-
1
-
-
84878935220
-
Forecasting human exposure to PM10 at the national level using an artificial neural network approach
-
Antanasijević, D.Z., Ristić, M.Đ., Perić-Grujić, A. a., Pocajt, V.V., Forecasting human exposure to PM10 at the national level using an artificial neural network approach. J. Chemom. 27 (2013), 170–177.
-
(2013)
J. Chemom.
, vol.27
, pp. 170-177
-
-
Antanasijević, D.Z.1
Ristić, M.Đ.2
Perić-Grujić, A.A.3
Pocajt, V.V.4
-
2
-
-
84870298794
-
PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
-
Antanasijević, D.Z., Pocajt, V.V., Povrenović, D.S., Ristić, M.Đ., Perić-Grujić, A.A., PM 10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 443 (2013), 511–519.
-
(2013)
Sci. Total Environ.
, vol.443
, pp. 511-519
-
-
Antanasijević, D.Z.1
Pocajt, V.V.2
Povrenović, D.S.3
Ristić, M.Đ.4
Perić-Grujić, A.A.5
-
3
-
-
84908377307
-
Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
-
Antanasijević, D., Pocajt, V., Perić-Grujić, A., Ristić, M., Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol. 519 (2014), 1895–1907.
-
(2014)
J. Hydrol.
, vol.519
, pp. 1895-1907
-
-
Antanasijević, D.1
Pocajt, V.2
Perić-Grujić, A.3
Ristić, M.4
-
4
-
-
84889639492
-
Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis
-
Antanasijević, D.Z., Ristić, M.Đ., Perić-Grujić, A.A., Pocajt, V.V., Forecasting GHG emissions using an optimized artificial neural network model based on correlation and principal component analysis. Int. J. Greenh. Gas Control 20 (2014), 244–253.
-
(2014)
Int. J. Greenh. Gas Control
, vol.20
, pp. 244-253
-
-
Antanasijević, D.Z.1
Ristić, M.Đ.2
Perić-Grujić, A.A.3
Pocajt, V.V.4
-
5
-
-
84879686138
-
Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations
-
Arhami, M., Kamali, N., Rajabi, M.M., Predicting hourly air pollutant levels using artificial neural networks coupled with uncertainty analysis by Monte Carlo simulations. Environ. Sci. Pollut. Res. Int. 20 (2013), 4777–4789.
-
(2013)
Environ. Sci. Pollut. Res. Int.
, vol.20
, pp. 4777-4789
-
-
Arhami, M.1
Kamali, N.2
Rajabi, M.M.3
-
6
-
-
84879641006
-
A cyclostationary neural network model for the prediction of the NO2 concentration
-
Bianchini, M., Iorio, E. Di, Maggini, M., Mocenni, C., Pucci, A., A cyclostationary neural network model for the prediction of the NO2 concentration. ESANN'2006 Proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium), 2006, 26–28.
-
(2006)
ESANN'2006 Proceedings - European Symposium on Artificial Neural Networks Bruges (Belgium)
, pp. 26-28
-
-
Bianchini, M.1
Iorio, E.D.2
Maggini, M.3
Mocenni, C.4
Pucci, A.5
-
7
-
-
33947402188
-
Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy
-
Brunelli, U., Piazza, V., Pignato, L., Sorbello, F., Vitabile, S., Two-days ahead prediction of daily maximum concentrations of SO2, O3, PM10, NO2, CO in the urban area of Palermo, Italy. Atmos. Environ. 41 (2007), 2967–2995.
-
(2007)
Atmos. Environ.
, vol.41
, pp. 2967-2995
-
-
Brunelli, U.1
Piazza, V.2
Pignato, L.3
Sorbello, F.4
Vitabile, S.5
-
8
-
-
84863769646
-
Assessment and prediction of air quality using fuzzy logic and autoregressive models
-
Carbajal-Hernández, J.J., Sánchez-Fernández, L.P., Carrasco-Ochoa, J.A., Martínez-Trinidad, J.F., Assessment and prediction of air quality using fuzzy logic and autoregressive models. Atmos. Environ. 60 (2012), 37–50.
-
(2012)
Atmos. Environ.
, vol.60
, pp. 37-50
-
-
Carbajal-Hernández, J.J.1
Sánchez-Fernández, L.P.2
Carrasco-Ochoa, J.A.3
Martínez-Trinidad, J.F.4
-
9
-
-
85046134663
-
Artificial neural network model for ozone concentration estimation and Monte Carlo analysis
-
Gao, M., Yin, L., Ning, J., Artificial neural network model for ozone concentration estimation and Monte Carlo analysis. Atmos. Environ. 184 (2018), 129–139.
-
(2018)
Atmos. Environ.
, vol.184
, pp. 129-139
-
-
Gao, M.1
Yin, L.2
Ning, J.3
-
10
-
-
0033081112
-
Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London
-
Gardner, M.W., Dorling, S.R., Neural network modelling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33 (1999), 709–719.
-
(1999)
Atmos. Environ.
, vol.33
, pp. 709-719
-
-
Gardner, M.W.1
Dorling, S.R.2
-
11
-
-
38149109707
-
From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao
-
Ibarra-Berastegi, G., Elias, A., Barona, A., Saenz, J., Ezcurra, A., Diaz de Argandoña, J., From diagnosis to prognosis for forecasting air pollution using neural networks: air pollution monitoring in Bilbao. Environ. Model. Softw. 23 (2008), 622–637.
-
(2008)
Environ. Model. Softw.
, vol.23
, pp. 622-637
-
-
Ibarra-Berastegi, G.1
Elias, A.2
Barona, A.3
Saenz, J.4
Ezcurra, A.5
Diaz de Argandoña, J.6
-
12
-
-
53349162039
-
Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis
-
Juhos, I., Makra, L., Tóth, B., Forecasting of traffic origin NO and NO2 concentrations by support vector machines and neural networks using principal component analysis. Simulat. Model. Pract. Theory 16 (2008), 1488–1502.
-
(2008)
Simulat. Model. Pract. Theory
, vol.16
, pp. 1488-1502
-
-
Juhos, I.1
Makra, L.2
Tóth, B.3
-
13
-
-
0242269356
-
Artificial intelligence for the modeling and control of combustion processes: a review
-
Kalogirou, S.A., Artificial intelligence for the modeling and control of combustion processes: a review. Prog. Energy Combust. Sci. 29 (2003), 515–566.
-
(2003)
Prog. Energy Combust. Sci.
, vol.29
, pp. 515-566
-
-
Kalogirou, S.A.1
-
14
-
-
85061651828
-
Stanje kvaliteta vazduha u Republici Srbiji u svetlu daljih evropskih integracija, in Serbian
-
Available at:
-
Knežević, J., Jović, B., Marić Tanasković, L., Stanje kvaliteta vazduha u Republici Srbiji u svetlu daljih evropskih integracija, in Serbian. 45th Conference “Air Protection 2017” Proceedings, Subotica, Serbia, 2017 Available at: http://www.sepa.gov.rs/download/prezentacije/2017/SavetZastitaVazduha2017_KvVazduha.pdf.
-
(2017)
45th Conference “Air Protection 2017” Proceedings, Subotica, Serbia
-
-
Knežević, J.1
Jović, B.2
Marić Tanasković, L.3
-
15
-
-
0043282649
-
Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki
-
Kukkonen, J., Partanen, L., Karppinen, A., Ruuskanen, J., Junninen, H., Kolehmainen, M., Niska, H., Dorling, S., Chatterton, T., Foxall, R., Cawley, G., Extensive evaluation of neural network models for the prediction of NO2 and PM10 concentrations, compared with a deterministic modelling system and measurements in central Helsinki. Atmos. Environ. 37 (2003), 4539–4550.
-
(2003)
Atmos. Environ.
, vol.37
, pp. 4539-4550
-
-
Kukkonen, J.1
Partanen, L.2
Karppinen, A.3
Ruuskanen, J.4
Junninen, H.5
Kolehmainen, M.6
Niska, H.7
Dorling, S.8
Chatterton, T.9
Foxall, R.10
Cawley, G.11
-
16
-
-
84906761463
-
Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil
-
Luna, A.S., Paredes, M.L.L., de Oliveira, G.C.G., Corrêa, S.M., Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at Rio de Janeiro, Brazil. Atmos. Environ. 98 (2014), 98–104.
-
(2014)
Atmos. Environ.
, vol.98
, pp. 98-104
-
-
Luna, A.S.1
Paredes, M.L.L.2
de Oliveira, G.C.G.3
Corrêa, S.M.4
-
17
-
-
0029545035
-
The model validation exercise at mol: overview of results
-
Olesen, H.R., The model validation exercise at mol: overview of results. Int. J. Environ. Pollut. 5 (1995), 761–784.
-
(1995)
Int. J. Environ. Pollut.
, vol.5
, pp. 761-784
-
-
Olesen, H.R.1
-
18
-
-
9944223325
-
Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua)
-
Ordieres, J.B., Vergara, E.P., Capuz, R.S., Salazar, R.E., Neural network prediction model for fine particulate matter (PM2.5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 20 (2005), 547–559.
-
(2005)
Environ. Model. Softw.
, vol.20
, pp. 547-559
-
-
Ordieres, J.B.1
Vergara, E.P.2
Capuz, R.S.3
Salazar, R.E.4
-
19
-
-
85026261765
-
Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River
-
Raheli, B., Aalami, M.T., El-Shafie, A., Ghorbani, M.A., Deo, R.C., Uncertainty assessment of the multilayer perceptron (MLP) neural network model with implementation of the novel hybrid MLP-FFA method for prediction of biochemical oxygen demand and dissolved oxygen: a case study of Langat River. Environ. Earth Sci., 76, 2017, 503.
-
(2017)
Environ. Earth Sci.
, vol.76
, pp. 503
-
-
Raheli, B.1
Aalami, M.T.2
El-Shafie, A.3
Ghorbani, M.A.4
Deo, R.C.5
-
20
-
-
0022471098
-
Learning representations by back-propagating errors
-
Rumelhart, D.E., Hinton, G., Williams, R., Learning representations by back-propagating errors. Nature 323 (1986), 534–536.
-
(1986)
Nature
, vol.323
, pp. 534-536
-
-
Rumelhart, D.E.1
Hinton, G.2
Williams, R.3
-
21
-
-
84860697230
-
Linear and nonlinear modeling approaches for urban air quality prediction
-
Singh, K.P., Gupta, S., Kumar, A., Shukla, S.P., Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 426 (2012), 244–255.
-
(2012)
Sci. Total Environ.
, vol.426
, pp. 244-255
-
-
Singh, K.P.1
Gupta, S.2
Kumar, A.3
Shukla, S.P.4
-
22
-
-
62749136437
-
An enhanced artificial neural network for air temperature prediction
-
Smith, B.A., Mcclendon, R.W., Hoogenboom, G., An enhanced artificial neural network for air temperature prediction. Int. J. Comput. Electr. Autom. Control Inf. Eng. 1 (2007), 2160–2165.
-
(2007)
Int. J. Comput. Electr. Autom. Control Inf. Eng.
, vol.1
, pp. 2160-2165
-
-
Smith, B.A.1
Mcclendon, R.W.2
Hoogenboom, G.3
-
23
-
-
38049067157
-
Improving air temperature prediction with artificial neural networks
-
Smith, B.A., Mcclendon, R.W., Hoogenboom, G., Improving air temperature prediction with artificial neural networks. Int. J. Comput. Inf. Eng., 1, 2007, 3159.
-
(2007)
Int. J. Comput. Inf. Eng.
, vol.1
, pp. 3159
-
-
Smith, B.A.1
Mcclendon, R.W.2
Hoogenboom, G.3
-
24
-
-
79951811720
-
Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki
-
Vlachogianni, A., Kassomenos, P., Karppinen, A., Karakitsios, S., Kukkonen, J., Evaluation of a multiple regression model for the forecasting of the concentrations of NOx and PM10 in Athens and Helsinki. Sci. Total Environ. 409 (2011), 1559–1571.
-
(2011)
Sci. Total Environ.
, vol.409
, pp. 1559-1571
-
-
Vlachogianni, A.1
Kassomenos, P.2
Karppinen, A.3
Karakitsios, S.4
Kukkonen, J.5
-
25
-
-
84910010835
-
A novel hybrid forecasting model for PM10 and SO2 daily concentrations
-
Wang, P., Liu, Y., Qin, Z., Zhang, G., A novel hybrid forecasting model for PM10 and SO2 daily concentrations. Sci. Total Environ. 505 (2015), 1202–1212.
-
(2015)
Sci. Total Environ.
, vol.505
, pp. 1202-1212
-
-
Wang, P.1
Liu, Y.2
Qin, Z.3
Zhang, G.4
-
26
-
-
30444437204
-
Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
-
Willmott, C.J., Matsuura, K., Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim. Res. 30 (2005), 79–82.
-
(2005)
Clim. Res.
, vol.30
, pp. 79-82
-
-
Willmott, C.J.1
Matsuura, K.2
|