메뉴 건너뛰기




Volumn 226, Issue 8, 2015, Pages

Estimation of PM10-Bound As, Cd, Ni and Pb Levels by Means of Statistical Modelling: PLSR and ANN Approaches

Author keywords

ANN; Metals; PLSR; PM10; Statistical modelling

Indexed keywords

AIR QUALITY; LEAST SQUARES APPROXIMATIONS; METALS; NEURAL NETWORKS; URBAN GROWTH;

EID: 84938060791     PISSN: 00496979     EISSN: 15732932     Source Type: Journal    
DOI: 10.1007/s11270-015-2526-z     Document Type: Article
Times cited : (1)

References (55)
  • 1
    • 76349111180 scopus 로고    scopus 로고
    • Partial least squares regression and projection on latent structure regression (PLS regression)
    • Abdi, H. (2010). Partial least squares regression and projection on latent structure regression (PLS regression). Wiley Interdisciplinary Reviews: Computational Statistics, 2(1), 97-106.
    • (2010) Wiley Interdisciplinary Reviews: Computational Statistics , vol.2 , Issue.1 , pp. 97-106
    • Abdi, H.1
  • 2
    • 0036224943 scopus 로고    scopus 로고
    • Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks
    • Abdul-Wahab, S. A., & Al-Alawi, S. M. (2002). Assessment and prediction of tropospheric ozone concentration levels using artificial neural networks. Environmental Modelling and Software, 17(3), 219-228.
    • (2002) Environmental Modelling and Software , vol.17 , Issue.3 , pp. 219-228
    • Abdul-Wahab, S.A.1    Al-Alawi, S.M.2
  • 4
    • 79960182224 scopus 로고    scopus 로고
    • Assessment of regional metal levels in ambient air by statistical regression models
    • 1:CAS:528:DC%2BC3MXosVCrurc%3D
    • Arruti, A., Fernández-Olmo, I., & Irabien, A. (2011). Assessment of regional metal levels in ambient air by statistical regression models. Journal of Environmental Monitoring, 13(7), 1991-2000.
    • (2011) Journal of Environmental Monitoring , vol.13 , Issue.7 , pp. 1991-2000
    • Arruti, A.1    Fernández-Olmo, I.2    Irabien, A.3
  • 7
    • 57449100830 scopus 로고    scopus 로고
    • Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach
    • Cai, M., Yin, Y., & Xie, M. (2009). Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach. Transportation Research Part D: Transport and Environment, 14(1), 32-41.
    • (2009) Transportation Research Part D: Transport and Environment , vol.14 , Issue.1 , pp. 32-41
    • Cai, M.1    Yin, Y.2    Xie, M.3
  • 8
    • 67449142558 scopus 로고    scopus 로고
    • 10 forecasting: Comparison with a radial basis function network and a multivariate linear regression model
    • 1:CAS:528:DC%2BD1MXntVyrs7s%3D
    • 10 forecasting: comparison with a radial basis function network and a multivariate linear regression model. Water, Air, and Soil Pollution, 201(1-4), 365-377.
    • (2009) Water, Air, and Soil Pollution , vol.201 , Issue.1-4 , pp. 365-377
    • Caselli, M.1    Trizio, L.2    De Gennaro, G.3    Ielpo, P.4
  • 9
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
    • 1:CAS:528:DC%2BD3sXmtFyku70%3D
    • Chaloulakou, A., Saisana, M., & Spyrellis, N. (2003). Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Science of the Total Environment, 313(1-3), 1-13.
    • (2003) Science of the Total Environment , vol.313 , Issue.1-3 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 11
  • 14
    • 0031172117 scopus 로고    scopus 로고
    • Comparing neural networks and regression models for ozone forecasting
    • 1:CAS:528:DyaK2sXmtFGgtbY%3D
    • Comrie, A. C. (1997). Comparing neural networks and regression models for ozone forecasting. Journal of the Air and Waste Management Association, 47(6), 653-663.
    • (1997) Journal of the Air and Waste Management Association , vol.47 , Issue.6 , pp. 653-663
    • Comrie, A.C.1
  • 15
    • 84938123274 scopus 로고    scopus 로고
    • Guidance on the use of the models for the European Air Quality Directive. A working document of the Forum for Air Qualtiy Modelling in Europe
    • Denby, B. (2009). Guidance on the use of the models for the European Air Quality Directive. A working document of the Forum for Air Qualtiy Modelling in Europe, FAIRMODE. ETC/ACC Report.
    • (2009) FAIRMODE. ETC/ACC Report
    • Denby, B.1
  • 16
    • 84883441456 scopus 로고    scopus 로고
    • Air quality modelling, simulation, and computational methods: A review
    • 1:CAS:528:DC%2BC3sXhtFKrsL7K
    • El-Harbawi, M. (2013). Air quality modelling, simulation, and computational methods: a review. Environmental Reviews, 21(3), 149-179.
    • (2013) Environmental Reviews , vol.21 , Issue.3 , pp. 149-179
    • El-Harbawi, M.1
  • 17
    • 36849024028 scopus 로고    scopus 로고
    • Testing model accuracy measures according to the EU directives - Examples using the chemical transport model REM-CALGRID
    • Fleming, J., & Stern, R. (2007). Testing model accuracy measures according to the EU directives - examples using the chemical transport model REM-CALGRID. Atmospheric Environment, 41, 9206-9216.
    • (2007) Atmospheric Environment , vol.41 , pp. 9206-9216
    • Fleming, J.1    Stern, R.2
  • 18
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - A review of applications in the atmospheric sciences
    • 1:CAS:528:DyaK1cXks1Crs7c%3D
    • Gardner, M. W., & Dorling, S. R. (1998). Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment, 32(14-15), 2627-2636.
    • (1998) Atmospheric Environment , vol.32 , Issue.14-15 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 19
    • 0033081112 scopus 로고    scopus 로고
    • 2 concentrations in urban air in London
    • 1:CAS:528:DyaK1MXhtFalsL8%3D
    • 2 concentrations in urban air in London. Atmospheric Environment, 33(5), 709-719.
    • (1999) Atmospheric Environment , vol.33 , Issue.5 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 20
    • 31044433834 scopus 로고    scopus 로고
    • 10 hourly concentrations, in the Greater Area of Athens, Greece
    • 1:CAS:528:DC%2BD28Xls1CmtA%3D%3D
    • 10 hourly concentrations, in the Greater Area of Athens, Greece. Atmospheric Environment, 40(7), 1216-1229.
    • (2006) Atmospheric Environment , vol.40 , Issue.7 , pp. 1216-1229
    • Grivas, G.1    Chaloulakou, A.2
  • 21
    • 0002016955 scopus 로고
    • Plume dispersion and concentration fluctuations in the atmosphere
    • N. Cheremisinoff (eds) Gulf Publishing Co Houston, Texas
    • Hanna, S. R. (1989). Plume dispersion and concentration fluctuations in the atmosphere. In P. N. Cheremisinoff (Ed.), Encyclopedia of environmental control technology, vol. 2, air pollution control. Houston, Texas: Gulf Publishing Co.
    • (1989) Encyclopedia of Environmental Control Technology, Vol. 2, Air Pollution Control
    • Hanna, S.R.1
  • 23
    • 0026535943 scopus 로고
    • Statistical forecast models for daily air particulate iron and lead concentrations for Madrid, Spain
    • Hernández, E., Martín, F., & Valero, F. (1992). Statistical forecast models for daily air particulate iron and lead concentrations for Madrid, Spain. Atmospheric Environment, 26B, 107-116.
    • (1992) Atmospheric Environment , vol.26 , pp. 107-116
    • Hernández, E.1    Martín, F.2    Valero, F.3
  • 24
    • 64549146639 scopus 로고    scopus 로고
    • 10 concentrations by statistical time-varying model
    • 1:CAS:528:DC%2BD1MXks1ygu7c%3D
    • 10 concentrations by statistical time-varying model. Atmospheric Environment, 43(16), 2579-2581.
    • (2009) Atmospheric Environment , vol.43 , Issue.16 , pp. 2579-2581
    • Hoi, K.I.1    Yuen, K.V.2    Mok, K.M.3
  • 25
    • 70449405008 scopus 로고    scopus 로고
    • Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations
    • 1:CAS:528:DC%2BD1MXht1Cgu7%2FL
    • Hrust, L., Klaic, Z. B., Križan, J., Antonic, O., & Hercog, P. (2009). Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations. Atmospheric Environment, 43(35), 5588-5596.
    • (2009) Atmospheric Environment , vol.43 , Issue.35 , pp. 5588-5596
    • Hrust, L.1    Klaic, Z.B.2    Križan, J.3    Antonic, O.4    Hercog, P.5
  • 26
    • 85017022437 scopus 로고    scopus 로고
    • Artificial neural network prediction of tropospheric ozone concentrations in Istanbul, Turkey
    • 1:CAS:528:DC%2BC3cXhsVyjtLvJ
    • Inal, F. (2010). Artificial neural network prediction of tropospheric ozone concentrations in Istanbul, Turkey. Clean Soil Air Water, 38(10), 981.
    • (2010) Clean Soil Air Water , vol.38 , Issue.10 , pp. 981
    • Inal, F.1
  • 27
    • 9544219714 scopus 로고    scopus 로고
    • Progress in developing an ANN model for air pollution index forecast
    • 1:CAS:528:DC%2BD2cXhtVaisLbK
    • Jiang, D., Zhang, Y., Hu, X., Zeng, Y., Tan, J., & Shao, D. (2004). Progress in developing an ANN model for air pollution index forecast. Atmospheric Environment, 38(40 SPEC.ISS), 7055-7064.
    • (2004) Atmospheric Environment , vol.38 , pp. 7055-7064
    • Jiang, D.1    Zhang, Y.2    Hu, X.3    Zeng, Y.4    Tan, J.5    Shao, D.6
  • 28
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11(1), 137-148.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 30
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • 1:CAS:528:DC%2BD3cXoslalsrY%3D
    • Kolehmainen, M., Martikainen, H., & Ruuskanen, J. (2001). Neural networks and periodic components used in air quality forecasting. Atmospheric Environment, 35(5), 815-825.
    • (2001) Atmospheric Environment , vol.35 , Issue.5 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 32
    • 44749093365 scopus 로고    scopus 로고
    • An online air pollution forecasting system using neural networks
    • 1:CAS:528:DC%2BD1cXnslanu74%3D
    • Kurt, A., Gulbagci, B., Karaca, F., & Alagha, O. (2008). An online air pollution forecasting system using neural networks. Environment International, 34(5), 592-598.
    • (2008) Environment International , vol.34 , Issue.5 , pp. 592-598
    • Kurt, A.1    Gulbagci, B.2    Karaca, F.3    Alagha, O.4
  • 33
    • 70350457539 scopus 로고    scopus 로고
    • A prediction model of occupational manganese exposure based on artificial neural network
    • 1:CAS:528:DC%2BD1MXnt1Oqsr0%3D
    • Li, Y., Luo, F., Jiang, Y., Lu, Y., Huang, J., & Zhang, Z. (2009). A prediction model of occupational manganese exposure based on artificial neural network. Toxicology Mechanisms and Methods, 19(5), 337-345.
    • (2009) Toxicology Mechanisms and Methods , vol.19 , Issue.5 , pp. 337-345
    • Li, Y.1    Luo, F.2    Jiang, Y.3    Lu, Y.4    Huang, J.5    Zhang, Z.6
  • 35
    • 3142733594 scopus 로고    scopus 로고
    • Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong
    • 1:CAS:528:DC%2BD2cXlvVWhsLk%3D
    • Lu, W., Wang, W., Wang, X., Yan, S., & Lam, J. C. (2004). Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong. Environmental Research, 96(1), 79-87.
    • (2004) Environmental Research , vol.96 , Issue.1 , pp. 79-87
    • Lu, W.1    Wang, W.2    Wang, X.3    Yan, S.4    Lam, J.C.5
  • 37
    • 84938123275 scopus 로고    scopus 로고
    • Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA)
    • Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA), 2015. Histórico de informes de episodios naturales. http://www.magrama.gob.es/es/calidad-y-evaluacion-ambiental/temas/atmosfera-y-calidad-del-aire/calidad-del-aire/gestion/anuales.aspx
    • (2015) Histórico de Informes de Episodios Naturales
  • 38
    • 26444607469 scopus 로고    scopus 로고
    • Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations
    • 1:CAS:528:DC%2BD2MXhtVOhtb%2FK
    • Niska, H., Rantamäki, M., Hiltunen, T., Karppinen, A., Kukkonen, J., Ruuskanen, J., & Kolehmainen, M. (2005). Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment, 39(35), 6524-6536.
    • (2005) Atmospheric Environment , vol.39 , Issue.35 , pp. 6524-6536
    • Niska, H.1    Rantamäki, M.2    Hiltunen, T.3    Karppinen, A.4    Kukkonen, J.5    Ruuskanen, J.6    Kolehmainen, M.7
  • 39
    • 33745423745 scopus 로고    scopus 로고
    • Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data
    • Ogulei, D., Hopke, P. K., Zhou, L., Patrick Pancras, J., Nair, N., & Ondov, J. M. (2006). Source apportionment of Baltimore aerosol from combined size distribution and chemical composition data. Atmospheric Environment, 40(SUPPL. 2), 396-410.
    • (2006) Atmospheric Environment , vol.40 , Issue.SUPPL. 2 , pp. 396-410
    • Ogulei, D.1    Hopke, P.K.2    Zhou, L.3    Patrick Pancras, J.4    Nair, N.5    Ondov, J.M.6
  • 41
    • 79551508219 scopus 로고    scopus 로고
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: Implications to local environmental management
    • 1:CAS:528:DC%2BC3MXht1Wnurg%3D
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environmental Science and Pollution Research, 18(2), 316-327.
    • (2011) Environmental Science and Pollution Research , vol.18 , Issue.2 , pp. 316-327
    • Paschalidou, A.K.1    Karakitsios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 42
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30h in advance in Santiago, Chile
    • 1:CAS:528:DC%2BD38Xms1Gqt7w%3D
    • 10 concentrations 30h in advance in Santiago, Chile. Atmospheric Environment, 36(28), 4555-4561.
    • (2002) Atmospheric Environment , vol.36 , Issue.28 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 44
    • 0343339858 scopus 로고    scopus 로고
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment, 34(8), 1189-1196.
    • (2000) Atmospheric Environment , vol.34 , Issue.8 , pp. 1189-1196
    • Pérez, P.1    Trier, A.2    Reyes, J.3
  • 47
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • 1:CAS:528:DC%2BC38XmvFSjsbY%3D
    • Singh, K. P., Gupta, S., Kumar, A., & Shukla, S. P. (2012). Linear and nonlinear modeling approaches for urban air quality prediction. Science of the Total Environment, 426, 244-255.
    • (2012) Science of the Total Environment , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 48
    • 33749247555 scopus 로고    scopus 로고
    • Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations
    • Sousa, S. I. V., Martins, F. G., Alvim-Ferraz, M. C. M., & Pereira, M. C. (2007). Multiple linear regression and artificial neural networks based on principal components to predict ozone concentrations. Environmental Modelling and Software, 22(1), 97-103.
    • (2007) Environmental Modelling and Software , vol.22 , Issue.1 , pp. 97-103
    • Sousa, S.I.V.1    Martins, F.G.2    Alvim-Ferraz, M.C.M.3    Pereira, M.C.4
  • 50
    • 84861198074 scopus 로고    scopus 로고
    • Air pollution prediction models of particles, As, Cd, Ni and Pb in a highly industrialized area in Castellón (NE, Spain)
    • 1:CAS:528:DC%2BC38XmvVKmtbc%3D
    • Vicente, A. B., Jordán, M. M., Sanfeliu, T., Sánchez, A., & Esteban, M. D. (2012). Air pollution prediction models of particles, As, Cd, Ni and Pb in a highly industrialized area in Castellón (NE, Spain). Environmental Earth Sciences, 66(3), 879-888.
    • (2012) Environmental Earth Sciences , vol.66 , Issue.3 , pp. 879-888
    • Vicente, A.B.1    Jordán, M.M.2    Sanfeliu, T.3    Sánchez, A.4    Esteban, M.D.5
  • 52
    • 0038201778 scopus 로고    scopus 로고
    • Prediction of maximum daily ozone level using combined neural network and statistical characteristics
    • 1:CAS:528:DC%2BD3sXjs1Kgsbs%3D
    • Wang, W., Lu, W., Wang, X., & Leung, A. Y. T. (2003). Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environment International, 29(5), 555-562.
    • (2003) Environment International , vol.29 , Issue.5 , pp. 555-562
    • Wang, W.1    Lu, W.2    Wang, X.3    Leung, A.Y.T.4
  • 53
    • 0034747067 scopus 로고    scopus 로고
    • Characterisation and determination of profiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg, Sweden
    • 1:CAS:528:DC%2BD3MXoslOhsrs%3D
    • Wingfors, H., Sjödin, A., Haglund, P., & Brorström-Lundén, E. (2001). Characterisation and determination of profiles of polycyclic aromatic hydrocarbons in a traffic tunnel in Gothenburg, Sweden. Atmospheric Environment, 35(36), 6361-6369.
    • (2001) Atmospheric Environment , vol.35 , Issue.36 , pp. 6361-6369
    • Wingfors, H.1    Sjödin, A.2    Haglund, P.3    Brorström-Lundén, E.4
  • 55
    • 0030476772 scopus 로고    scopus 로고
    • A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area
    • 1:CAS:528:DyaK28XktV2hu7w%3D
    • Yi, J., & Prybutok, V. R. (1996). A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environmental Pollution, 92(3), 349-357.
    • (1996) Environmental Pollution , vol.92 , Issue.3 , pp. 349-357
    • Yi, J.1    Prybutok, V.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.