메뉴 건너뛰기




Volumn 163, Issue , 2012, Pages 62-67

Forecasting PM 10 in metropolitan areas: Efficacy of neural networks

Author keywords

Air quality prediction; Human health warnings; Neural network

Indexed keywords

AIR QUALITY PREDICTION; ARIZONA; ARTIFICIAL NEURONS; AUTOMATED MONITORING; HISTORIC DATA; HUMAN HEALTH; METROPOLITAN AREA; MONITORING SITES; PARTICULATE MATTER; PHOTOCHEMICAL AIR QUALITY MODELS; PHOTOCHEMICAL MODELS; PREDICTIVE TOOLS; REGULATORY MANAGEMENT; STOCHASTIC METHODS;

EID: 84855514053     PISSN: 02697491     EISSN: 18736424     Source Type: Journal    
DOI: 10.1016/j.envpol.2011.12.018     Document Type: Article
Times cited : (131)

References (31)
  • 2
    • 0034955789 scopus 로고    scopus 로고
    • A case study of using artificial neural networks for classifying cause of death from verbal autopsy
    • A. Boulle, D. Chandramohan, and P. Weller A case study of using artificial neural networks for classifying cause of death from verbal autopsy International Journal of Epidemiology 30 2001 515 520
    • (2001) International Journal of Epidemiology , vol.30 , pp. 515-520
    • Boulle, A.1    Chandramohan, D.2    Weller, P.3
  • 4
    • 84857063396 scopus 로고    scopus 로고
    • Carolina Environmental Program Smoke User'S Manual V2.2
    • Carolina Environmental Program, SMOKE v2.2 User's Manual Carolina Environmental Program, Chapel Hill, NC 2005 http://www.smoke-model.org/ documentation.cfm
    • (2005) Carolina Environmental Program, Chapel Hill, NC
  • 6
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
    • A. Chaloulakou, M. Saisana, and N. Spyrellis Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens The Science of the Total Environment 313 2003 1 13
    • (2003) The Science of the Total Environment , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 7
    • 47549111119 scopus 로고    scopus 로고
    • Implementation of a windblown dust Parameterization into MODELS-3/CMAQ: Application to episodic PM events in the U.S./Mexico border
    • Y.-J. Choi, and H.J.S. Fernando Implementation of a windblown dust Parameterization into MODELS-3/CMAQ: application to episodic PM events in the U.S./Mexico border Atmospheric Environment 42 2008 6039 6046
    • (2008) Atmospheric Environment , vol.42 , pp. 6039-6046
    • Choi, Y.-J.1    Fernando, H.J.S.2
  • 8
    • 33745993656 scopus 로고    scopus 로고
    • Modeling of episodic particular matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the U.S./Mexico border
    • Y.-J. Choi, P. Hyde, and H.J.S. Fernando Modeling of episodic particular matter events using a 3-D air quality model with fine grid: applications to a pair of cities in the U.S./Mexico border Atmospheric Environment 40 2006 5181 5201
    • (2006) Atmospheric Environment , vol.40 , pp. 5181-5201
    • Choi, Y.-J.1    Hyde, P.2    Fernando, H.J.S.3
  • 11
    • 0038724560 scopus 로고    scopus 로고
    • Maximum likelihood cost function for neural network models of air quality data
    • S.R. Dorling, R.J. Foxall, D.P. Mandic, and G.C. Cawley Maximum likelihood cost function for neural network models of air quality data Atmospheric Environment 37 2003 3435 3443
    • (2003) Atmospheric Environment , vol.37 , pp. 3435-3443
    • Dorling, S.R.1    Foxall, R.J.2    Mandic, D.P.3    Cawley, G.C.4
  • 13
    • 50849116976 scopus 로고    scopus 로고
    • EPA-454/B-07-002 Office of Air Quality Planning and Standards Emissions Analysis and Monitoring Division, Air Quality Modelling Group
    • 2.5 and Regional Haze EPA-454/B-07-002 2007 Office of Air Quality Planning and Standards Emissions Analysis and Monitoring Division, Air Quality Modelling Group http://www.epa.gov/scram001/guidance/guide/final-03-pm-rh-guidance.pdf
    • (2007) 2.5 and Regional Haze
  • 16
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences
    • M.W. Gardner, and S.R. Dorling Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences Atmospheric Environment 32 1998 2627 2636
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 17
    • 0004066241 scopus 로고
    • Boulder, Colorado: National Center for Atmospheric Research, NCAR/TN-398+STR.20. ICF International report: Evaluation of CMAQ model performance for the 812 prospective II study. Memorandum prepared for EPA office of Policy Analysis and Review (OPAR), ICF International, San Rafael, CA, 2009
    • G.A. Grell, and D.R.S. Dudia A Description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5) Boulder, Colorado: National Center for Atmospheric Research, NCAR/TN-398+STR.20. ICF International report: Evaluation of CMAQ model performance for the 812 prospective II study. Memorandum prepared for EPA office of Policy Analysis and Review (OPAR), ICF International, San Rafael, CA, 2009 1994 www.epa.gov/air/sect812/jan10/812-AQM-mpe-memo.pdf
    • (1994) A Description of the Fifth Generation Penn State/NCAR Mesoscale Model (MM5)
    • Grell, G.A.1    Dudia, D.R.S.2
  • 18
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the Greater Area of Athens, Greece
    • 10 hourly concentrations, in the Greater Area of Athens, Greece Atmospheric Environment 40 2006 1216 1229
    • (2006) Atmospheric Environment , vol.40 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 20
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • M. Kolehmainen, H. Martikainen, and J. Ruuskanen Neural networks and periodic components used in air quality forecasting Atmospheric Environment 35 2001 815 825
    • (2001) Atmospheric Environment , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 26
    • 65649139648 scopus 로고    scopus 로고
    • Neural networks based time-delay estimation using DCT coefficients
    • S.J. Shaltaf, and A.A. Mohammad Neural networks based time-delay estimation using DCT coefficients American Journal of Applied Sciences 6 4 2009 703 708
    • (2009) American Journal of Applied Sciences , vol.6 , Issue.4 , pp. 703-708
    • Shaltaf, S.J.1    Mohammad, A.A.2
  • 28
    • 0031654888 scopus 로고    scopus 로고
    • Are analog neural networks better than binary neural networks?
    • 10.1007/BF01202855
    • M. Vidyasagar Are analog neural networks better than binary neural networks? Circuits System Signal Processing 17 2 1998 243 270 10.1007/BF01202855
    • (1998) Circuits System Signal Processing , vol.17 , Issue.2 , pp. 243-270
    • Vidyasagar, M.1
  • 31
    • 77953608041 scopus 로고    scopus 로고
    • Fog prediction from a multimodel mesoscale ensemble prediction system
    • B. Zhou, and J. Du Fog prediction from a multimodel mesoscale ensemble prediction system American Weather and Forecasting 25 2010 303 322 http://www.emc.ncep.noaa.gov/mmb/SREF/2222289-WAF-Feb-2010.official.PDF
    • (2010) American Weather and Forecasting , vol.25 , pp. 303-322
    • Zhou, B.1    Du, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.