메뉴 건너뛰기




Volumn 9, Issue 2, 2018, Pages 388-397

Multiple-input–multiple-output general regression neural networks model for the simultaneous estimation of traffic-related air pollutant emissions

Author keywords

Air pollutants; ANN; MIMO modeling; Outliers; Traffic emission

Indexed keywords


EID: 85034969889     PISSN: 13091042     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apr.2017.10.011     Document Type: Article
Times cited : (33)

References (46)
  • 1
    • 16244417840 scopus 로고    scopus 로고
    • Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations
    • Abdul-Wahab, S.A., Bakheit, C.S., Al-Alawi, S.M., Principal component and multiple regression analysis in modelling of ground-level ozone and factors affecting its concentrations. Environ. Model Softw. 20 (2005), 1263–1271, 10.1016/j.envsoft.2004.09.001.
    • (2005) Environ. Model Softw. , vol.20 , pp. 1263-1271
    • Abdul-Wahab, S.A.1    Bakheit, C.S.2    Al-Alawi, S.M.3
  • 2
    • 84900561842 scopus 로고    scopus 로고
    • Urban air quality: the challenge of traffic non-exhaust emissions
    • Amato, F., Cassee, F.R., Denier van der Gon, H.A.C., et al. Urban air quality: the challenge of traffic non-exhaust emissions. J. Hazard Mater 275 (2014), 31–36, 10.1016/j.jhazmat.2014.04.053.
    • (2014) J. Hazard Mater , vol.275 , pp. 31-36
    • Amato, F.1    Cassee, F.R.2    Denier van der Gon, H.A.C.3
  • 3
    • 84871717701 scopus 로고    scopus 로고
    • Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
    • An, N., Zhao, W., Wang, J., Shang, D., Zhao, E., Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting. Energy 49 (2013), 279–288, 10.1016/j.energy.2012.10.035.
    • (2013) Energy , vol.49 , pp. 279-288
    • An, N.1    Zhao, W.2    Wang, J.3    Shang, D.4    Zhao, E.5
  • 4
    • 84928437188 scopus 로고    scopus 로고
    • Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks
    • Antanasijević D., Pocajt, V., Ristić M., Perić-Grujić A., Modeling of energy consumption and related GHG (greenhouse gas) intensity and emissions in Europe using general regression neural networks. Energy 84 (2015), 816–824, 10.1016/j.energy.2015.03.060.
    • (2015) Energy , vol.84 , pp. 816-824
    • Antanasijević, D.1    Pocajt, V.2    Ristić, M.3    Perić-Grujić, A.4
  • 5
    • 84870298794 scopus 로고    scopus 로고
    • PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
    • Antanasijević D.Z., Pocajt, V.V., Povrenović D.S., et al. PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 443 (2013), 511–519.
    • (2013) Sci. Total Environ. , vol.443 , pp. 511-519
    • Antanasijević, D.Z.1    Pocajt, V.V.2    Povrenović, D.S.3
  • 6
    • 84889639492 scopus 로고    scopus 로고
    • Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis
    • Antanasijević D.Z., MĐ Ristić Perić-Grujić A.A., Pocajt, V.V., Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. Int. J. Greenh. Gas. Control 20 (2014), 244–253, 10.1016/j.ijggc.2013.11.011.
    • (2014) Int. J. Greenh. Gas. Control , vol.20 , pp. 244-253
    • Antanasijević, D.Z.1    MĐ, R.2    Perić-Grujić, A.A.3    Pocajt, V.V.4
  • 7
    • 0033991766 scopus 로고    scopus 로고
    • Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea
    • Aussem, A., Hill, D., Neural-network metamodelling for the prediction of Caulerpa taxifolia development in the Mediterranean sea. Neurocomputing 30 (2000), 71–78, 10.1016/S0925-2312(99)00145-9.
    • (2000) Neurocomputing , vol.30 , pp. 71-78
    • Aussem, A.1    Hill, D.2
  • 8
    • 32144436150 scopus 로고    scopus 로고
    • Traffic pollution modelling and emission data
    • Berkowicz, R., Winther, M., Ketzel, M., Traffic pollution modelling and emission data. Environ. Model Softw. 21 (2006), 454–460, 10.1016/j.envsoft.2004.06.013.
    • (2006) Environ. Model Softw. , vol.21 , pp. 454-460
    • Berkowicz, R.1    Winther, M.2    Ketzel, M.3
  • 9
    • 40049112215 scopus 로고    scopus 로고
    • Global and country inventory of road passenger and freight transportation: fuel consumption and emissions of air pollutants in the year 2000
    • Borken, J., Steller, H., Meretei, T., Vanhove, F., Global and country inventory of road passenger and freight transportation: fuel consumption and emissions of air pollutants in the year 2000. Transp. Res. Rec. 2007 (2011), 127–136.
    • (2011) Transp. Res. Rec. , vol.2007 , pp. 127-136
    • Borken, J.1    Steller, H.2    Meretei, T.3    Vanhove, F.4
  • 10
    • 56449130001 scopus 로고    scopus 로고
    • The impact of residential density on vehicle usage and energy consumption
    • Brownstone, D., Golob, T.F., The impact of residential density on vehicle usage and energy consumption. J. Urban Econ. 65 (2009), 91–98, 10.1016/j.jue.2008.09.002.
    • (2009) J. Urban Econ. , vol.65 , pp. 91-98
    • Brownstone, D.1    Golob, T.F.2
  • 11
    • 33846807570 scopus 로고    scopus 로고
    • Multi-stepahead neural networks for flood forecasting
    • Chang, F.-J., Chiang, Y.-M., Chang, L.-C., Multi-stepahead neural networks for flood forecasting. Hydrol. Sci. J. 52 (2007), 114–130, 10.1623/hysj.52.1.114.
    • (2007) Hydrol. Sci. J. , vol.52 , pp. 114-130
    • Chang, F.-J.1    Chiang, Y.-M.2    Chang, L.-C.3
  • 12
    • 24644439546 scopus 로고    scopus 로고
    • Comparison of measured and model-calculated real-world traffic emissions
    • Corsmeier, U., Imhof, D., Kohler, M., et al. Comparison of measured and model-calculated real-world traffic emissions. Atmos. Environ. 39 (2005), 5760–5775, 10.1016/j.atmosenv.2005.06.048.
    • (2005) Atmos. Environ. , vol.39 , pp. 5760-5775
    • Corsmeier, U.1    Imhof, D.2    Kohler, M.3
  • 13
    • 84929575549 scopus 로고    scopus 로고
    • Travel, transport and energy implications of university-related student travel: a case study approach
    • Davison, L., Ahern, A., Hine, J., Travel, transport and energy implications of university-related student travel: a case study approach. Transp. Res. Part D. Transp. Environ. 38 (2015), 27–40, 10.1016/j.trd.2015.04.028.
    • (2015) Transp. Res. Part D. Transp. Environ. , vol.38 , pp. 27-40
    • Davison, L.1    Ahern, A.2    Hine, J.3
  • 14
    • 84994482354 scopus 로고    scopus 로고
    • Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children
    • Deng, Q., Lu, C., Yu, Y., Li, Y., Sundell, J., Norback, D., Early life exposure to traffic-related air pollution and allergic rhinitis in preschool children. Respir. Med. 121 (2016), 67–73, 10.1016/j.rmed.2016.10.016.
    • (2016) Respir. Med. , vol.121 , pp. 67-73
    • Deng, Q.1    Lu, C.2    Yu, Y.3    Li, Y.4    Sundell, J.5    Norback, D.6
  • 15
    • 84984693069 scopus 로고    scopus 로고
    • Database
    • Eurostat, Database. http://ec.europa.eu/eurostat/data/database, 2015.
    • (2015)
    • Eurostat1
  • 16
    • 33645418480 scopus 로고    scopus 로고
    • Forecasting of electricity prices with neural networks
    • Gareta, R., Romeo, L.M., Gil, A., Forecasting of electricity prices with neural networks. Energy Convers. Manag. 47 (2006), 1770–1778, 10.1016/j.enconman.2005.10.010.
    • (2006) Energy Convers. Manag. , vol.47 , pp. 1770-1778
    • Gareta, R.1    Romeo, L.M.2    Gil, A.3
  • 17
    • 84928003808 scopus 로고    scopus 로고
    • Simultaneous prediction of the thermodynamic properties of aqueous solution of ethylene glycol monoethyl ether using artificial neural network
    • Ghaedi, A., Simultaneous prediction of the thermodynamic properties of aqueous solution of ethylene glycol monoethyl ether using artificial neural network. J. Mol. Liq. 207 (2015), 327–333, 10.1016/j.molliq.2015.04.015.
    • (2015) J. Mol. Liq. , vol.207 , pp. 327-333
    • Ghaedi, A.1
  • 18
    • 85041551379 scopus 로고    scopus 로고
    • Reliable reduced cost modeling and design optimization of microwave filters using co-kriging
    • Güneş F., Mahouti, P., Demirel, S., et al. Reliable reduced cost modeling and design optimization of microwave filters using co-kriging. Int. J. Numer. Model, 2015, 10.1002/jnm.
    • (2015) Int. J. Numer. Model
    • Güneş, F.1    Mahouti, P.2    Demirel, S.3
  • 19
    • 77954550514 scopus 로고    scopus 로고
    • Traffic-related Air Pollution: a Critical Review of the Literature on Emissions, Exposure, and Health Effects
    • HEI Special Report 17. Boston Massachusetts
    • HEI Panel on the Health Effects of Traffic-Related Air Pollution, Traffic-related Air Pollution: a Critical Review of the Literature on Emissions, Exposure, and Health Effects. HEI Special Report 17. Boston Massachusetts, 2010.
    • (2010)
    • HEI Panel on the Health Effects of Traffic-Related Air Pollution1
  • 20
    • 84876734685 scopus 로고    scopus 로고
    • Residential density and transportation emissions: examining the connection by addressing spatial autocorrelation and self-selection
    • Hong, J., Shen, Q., Residential density and transportation emissions: examining the connection by addressing spatial autocorrelation and self-selection. Transp. Res. Part D. Transp. Environ. 22 (2013), 75–79, 10.1016/j.trd.2013.03.006.
    • (2013) Transp. Res. Part D. Transp. Environ. , vol.22 , pp. 75-79
    • Hong, J.1    Shen, Q.2
  • 21
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: a review
    • Kalogirou, S.A., Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29 (2003), 515–566, 10.1016/S0360-1285(03)00058-3.
    • (2003) Prog. Energy Combust. Sci. , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 22
    • 52949141446 scopus 로고    scopus 로고
    • Road-transport emission projections to 2020 in European urban environments
    • Kousoulidou, M., Ntziachristos, L., Mellios, G., Samaras, Z., Road-transport emission projections to 2020 in European urban environments. Atmos. Environ. 42 (2008), 7465–7475, 10.1016/j.atmosenv.2008.06.002.
    • (2008) Atmos. Environ. , vol.42 , pp. 7465-7475
    • Kousoulidou, M.1    Ntziachristos, L.2    Mellios, G.3    Samaras, Z.4
  • 23
    • 84880266711 scopus 로고    scopus 로고
    • Energy analysis of a building using artificial neural network: a review
    • Kumara, R., Aggarwal, R.K., Sharma, J.D., Energy analysis of a building using artificial neural network: a review. Energy Build. 65 (2013), 352–358, 10.1016/j.enbuild.2013.06.007.
    • (2013) Energy Build. , vol.65 , pp. 352-358
    • Kumara, R.1    Aggarwal, R.K.2    Sharma, J.D.3
  • 24
    • 0002129055 scopus 로고
    • Economic growth and income inequality
    • Kuznets, S., Economic growth and income inequality. Am. Econ. Rev. 45 (1955), 1–28.
    • (1955) Am. Econ. Rev. , vol.45 , pp. 1-28
    • Kuznets, S.1
  • 25
    • 0242317861 scopus 로고    scopus 로고
    • Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks
    • Lee, W.-Y., House, J.M., Kyong, N.-H., Subsystem level fault diagnosis of a building's air-handling unit using general regression neural networks. Appl. Energy 77 (2004), 153–170, 10.1016/S0306-2619(03)00107-7.
    • (2004) Appl. Energy , vol.77 , pp. 153-170
    • Lee, W.-Y.1    House, J.M.2    Kyong, N.-H.3
  • 26
    • 77955926885 scopus 로고    scopus 로고
    • Potential emissions reduction in road transport sector using biofuel in developing countries
    • Liaquat, A.M., Kalam, M.A., Masjuki, H.H., Jayed, M.H., Potential emissions reduction in road transport sector using biofuel in developing countries. Atmos. Environ. 44 (2010), 3869–3877, 10.1016/j.atmosenv.2010.07.003.
    • (2010) Atmos. Environ. , vol.44 , pp. 3869-3877
    • Liaquat, A.M.1    Kalam, M.A.2    Masjuki, H.H.3    Jayed, M.H.4
  • 27
    • 33947661902 scopus 로고    scopus 로고
    • Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors
    • Lim, Y., Moon, Y.-S., Kim, T.-W., Artificial neural network approach for prediction of ammonia emission from field-applied manure and relative significance assessment of ammonia emission factors. Eur. J. Agron. 26 (2007), 425–434, 10.1016/j.eja.2007.01.008.
    • (2007) Eur. J. Agron. , vol.26 , pp. 425-434
    • Lim, Y.1    Moon, Y.-S.2    Kim, T.-W.3
  • 28
    • 77952289987 scopus 로고    scopus 로고
    • Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems
    • Luitel, B., Venayagamoorthy, G.K., Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems. Neural Netw. 23 (2010), 583–586, 10.1016/j.neunet.2009.12.009.
    • (2010) Neural Netw. , vol.23 , pp. 583-586
    • Luitel, B.1    Venayagamoorthy, G.K.2
  • 29
    • 84876972106 scopus 로고    scopus 로고
    • Prediction of emissions from biodiesel fueled transit buses using artificial neural networks
    • Mudgal, A., Gopalakrishnan, K., Hallmark, S., Prediction of emissions from biodiesel fueled transit buses using artificial neural networks. Int. J. Traffic Transp. Eng. 1 (2011), 115–131.
    • (2011) Int. J. Traffic Transp. Eng. , vol.1 , pp. 115-131
    • Mudgal, A.1    Gopalakrishnan, K.2    Hallmark, S.3
  • 30
    • 85041549330 scopus 로고    scopus 로고
    • Improving emission inventories for effective air quality management across North America
    • (Accessed 1 January 2015)
    • NARSTO, Improving emission inventories for effective air quality management across North America. NARSTO 05–001, 2005 http://www.narsto.org/sites/narsto.org/files/Cover_TitlePage.pdf. (Accessed 1 January 2015)
    • (2005) NARSTO 05–001
    • NARSTO1
  • 31
    • 84988953783 scopus 로고    scopus 로고
    • Multi-output ANN model for prediction of seven meteorological parameters in a weather station
    • Raza, K., Jothiprakash, V., Multi-output ANN model for prediction of seven meteorological parameters in a weather station. J. Inst. Eng. India Ser. A 95 (2014), 221–229, 10.1007/s40030-014-0092-9.
    • (2014) J. Inst. Eng. India Ser. A , vol.95 , pp. 221-229
    • Raza, K.1    Jothiprakash, V.2
  • 32
    • 84924964323 scopus 로고    scopus 로고
    • Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories
    • Reyna, J.L., Chester, M.V., Ahn, S., Fraser, A.M., Improving the accuracy of vehicle emissions profiles for urban transportation greenhouse gas and air pollution inventories. Environ. Sci. Technol. 49 (2015), 369–376, 10.1021/es5023575.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 369-376
    • Reyna, J.L.1    Chester, M.V.2    Ahn, S.3    Fraser, A.M.4
  • 33
    • 33749266885 scopus 로고    scopus 로고
    • Performance and exhaust emissions of a gasoline engine using artificial neural network
    • Sayin, C., Ertunc, H.M., Hosoz, M., et al. Performance and exhaust emissions of a gasoline engine using artificial neural network. Appl. Therm. Eng. 27 (2007), 46–54, 10.1016/j.applthermaleng.2006.05.016.
    • (2007) Appl. Therm. Eng. , vol.27 , pp. 46-54
    • Sayin, C.1    Ertunc, H.M.2    Hosoz, M.3
  • 34
    • 85020021392 scopus 로고    scopus 로고
    • Effects of long-term exposure to traffic-related air pollution on lung function in children
    • Schultz, E.S., Litonjua, A.A., Melén, E., Effects of long-term exposure to traffic-related air pollution on lung function in children. Curr. Allergy Asthma Rep., 17, 2017, 41, 10.1007/s11882-017-0709-y.
    • (2017) Curr. Allergy Asthma Rep. , vol.17 , pp. 41
    • Schultz, E.S.1    Litonjua, A.A.2    Melén, E.3
  • 35
    • 34047254142 scopus 로고    scopus 로고
    • Suitability of different neural networks in daily flow forecasting
    • Singh, P., Deo, M., Suitability of different neural networks in daily flow forecasting. Appl. Soft Comput. 7 (2007), 968–978, 10.1016/j.asoc.2006.05.003.
    • (2007) Appl. Soft Comput. , vol.7 , pp. 968-978
    • Singh, P.1    Deo, M.2
  • 36
    • 85029078374 scopus 로고    scopus 로고
    • Early-life exposure to air pollutants and adverse pregnancy outcomes: protocol for a prospective cohort study in Beijing
    • Song, J., Chen, Y., Wei, L., Ma, Y., Tian, N., Huang, S.Y., Dai, Y.M., Zhao, L.H., Kong, Y.Y., Early-life exposure to air pollutants and adverse pregnancy outcomes: protocol for a prospective cohort study in Beijing. BMJ Open, 7, 2017, e015895, 10.1136/bmjopen-2017-015895.
    • (2017) BMJ Open , vol.7 , pp. e015895
    • Song, J.1    Chen, Y.2    Wei, L.3    Ma, Y.4    Tian, N.5    Huang, S.Y.6    Dai, Y.M.7    Zhao, L.H.8    Kong, Y.Y.9
  • 37
    • 0026254768 scopus 로고
    • A general regression neural network
    • Specht, D.F., A general regression neural network. IEEE Trans. Neural Netw. 2 (1991), 568–576.
    • (1991) IEEE Trans. Neural Netw. , vol.2 , pp. 568-576
    • Specht, D.F.1
  • 38
    • 84949102128 scopus 로고    scopus 로고
    • Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach
    • Stamenković L.J., Antanasijević D.Z., Ristić M.Đ., et al. Modeling of ammonia emission in the USA and EU countries using an artificial neural network approach. Environ. Sci. Pollut. Res. 22 (2015), 18849–18858, 10.1007/s11356-015-5075-5.
    • (2015) Environ. Sci. Pollut. Res. , vol.22 , pp. 18849-18858
    • Stamenković, L.J.1    Antanasijević, D.Z.2    Ristić, M.Đ.3
  • 39
    • 84958767328 scopus 로고    scopus 로고
    • Estimation of NMVOC emissions using artificial neural networks and economical and sustainability indicators as inputs
    • Stamenković L.J., Antanasijević D.Z., Ristić M.Đ., et al. Estimation of NMVOC emissions using artificial neural networks and economical and sustainability indicators as inputs. Environ. Sci. Pollut. Res. 23 (2016), 10753–10762, 10.1007/s11356-016-6279-z.
    • (2016) Environ. Sci. Pollut. Res. , vol.23 , pp. 10753-10762
    • Stamenković, L.J.1    Antanasijević, D.Z.2    Ristić, M.Đ.3
  • 40
    • 84963739228 scopus 로고    scopus 로고
    • Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model
    • Stamenković L.J., Antanasijević D.Z., Ristić M.Đ., et al. Prediction of nitrogen oxides emissions at the national level based on optimized artificial neural network model. Air Qual. Atmos. Heal 10 (2017), 15–23, 10.1007/s11869-016-0403-6.
    • (2017) Air Qual. Atmos. Heal , vol.10 , pp. 15-23
    • Stamenković, L.J.1    Antanasijević, D.Z.2    Ristić, M.Đ.3
  • 41
    • 77954167808 scopus 로고    scopus 로고
    • Transport impacts on atmosphere and climate: land transport
    • Uherek, E., Halenka, T., Borken-Kleefeld, J., et al. Transport impacts on atmosphere and climate: land transport. Atmos. Environ. 44 (2010), 4772–4816, 10.1016/j.atmosenv.2010.01.002.
    • (2010) Atmos. Environ. , vol.44 , pp. 4772-4816
    • Uherek, E.1    Halenka, T.2    Borken-Kleefeld, J.3
  • 42
    • 85041544588 scopus 로고    scopus 로고
    • GRNN genetic adaptive learning
    • Ward systems group Inc, GRNN genetic adaptive learning. http://www.wardsystems.com/manuals/neuroshell2/index.html?idxhowuse.htm, 2008.
    • (2008)
    • Ward systems group Inc1
  • 44
    • 14744274337 scopus 로고    scopus 로고
    • Modelling of traffic flow and air pollution emission with application to Hong Kong Island
    • Xia, L., Shao, Y., Modelling of traffic flow and air pollution emission with application to Hong Kong Island. Environ. Model Softw. 20 (2005), 1175–1188, 10.1016/j.envsoft.2004.08.003.
    • (2005) Environ. Model Softw. , vol.20 , pp. 1175-1188
    • Xia, L.1    Shao, Y.2
  • 45
    • 84869470698 scopus 로고    scopus 로고
    • An artificial neural network for predicting the friction coefficient of deposited Cr1−xAlxC films
    • Yang, Y.-S., Chou, J.-H., Huang, W., et al. An artificial neural network for predicting the friction coefficient of deposited Cr1−xAlxC films. Appl. Soft Comput. 13 (2013), 109–115, 10.1016/j.asoc.2012.08.019.
    • (2013) Appl. Soft Comput. , vol.13 , pp. 109-115
    • Yang, Y.-S.1    Chou, J.-H.2    Huang, W.3
  • 46
    • 71849107473 scopus 로고    scopus 로고
    • Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation
    • Zhao, B., Zhang, Z., Jin, J., Pan, W.-P., Modeling mercury speciation in combustion flue gases using support vector machine: prediction and evaluation. J. Hazard Mater 174 (2010), 244–250, 10.1016/j.jhazmat.2009.09.042.
    • (2010) J. Hazard Mater , vol.174 , pp. 244-250
    • Zhao, B.1    Zhang, Z.2    Jin, J.3    Pan, W.-P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.