-
1
-
-
85050137702
-
-
Available online, accessed on 22 February
-
International Energy Agency. Available online: https://www.iea.org/ (accessed on 22 February 2018).
-
(2018)
-
-
-
2
-
-
85050094320
-
-
Available online, accessed on 22 February 2018
-
World Energy Outlook Special Report 2016. Available online: https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf (accessed on 22 February 2018).
-
(2016)
-
-
-
3
-
-
85023185030
-
An Open Framework for Participatory PM2.5 Monitoring in Smart Cities
-
Chen, L.-J.; Ho, Y.-H.; Lee, H.-C.;Wu, H.-C.; Liu, H.-M.; Hsieh, H.-H.; Huang, Y.-T.; Lung, S.-C.C. An Open Framework for Participatory PM2.5 Monitoring in Smart Cities. IEEE Access 2017, 5, 14441–14454. [CrossRef]
-
(2017)
IEEE Access
, vol.5
, pp. 14441-14454
-
-
Chen, L.-J.1
Ho, Y.-H.2
Lee, H.-C.3
Wu, H.-C.4
Liu, H.-M.5
Hsieh, H.-H.6
Huang, Y.-T.7
Lung, S.-C.C.8
-
4
-
-
84936947951
-
City as a major source area of fine particulate (PM2.5) in China
-
Han, L.; Zhou, W.; Li, W. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 2015, 206, 183–187. [CrossRef] [PubMed]
-
(2015)
Environ. Pollut
, vol.206
, pp. 183-187
-
-
Han, L.1
Zhou, W.2
Li, W.3
-
5
-
-
84957432910
-
PM2.5 and mortality in 207 US cities
-
Kioumourtzoglou, M.-A.; Schwartz, J.; James, P.; Dominici, F.; Zanobetti, A. PM2.5 and mortality in 207 US cities. Epidemiology 2015, 27, 221–227. [CrossRef]
-
(2015)
Epidemiology
, vol.27
, pp. 221-227
-
-
Kioumourtzoglou, M.-A.1
Schwartz, J.2
James, P.3
Dominici, F.4
Zanobetti, A.5
-
6
-
-
84903393226
-
PM2.5: Global progress in controlling the motor vehicle contribution
-
Walsh, M.P. PM2.5: Global progress in controlling the motor vehicle contribution. Front. Environ. Sci. Eng. 2014, 8, 1–17. [CrossRef]
-
(2014)
Front. Environ. Sci. Eng
, vol.8
, pp. 1-17
-
-
Walsh, M.P.1
-
7
-
-
84959489074
-
Software-defined internet of things for smart urban sensing
-
Liu, J.; Li, Y.; Chen, M.; Dong, W.; Jin, D. Software-defined internet of things for smart urban sensing. IEEE Commun. Mag. 2015, 53, 55–63. [CrossRef]
-
(2015)
IEEE Commun. Mag.
, vol.53
, pp. 55-63
-
-
Liu, J.1
Li, Y.2
Chen, M.3
Dong, W.4
Jin, D.5
-
8
-
-
84987711793
-
Semantic framework of internet of things for smart cities: Case studies
-
Zhang, N.; Chen, H.; Chen, X.; Chen, J. Semantic framework of internet of things for smart cities: Case studies. Sensors 2016, 16, 1501. [CrossRef] [PubMed]
-
(2016)
Sensors
, vol.16
, pp. 1501
-
-
Zhang, N.1
Chen, H.2
Chen, X.3
Chen, J.4
-
9
-
-
85033366892
-
Adaptive Sampling for Urban Air Quality through Participatory Sensing
-
Zeng, Y.; Xiang, K. Adaptive Sampling for Urban Air Quality through Participatory Sensing. Sensors 2017, 17, 2531. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 2531
-
-
Zeng, Y.1
Xiang, K.2
-
10
-
-
84937888474
-
3 in Selected Growing Media
-
3 in Selected Growing Media. Sensors 2015, 15, 17715–17727. [CrossRef] [PubMed]
-
(2015)
Sensors
, vol.15
, pp. 17715-17727
-
-
Ghaffari, S.1
Caron, W.-O.2
Loubier, M.3
Normandeau, C.-O.4
Viens, J.5
Lamhamedi, M.6
Gosselin, B.7
Messaddeq, Y.8
-
12
-
-
84991071427
-
Deep learning architecture for air quality predictions
-
Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [CrossRef] [PubMed]
-
(2016)
Environ. Sci. Pollut. Res.
, vol.23
, pp. 22408-22417
-
-
Li, X.1
Peng, L.2
Hu, Y.3
Shao, J.4
Chi, T.5
-
13
-
-
85028944487
-
Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
-
Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [CrossRef] [PubMed]
-
(2017)
Environ. Pollut.
, vol.231
, pp. 997-1004
-
-
Li, X.1
Peng, L.2
Yao, X.3
Cui, S.4
Hu, Y.5
You, C.6
Chi, T.7
-
14
-
-
49349107749
-
2.5 formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study
-
2.5 formation over the eastern United States using the Eta-CMAQ forecast model during the 2004 ICARTT study. J. Geophys. Res. 2008, 113, D06204. [CrossRef]
-
(2008)
J. Geophys. Res
, vol.113
-
-
Yu, S.1
Mathur, R.2
Schere, K.3
Kang, D.4
Pleim, J.5
Young, J.6
Tong, D.7
Pouliot, G.8
McKeen, S.A.9
Rao, S.T.10
-
15
-
-
85029648907
-
An optical-fiber-based airborne particle sensor
-
Wang, Y.; Muth, J.F. An optical-fiber-based airborne particle sensor. Sensors 2017, 17, 2110. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 2110
-
-
Wang, Y.1
Muth, J.F.2
-
16
-
-
85019146578
-
Fine particle sensor based on multi-angle light scattering and data fusion
-
Shao, W.; Zhang, H.; Zhou, H. Fine particle sensor based on multi-angle light scattering and data fusion. Sensors 2017, 17, 1033. [CrossRef] [PubMed]
-
(2017)
Sensors
, vol.17
, pp. 1033
-
-
Shao, W.1
Zhang, H.2
Zhou, H.3
-
17
-
-
84923017379
-
2.5 pollution using air mass trajectory based geographic model and wavelet transformation
-
2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [CrossRef]
-
(2015)
Atmos. Environ.
, vol.107
, pp. 118-128
-
-
Feng, X.1
Li, Q.2
Zhu, Y.3
Hou, J.4
Jin, L.5
Wang, J.6
-
18
-
-
84933504534
-
Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments
-
Dunea, D.; Pohoata, A.; Iordache, S. Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess. 2015, 187, 477. [CrossRef] [PubMed]
-
(2015)
Environ. Monit. Assess.
, vol.187
, pp. 477
-
-
Dunea, D.1
Pohoata, A.2
Iordache, S.3
-
19
-
-
85049644235
-
Solar Radiation Estimation Algorithm and Field Verification in Taiwan
-
Kuo, P.-H.; Chen, H.-C.; Huang, C.-J. Solar Radiation Estimation Algorithm and Field Verification in Taiwan. Energies 2018, 11, 1374. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 1374
-
-
Kuo, P.-H.1
Chen, H.-C.2
Huang, C.-J.3
-
20
-
-
85050134648
-
-
Available online, accessed on 1 July 2018
-
Law Amendment Urged to Combat Air Pollution. Available online: http://www.china.org.cn/environment/2013-02/22/content_28031626_2.htm (accessed on 1 July 2018).
-
Law Amendment Urged to Combat Air Pollution
-
-
-
21
-
-
84901243822
-
Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms
-
Orbach, J. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Arch. Gen. Psychiatry 1962, 7, 218. [CrossRef]
-
(1962)
Arch. Gen. Psychiatry
, vol.7
, pp. 218
-
-
Orbach, J.1
-
22
-
-
84876231242
-
ImageNet Classification with Deep Convolutional Neural Networks
-
Lake Tahoe, NV, USA, 3–6 December
-
Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the 25th International Conference on Neural Information Processing Systems (NIPS), Lake Tahoe, NV, USA, 3–6 December 2012; pp. 1097–1105.
-
(2012)
Proceedings of the 25Th International Conference on Neural Information Processing Systems (NIPS)
, pp. 1097-1105
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
23
-
-
0031573117
-
Long Short-Term Memory
-
Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
-
(1997)
Neural Comput
, vol.9
, pp. 1735-1780
-
-
Hochreiter, S.1
Schmidhuber, J.2
-
24
-
-
84979010616
-
LSTM: A Search Space Odyssey
-
Greff, K.; Srivastava, R.K.; Koutnik, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [CrossRef] [PubMed]
-
(2017)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.28
, pp. 2222-2232
-
-
Greff, K.1
Srivastava, R.K.2
Koutnik, J.3
Steunebrink, B.R.4
Schmidhuber, J.5
-
25
-
-
85044433558
-
-
accessed on 1 July 2018
-
Why Are Deep Neural Networks Hard to Train? Available online: http://neuralnetworksanddeeplearning. com/chap5.html (accessed on 1 July 2018).
-
Why are Deep Neural Networks Hard to Train?
-
-
-
26
-
-
84969584486
-
Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
-
Lille, France, 6–11 July 2015
-
Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In Proceedings of the 32nd International Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; Volume 37, pp. 448–456.
-
Proceedings of the 32Nd International Conference on International Conference on Machine Learning
, vol.37
, pp. 448-456
-
-
Ioffe, S.1
Szegedy, C.2
-
27
-
-
85039743275
-
Self-Normalizing Neural Networks
-
Long Beach, CA, USA, 4–9 December
-
Klambauer, G.; Unterthiner, T.; Mayr, A.; Hochreiter, S. Self-Normalizing Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017), Long Beach, CA, USA, 4–9 December 2017.
-
(2017)
Proceedings of the Advances in Neural Information Processing Systems 30 (NIPS 2017)
-
-
Klambauer, G.1
Unterthiner, T.2
Mayr, A.3
Hochreiter, S.4
-
28
-
-
0030702721
-
Gauss-Newton approximation to bayesian learning
-
Houston, TX, USA, 2 June 1997; IEEE: Piscataway, NJ, USA
-
Dan Foresee, F.; Hagan, M.T. Gauss-Newton approximation to bayesian learning. In Proceedings of the IEEE International Conference on Neural Networks, Houston, TX, USA, 2 June 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 3, pp. 1930–1935.
-
(1997)
Proceedings of the IEEE International Conference on Neural Networks
, vol.3
, pp. 1930-1935
-
-
Dan Foresee, F.1
Hagan, M.T.2
-
29
-
-
84904163933
-
Dropout: A Simple Way to Prevent Neural Networks from Overfitting
-
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [CrossRef]
-
(2014)
J. Mach. Learn. Res.
, vol.15
, pp. 1929-1958
-
-
Srivastava, N.1
Hinton, G.2
Krizhevsky, A.3
Sutskever, I.4
Salakhutdinov, R.5
-
30
-
-
84899064374
-
Regularization of neural networks using dropconnect
-
Atlanta, GA, USA, 16–21 June
-
Wan, L.; Zeiler, M.; Zhang, S.; LeCun, Y.; Fergus, R. Regularization of neural networks using dropconnect. In Proceedings of the 30th International Conference on Machine Learning, Atlanta, GA, USA, 16–21 June 2013; pp. 1058–1066.
-
(2013)
Proceedings of the 30Th International Conference on Machine Learning
, pp. 1058-1066
-
-
Wan, L.1
Zeiler, M.2
Zhang, S.3
Lecun, Y.4
Fergus, R.5
-
31
-
-
84872548900
-
Early Stopping|but when?
-
Springer: Berlin/Heidelberg, Germany, 978-3-642-35288-1, 978-3-642-35289-8
-
Prechelt, L. Early Stopping|but when? In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69, ISBN 978-3-642-35288-1, 978-3-642-35289-8.
-
(1998)
Lecture Notes in Computer Science
, pp. 55-69
-
-
Prechelt, L.1
-
32
-
-
85028955799
-
-
accessed on 1 July 2018
-
Improving the Way Neural Networks Learn. Available online: http://neuralnetworksanddeeplearning. com/chap3.html (accessed on 1 July 2018).
-
Improving the Way Neural Networks Learn
-
-
-
33
-
-
0032638628
-
Least squares support vector machine classifiers
-
Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
-
(1999)
Neural Process. Lett.
, vol.9
, pp. 293-300
-
-
Suykens, J.A.K.1
Vandewalle, J.2
-
34
-
-
85045412334
-
Development of easily accessible electricity consumption model using open data and GA-SVR
-
Wang, S.; Hae, H.; Kim, J. Development of easily accessible electricity consumption model using open data and GA-SVR. Energies 2018, 11, 373. [CrossRef]
-
(2018)
Energies
, vol.11
, pp. 373
-
-
Wang, S.1
Hae, H.2
Kim, J.3
-
35
-
-
85040776947
-
Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm
-
Niu, D.; Li, Y.; Dai, S.; Kang, H.; Xue, Z.; Jin, X.; Song, Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability 2018, 10, 231. [CrossRef]
-
(2018)
Sustainability
, vol.10
, pp. 231
-
-
Niu, D.1
Li, Y.2
Dai, S.3
Kang, H.4
Xue, Z.5
Jin, X.6
Song, Y.7
-
36
-
-
85021977025
-
The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection
-
Liu, J.P.; Li, C.L. The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection. Sustainability 2017, 9, 1188. [CrossRef]
-
(2017)
Sustainability
, vol.9
, pp. 1188
-
-
Liu, J.P.1
Li, C.L.2
-
37
-
-
85041610027
-
Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine
-
Das, M.; Akpinar, E. Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine. Appl. Sci. 2018, 8, 215. [CrossRef]
-
(2018)
Appl. Sci.
, vol.8
, pp. 215
-
-
Das, M.1
Akpinar, E.2
-
38
-
-
85014578478
-
Research and application of an air quality early warning system based on a modified least squares support vector machine and a cloud model
-
Wang, J.; Niu, T.; Wang, R. Research and application of an air quality early warning system based on a modified least squares support vector machine and a cloud model. Int. J. Environ. Res. Public Health 2017, 14, 249. [CrossRef] [PubMed]
-
(2017)
Int. J. Environ. Res. Public Health
, vol.14
, pp. 249
-
-
Wang, J.1
Niu, T.2
Wang, R.3
-
39
-
-
0345040873
-
Classification and Regression by randomForest
-
Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [CrossRef]
-
(2002)
R News
, vol.2
, pp. 18-22
-
-
Liaw, A.1
Wiener, M.2
-
40
-
-
85040046939
-
Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data
-
Zhu, M.; Xia, J.; Jin, X.; Yan, M.; Cai, G.; Yan, J.; Ning, G. Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data. IEEE Access 2018, 6, 4641–4652. [CrossRef]
-
(2018)
IEEE Access
, vol.6
, pp. 4641-4652
-
-
Zhu, M.1
Xia, J.2
Jin, X.3
Yan, M.4
Cai, G.5
Yan, J.6
Ning, G.7
-
41
-
-
85030775994
-
De-Anonymizing Social Networks With Random Forest Classifier
-
Ma, J.; Qiao, Y.; Hu, G.; Huang, Y.; Sangaiah, A.K.; Zhang, C.; Wang, Y.; Zhang, R. De-Anonymizing Social Networks With Random Forest Classifier. IEEE Access 2018, 6, 10139–10150. [CrossRef]
-
(2018)
IEEE Access
, vol.6
, pp. 10139-10150
-
-
Ma, J.1
Qiao, Y.2
Hu, G.3
Huang, Y.4
Sangaiah, A.K.5
Zhang, C.6
Wang, Y.7
Zhang, R.8
-
42
-
-
85019413262
-
A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest
-
Huang, N.; Lu, G.; Xu, D. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest. Energies 2016, 9, 767. [CrossRef]
-
(2016)
Energies
, vol.9
, pp. 767
-
-
Huang, N.1
Lu, G.2
Xu, D.3
-
43
-
-
85038867706
-
Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier
-
Hassan, M.; Southworth, J. Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier. Sustainability 2017, 10, 10. [CrossRef]
-
(2017)
Sustainability
, vol.10
, pp. 10
-
-
Hassan, M.1
Southworth, J.2
-
44
-
-
85021097541
-
Random Forest Prediction of IPO Underpricing
-
Quintana, D.; Sáez, Y.; Isasi, P. Random Forest Prediction of IPO Underpricing. Appl. Sci. 2017, 7, 636. [CrossRef]
-
(2017)
Appl. Sci.
, vol.7
, pp. 636
-
-
Quintana, D.1
Sáez, Y.2
Isasi, P.3
-
46
-
-
85021191933
-
Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm
-
Huang, N.; Peng, H.; Cai, G.; Chen, J. Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm. Energies 2016, 9, 927. [CrossRef]
-
(2016)
Energies
, vol.9
, pp. 927
-
-
Huang, N.1
Peng, H.2
Cai, G.3
Chen, J.4
-
47
-
-
85032394358
-
Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes
-
Alani, A.Y.; Osunmakinde, I.O. Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes. Sustainability 2017, 9, 1972. [CrossRef]
-
(2017)
Sustainability
, vol.9
, pp. 1972
-
-
Alani, A.Y.1
Osunmakinde, I.O.2
-
48
-
-
85017346611
-
Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV
-
Rosli, N.; Rahman, M.; Balakrishnan, M.; Komeda, T.; Mazlan, S.; Zamzuri, H. Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV. Appl. Sci. 2017, 7, 348. [CrossRef]
-
(2017)
Appl. Sci.
, vol.7
, pp. 348
-
-
Rosli, N.1
Rahman, M.2
Balakrishnan, M.3
Komeda, T.4
Mazlan, S.5
Zamzuri, H.6
-
49
-
-
85041539734
-
Identification of Pancreatic Injury in Patients with Elevated Amylase or Lipase Level Using a Decision Tree Classifier: A Cross-Sectional Retrospective Analysis in a Level I Trauma Center
-
Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H.; Liu, H.-T. Identification of Pancreatic Injury in Patients with Elevated Amylase or Lipase Level Using a Decision Tree Classifier: A Cross-Sectional Retrospective Analysis in a Level I Trauma Center. Int. J. Environ. Res. Public Health 2018, 15, 277. [CrossRef] [PubMed]
-
(2018)
Int. J. Environ. Res. Public Health
, vol.15
, pp. 277
-
-
Rau, C.-S.1
Wu, S.-C.2
Chien, P.-C.3
Kuo, P.-J.4
Chen, Y.-C.5
Hsieh, H.-Y.6
Hsieh, C.-H.7
Liu, H.-T.8
-
50
-
-
85034979875
-
Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System
-
Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. Int. J. Environ. Res. Public Health 2017, 14, 1420. [CrossRef] [PubMed]
-
(2017)
Int. J. Environ. Res. Public Health
, vol.14
, pp. 1420
-
-
Rau, C.-S.1
Wu, S.-C.2
Chien, P.-C.3
Kuo, P.-J.4
Chen, Y.-C.5
Hsieh, H.-Y.6
Hsieh, C.-H.7
-
51
-
-
84872178339
-
Estimation of Citywide Air Pollution in Beijing
-
Wang, J.-F.; Hu, M.-G.; Xu, C.-D.; Christakos, G.; Zhao, Y. Estimation of Citywide Air Pollution in Beijing. PLoS ONE 2013, 8, e53400. [CrossRef] [PubMed]
-
(2013)
Plos ONE
, vol.8
-
-
Wang, J.-F.1
Hu, M.-G.2
Xu, C.-D.3
Christakos, G.4
Zhao, Y.5
-
54
-
-
80755132115
-
Experimental investigation of submicron and ultrafine soot particle removal by tree leaves
-
Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [CrossRef]
-
(2011)
Atmos. Environ.
, vol.45
, pp. 6987-6994
-
-
Hwang, H.J.1
Yook, S.J.2
Ahn, K.H.3
|