and Intelligent Laboratory Systems
, vol.56
, Issue.1
, pp. 1-11
-
-
Xu, Q.-S.1
Liang, Y.-Z.2
|