메뉴 건너뛰기




Volumn 10, Issue 2, 2019, Pages 621-628

The significance of periodic parameters for ANN modeling of daily SO 2 and NOx concentrations: A case study of Belgrade, Serbia

Author keywords

Air pollutant forecasting; GRNN; Month of year; Urban air pollution; Ward neural network

Indexed keywords


EID: 85061674055     PISSN: 13091042     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apr.2018.11.004     Document Type: Article
Times cited : (22)

References (26)
  • 1
    • 84878935220 scopus 로고    scopus 로고
    • Forecasting human exposure to PM10 at the national level using an artificial neural network approach
    • Antanasijević, D.Z., Ristić, M.Đ., Perić-Grujić, A. a., Pocajt, V.V., Forecasting human exposure to PM10 at the national level using an artificial neural network approach. J. Chemom. 27 (2013), 170–177.
    • (2013) J. Chemom. , vol.27 , pp. 170-177
    • Antanasijević, D.Z.1    Ristić, M.Đ.2    Perić-Grujić, A.A.3    Pocajt, V.V.4
  • 3
    • 84908377307 scopus 로고    scopus 로고
    • Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
    • Antanasijević, D., Pocajt, V., Perić-Grujić, A., Ristić, M., Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol. 519 (2014), 1895–1907.
    • (2014) J. Hydrol. , vol.519 , pp. 1895-1907
    • Antanasijević, D.1    Pocajt, V.2    Perić-Grujić, A.3    Ristić, M.4
  • 4
    • 84889639492 scopus 로고    scopus 로고
    • Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis
    • Antanasijević, D.Z., Ristić, M.Đ., Perić-Grujić, A.A., Pocajt, V.V., Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. Int. J. Greenh. Gas Control 20 (2014), 244–253.
    • (2014) Int. J. Greenh. Gas Control , vol.20 , pp. 244-253
    • Antanasijević, D.Z.1    Ristić, M.Đ.2    Perić-Grujić, A.A.3    Pocajt, V.V.4
  • 5
    • 84879686138 scopus 로고    scopus 로고
    • Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations
    • Arhami, M., Kamali, N., Rajabi, M.M., Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. Res. Int. 20 (2013), 4777–4789.
    • (2013) Environ. Sci. Pollut. Res. Int. , vol.20 , pp. 4777-4789
    • Arhami, M.1    Kamali, N.2    Rajabi, M.M.3
  • 7
    • 33947402188 scopus 로고    scopus 로고
    • Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
    • Brunelli, U., Piazza, V., Pignato, L., Sorbello, F., Vitabile, S., Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ. 41 (2007), 2967–2995.
    • (2007) Atmos. Environ. , vol.41 , pp. 2967-2995
    • Brunelli, U.1    Piazza, V.2    Pignato, L.3    Sorbello, F.4    Vitabile, S.5
  • 9
    • 85046134663 scopus 로고    scopus 로고
    • Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
    • Gao, M., Yin, L., Ning, J., Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmos. Environ. 184 (2018), 129–139.
    • (2018) Atmos. Environ. , vol.184 , pp. 129-139
    • Gao, M.1    Yin, L.2    Ning, J.3
  • 10
    • 0033081112 scopus 로고    scopus 로고
    • Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London
    • Gardner, M.W., Dorling, S.R., Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33 (1999), 709–719.
    • (1999) Atmos. Environ. , vol.33 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 11
    • 38149109707 scopus 로고    scopus 로고
    • From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao
    • Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J., Ezcurra, A., Diaz de Argandoña, J., From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao. Environ. Model. Softw. 23 (2008), 622–637.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 622-637
    • Ibarra-Berastegi, G.1    Elias, A.2    Barona, A.3    Saenz, J.4    Ezcurra, A.5    Diaz de Argandoña, J.6
  • 12
    • 53349162039 scopus 로고    scopus 로고
    • Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis
    • Juhos, I., Makra, L., Tóth, B., Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simulat. Model. Pract. Theory 16 (2008), 1488–1502.
    • (2008) Simulat. Model. Pract. Theory , vol.16 , pp. 1488-1502
    • Juhos, I.1    Makra, L.2    Tóth, B.3
  • 13
    • 0242269356 scopus 로고    scopus 로고
    • Artificial intelligence for the modeling and control of combustion processes: a review
    • Kalogirou, S.A., Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29 (2003), 515–566.
    • (2003) Prog. Energy Combust. Sci. , vol.29 , pp. 515-566
    • Kalogirou, S.A.1
  • 15
    • 0043282649 scopus 로고    scopus 로고
    • Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki
    • Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G., Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 37 (2003), 4539–4550.
    • (2003) Atmos. Environ. , vol.37 , pp. 4539-4550
    • Kukkonen, J.1    Partanen, L.2    Karppinen, A.3    Ruuskanen, J.4    Junninen, H.5    Kolehmainen, M.6    Niska, H.7    Dorling, S.8    Chatterton, T.9    Foxall, R.10    Cawley, G.11
  • 16
    • 84906761463 scopus 로고    scopus 로고
    • Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
    • Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., Corrêa, S.M., Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos. Environ. 98 (2014), 98–104.
    • (2014) Atmos. Environ. , vol.98 , pp. 98-104
    • Luna, A.S.1    Paredes, M.L.L.2    de Oliveira, G.C.G.3    Corrêa, S.M.4
  • 17
    • 0029545035 scopus 로고
    • The model validation exercise at mol: overview of results
    • Olesen, H.R., The model validation exercise at mol: overview of results. Int. J. Environ. Pollut. 5 (1995), 761–784.
    • (1995) Int. J. Environ. Pollut. , vol.5 , pp. 761-784
    • Olesen, H.R.1
  • 18
    • 9944223325 scopus 로고    scopus 로고
    • Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua)
    • Ordieres, J.B., Vergara, E.P., Capuz, R.S., Salazar, R.E., Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 20 (2005), 547–559.
    • (2005) Environ. Model. Softw. , vol.20 , pp. 547-559
    • Ordieres, J.B.1    Vergara, E.P.2    Capuz, R.S.3    Salazar, R.E.4
  • 19
    • 85026261765 scopus 로고    scopus 로고
    • Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River
    • Raheli, B., Aalami, M.T., El-Shafie, A., Ghorbani, M.A., Deo, R.C., Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River. Environ. Earth Sci., 76, 2017, 503.
    • (2017) Environ. Earth Sci. , vol.76 , pp. 503
    • Raheli, B.1    Aalami, M.T.2    El-Shafie, A.3    Ghorbani, M.A.4    Deo, R.C.5
  • 20
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart, D.E., Hinton, G., Williams, R., Learning representations by back-propagating errors. Nature 323 (1986), 534–536.
    • (1986) Nature , vol.323 , pp. 534-536
    • Rumelhart, D.E.1    Hinton, G.2    Williams, R.3
  • 21
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh, K.P., Gupta, S., Kumar, A., Shukla, S.P., Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 426 (2012), 244–255.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 23
    • 38049067157 scopus 로고    scopus 로고
    • Improving air temperature prediction with artificial neural networks
    • Smith, B.A., Mcclendon, R.W., Hoogenboom, G., Improving air temperature prediction with artificial neural networks. Int. J. Comput. Inf. Eng., 1, 2007, 3159.
    • (2007) Int. J. Comput. Inf. Eng. , vol.1 , pp. 3159
    • Smith, B.A.1    Mcclendon, R.W.2    Hoogenboom, G.3
  • 24
    • 79951811720 scopus 로고    scopus 로고
    • Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki
    • Vlachogianni, A., Kassomenos, P., Karppinen, A., Karakitsios, S., Kukkonen, J., Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total Environ. 409 (2011), 1559–1571.
    • (2011) Sci. Total Environ. , vol.409 , pp. 1559-1571
    • Vlachogianni, A.1    Kassomenos, P.2    Karppinen, A.3    Karakitsios, S.4    Kukkonen, J.5
  • 25
    • 84910010835 scopus 로고    scopus 로고
    • A novel hybrid forecasting model for PM10 and SO2 daily concentrations
    • Wang, P., Liu, Y., Qin, Z., Zhang, G., A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 505 (2015), 1202–1212.
    • (2015) Sci. Total Environ. , vol.505 , pp. 1202-1212
    • Wang, P.1    Liu, Y.2    Qin, Z.3    Zhang, G.4
  • 26
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • Willmott, C.J., Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30 (2005), 79–82.
    • (2005) Clim. Res. , vol.30 , pp. 79-82
    • Willmott, C.J.1    Matsuura, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.