메뉴 건너뛰기




Volumn 18, Issue 7, 2018, Pages

A deep cnn-lstm model for particulate matter (Pm2.5) forecasting in smart cities

Author keywords

Big data analytics; CNN LSTM model; Deep learning; PM2.5 forecasting

Indexed keywords

AIR POLLUTION; BIG DATA; CARDIOVASCULAR SYSTEM; CORRELATION METHODS; DEEP LEARNING; DEEP NEURAL NETWORKS; DISEASES; FORECASTING; MEAN SQUARE ERROR; PARTICLES (PARTICULATE MATTER); SMART CITY; WIND EFFECTS;

EID: 85050087079     PISSN: 14248220     EISSN: None     Source Type: Journal    
DOI: 10.3390/s18072220     Document Type: Article
Times cited : (534)

References (54)
  • 1
    • 85050137702 scopus 로고    scopus 로고
    • Available online, accessed on 22 February
    • International Energy Agency. Available online: https://www.iea.org/ (accessed on 22 February 2018).
    • (2018)
  • 2
    • 85050094320 scopus 로고    scopus 로고
    • Available online, accessed on 22 February 2018
    • World Energy Outlook Special Report 2016. Available online: https://www.iea.org/publications/freepublications/publication/WorldEnergyOutlookSpecialReport2016EnergyandAirPollution.pdf (accessed on 22 February 2018).
    • (2016)
  • 4
    • 84936947951 scopus 로고    scopus 로고
    • City as a major source area of fine particulate (PM2.5) in China
    • Han, L.; Zhou, W.; Li, W. City as a major source area of fine particulate (PM2.5) in China. Environ. Pollut. 2015, 206, 183–187. [CrossRef] [PubMed]
    • (2015) Environ. Pollut , vol.206 , pp. 183-187
    • Han, L.1    Zhou, W.2    Li, W.3
  • 6
    • 84903393226 scopus 로고    scopus 로고
    • PM2.5: Global progress in controlling the motor vehicle contribution
    • Walsh, M.P. PM2.5: Global progress in controlling the motor vehicle contribution. Front. Environ. Sci. Eng. 2014, 8, 1–17. [CrossRef]
    • (2014) Front. Environ. Sci. Eng , vol.8 , pp. 1-17
    • Walsh, M.P.1
  • 7
    • 84959489074 scopus 로고    scopus 로고
    • Software-defined internet of things for smart urban sensing
    • Liu, J.; Li, Y.; Chen, M.; Dong, W.; Jin, D. Software-defined internet of things for smart urban sensing. IEEE Commun. Mag. 2015, 53, 55–63. [CrossRef]
    • (2015) IEEE Commun. Mag. , vol.53 , pp. 55-63
    • Liu, J.1    Li, Y.2    Chen, M.3    Dong, W.4    Jin, D.5
  • 8
    • 84987711793 scopus 로고    scopus 로고
    • Semantic framework of internet of things for smart cities: Case studies
    • Zhang, N.; Chen, H.; Chen, X.; Chen, J. Semantic framework of internet of things for smart cities: Case studies. Sensors 2016, 16, 1501. [CrossRef] [PubMed]
    • (2016) Sensors , vol.16 , pp. 1501
    • Zhang, N.1    Chen, H.2    Chen, X.3    Chen, J.4
  • 9
    • 85033366892 scopus 로고    scopus 로고
    • Adaptive Sampling for Urban Air Quality through Participatory Sensing
    • Zeng, Y.; Xiang, K. Adaptive Sampling for Urban Air Quality through Participatory Sensing. Sensors 2017, 17, 2531. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 2531
    • Zeng, Y.1    Xiang, K.2
  • 12
    • 84991071427 scopus 로고    scopus 로고
    • Deep learning architecture for air quality predictions
    • Li, X.; Peng, L.; Hu, Y.; Shao, J.; Chi, T. Deep learning architecture for air quality predictions. Environ. Sci. Pollut. Res. 2016, 23, 22408–22417. [CrossRef] [PubMed]
    • (2016) Environ. Sci. Pollut. Res. , vol.23 , pp. 22408-22417
    • Li, X.1    Peng, L.2    Hu, Y.3    Shao, J.4    Chi, T.5
  • 13
    • 85028944487 scopus 로고    scopus 로고
    • Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation
    • Li, X.; Peng, L.; Yao, X.; Cui, S.; Hu, Y.; You, C.; Chi, T. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation. Environ. Pollut. 2017, 231, 997–1004. [CrossRef] [PubMed]
    • (2017) Environ. Pollut. , vol.231 , pp. 997-1004
    • Li, X.1    Peng, L.2    Yao, X.3    Cui, S.4    Hu, Y.5    You, C.6    Chi, T.7
  • 15
    • 85029648907 scopus 로고    scopus 로고
    • An optical-fiber-based airborne particle sensor
    • Wang, Y.; Muth, J.F. An optical-fiber-based airborne particle sensor. Sensors 2017, 17, 2110. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 2110
    • Wang, Y.1    Muth, J.F.2
  • 16
    • 85019146578 scopus 로고    scopus 로고
    • Fine particle sensor based on multi-angle light scattering and data fusion
    • Shao, W.; Zhang, H.; Zhou, H. Fine particle sensor based on multi-angle light scattering and data fusion. Sensors 2017, 17, 1033. [CrossRef] [PubMed]
    • (2017) Sensors , vol.17 , pp. 1033
    • Shao, W.1    Zhang, H.2    Zhou, H.3
  • 17
    • 84923017379 scopus 로고    scopus 로고
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107, 118–128. [CrossRef]
    • (2015) Atmos. Environ. , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Hou, J.4    Jin, L.5    Wang, J.6
  • 18
    • 84933504534 scopus 로고    scopus 로고
    • Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments
    • Dunea, D.; Pohoata, A.; Iordache, S. Using wavelet–feedforward neural networks to improve air pollution forecasting in urban environments. Environ. Monit. Assess. 2015, 187, 477. [CrossRef] [PubMed]
    • (2015) Environ. Monit. Assess. , vol.187 , pp. 477
    • Dunea, D.1    Pohoata, A.2    Iordache, S.3
  • 19
    • 85049644235 scopus 로고    scopus 로고
    • Solar Radiation Estimation Algorithm and Field Verification in Taiwan
    • Kuo, P.-H.; Chen, H.-C.; Huang, C.-J. Solar Radiation Estimation Algorithm and Field Verification in Taiwan. Energies 2018, 11, 1374. [CrossRef]
    • (2018) Energies , vol.11 , pp. 1374
    • Kuo, P.-H.1    Chen, H.-C.2    Huang, C.-J.3
  • 20
    • 85050134648 scopus 로고    scopus 로고
    • Available online, accessed on 1 July 2018
    • Law Amendment Urged to Combat Air Pollution. Available online: http://www.china.org.cn/environment/2013-02/22/content_28031626_2.htm (accessed on 1 July 2018).
    • Law Amendment Urged to Combat Air Pollution
  • 21
    • 84901243822 scopus 로고
    • Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms
    • Orbach, J. Principles of Neurodynamics. Perceptrons and the Theory of Brain Mechanisms. Arch. Gen. Psychiatry 1962, 7, 218. [CrossRef]
    • (1962) Arch. Gen. Psychiatry , vol.7 , pp. 218
    • Orbach, J.1
  • 23
    • 0031573117 scopus 로고    scopus 로고
    • Long Short-Term Memory
    • Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]
    • (1997) Neural Comput , vol.9 , pp. 1735-1780
    • Hochreiter, S.1    Schmidhuber, J.2
  • 25
    • 85044433558 scopus 로고    scopus 로고
    • accessed on 1 July 2018
    • Why Are Deep Neural Networks Hard to Train? Available online: http://neuralnetworksanddeeplearning. com/chap5.html (accessed on 1 July 2018).
    • Why are Deep Neural Networks Hard to Train?
  • 28
    • 0030702721 scopus 로고    scopus 로고
    • Gauss-Newton approximation to bayesian learning
    • Houston, TX, USA, 2 June 1997; IEEE: Piscataway, NJ, USA
    • Dan Foresee, F.; Hagan, M.T. Gauss-Newton approximation to bayesian learning. In Proceedings of the IEEE International Conference on Neural Networks, Houston, TX, USA, 2 June 1997; IEEE: Piscataway, NJ, USA, 1997; Volume 3, pp. 1930–1935.
    • (1997) Proceedings of the IEEE International Conference on Neural Networks , vol.3 , pp. 1930-1935
    • Dan Foresee, F.1    Hagan, M.T.2
  • 31
    • 84872548900 scopus 로고    scopus 로고
    • Early Stopping|but when?
    • Springer: Berlin/Heidelberg, Germany, 978-3-642-35288-1, 978-3-642-35289-8
    • Prechelt, L. Early Stopping|but when? In Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 1998; pp. 55–69, ISBN 978-3-642-35288-1, 978-3-642-35289-8.
    • (1998) Lecture Notes in Computer Science , pp. 55-69
    • Prechelt, L.1
  • 32
    • 85028955799 scopus 로고    scopus 로고
    • accessed on 1 July 2018
    • Improving the Way Neural Networks Learn. Available online: http://neuralnetworksanddeeplearning. com/chap3.html (accessed on 1 July 2018).
    • Improving the Way Neural Networks Learn
  • 33
    • 0032638628 scopus 로고    scopus 로고
    • Least squares support vector machine classifiers
    • Suykens, J.A.K.; Vandewalle, J. Least squares support vector machine classifiers. Neural Process. Lett. 1999, 9, 293–300. [CrossRef]
    • (1999) Neural Process. Lett. , vol.9 , pp. 293-300
    • Suykens, J.A.K.1    Vandewalle, J.2
  • 34
    • 85045412334 scopus 로고    scopus 로고
    • Development of easily accessible electricity consumption model using open data and GA-SVR
    • Wang, S.; Hae, H.; Kim, J. Development of easily accessible electricity consumption model using open data and GA-SVR. Energies 2018, 11, 373. [CrossRef]
    • (2018) Energies , vol.11 , pp. 373
    • Wang, S.1    Hae, H.2    Kim, J.3
  • 35
    • 85040776947 scopus 로고    scopus 로고
    • Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm
    • Niu, D.; Li, Y.; Dai, S.; Kang, H.; Xue, Z.; Jin, X.; Song, Y. Sustainability Evaluation of Power Grid Construction Projects Using Improved TOPSIS and Least Square Support Vector Machine with Modified Fly Optimization Algorithm. Sustainability 2018, 10, 231. [CrossRef]
    • (2018) Sustainability , vol.10 , pp. 231
    • Niu, D.1    Li, Y.2    Dai, S.3    Kang, H.4    Xue, Z.5    Jin, X.6    Song, Y.7
  • 36
    • 85021977025 scopus 로고    scopus 로고
    • The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection
    • Liu, J.P.; Li, C.L. The short-term power load forecasting based on sperm whale algorithm and wavelet least square support vector machine with DWT-IR for feature selection. Sustainability 2017, 9, 1188. [CrossRef]
    • (2017) Sustainability , vol.9 , pp. 1188
    • Liu, J.P.1    Li, C.L.2
  • 37
    • 85041610027 scopus 로고    scopus 로고
    • Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine
    • Das, M.; Akpinar, E. Investigation of Pear Drying Performance by Different Methods and Regression of Convective Heat Transfer Coefficient with Support Vector Machine. Appl. Sci. 2018, 8, 215. [CrossRef]
    • (2018) Appl. Sci. , vol.8 , pp. 215
    • Das, M.1    Akpinar, E.2
  • 38
    • 85014578478 scopus 로고    scopus 로고
    • Research and application of an air quality early warning system based on a modified least squares support vector machine and a cloud model
    • Wang, J.; Niu, T.; Wang, R. Research and application of an air quality early warning system based on a modified least squares support vector machine and a cloud model. Int. J. Environ. Res. Public Health 2017, 14, 249. [CrossRef] [PubMed]
    • (2017) Int. J. Environ. Res. Public Health , vol.14 , pp. 249
    • Wang, J.1    Niu, T.2    Wang, R.3
  • 39
    • 0345040873 scopus 로고    scopus 로고
    • Classification and Regression by randomForest
    • Liaw, A.; Wiener, M. Classification and Regression by randomForest. R News 2002, 2, 18–22. [CrossRef]
    • (2002) R News , vol.2 , pp. 18-22
    • Liaw, A.1    Wiener, M.2
  • 40
    • 85040046939 scopus 로고    scopus 로고
    • Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data
    • Zhu, M.; Xia, J.; Jin, X.; Yan, M.; Cai, G.; Yan, J.; Ning, G. Class Weights Random Forest Algorithm for Processing Class Imbalanced Medical Data. IEEE Access 2018, 6, 4641–4652. [CrossRef]
    • (2018) IEEE Access , vol.6 , pp. 4641-4652
    • Zhu, M.1    Xia, J.2    Jin, X.3    Yan, M.4    Cai, G.5    Yan, J.6    Ning, G.7
  • 42
    • 85019413262 scopus 로고    scopus 로고
    • A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest
    • Huang, N.; Lu, G.; Xu, D. A Permutation Importance-Based Feature Selection Method for Short-Term Electricity Load Forecasting Using Random Forest. Energies 2016, 9, 767. [CrossRef]
    • (2016) Energies , vol.9 , pp. 767
    • Huang, N.1    Lu, G.2    Xu, D.3
  • 43
    • 85038867706 scopus 로고    scopus 로고
    • Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier
    • Hassan, M.; Southworth, J. Analyzing Land Cover Change and Urban Growth Trajectories of the Mega-Urban Region of Dhaka Using Remotely Sensed Data and an Ensemble Classifier. Sustainability 2017, 10, 10. [CrossRef]
    • (2017) Sustainability , vol.10 , pp. 10
    • Hassan, M.1    Southworth, J.2
  • 44
    • 85021097541 scopus 로고    scopus 로고
    • Random Forest Prediction of IPO Underpricing
    • Quintana, D.; Sáez, Y.; Isasi, P. Random Forest Prediction of IPO Underpricing. Appl. Sci. 2017, 7, 636. [CrossRef]
    • (2017) Appl. Sci. , vol.7 , pp. 636
    • Quintana, D.1    Sáez, Y.2    Isasi, P.3
  • 45
    • 0026154509 scopus 로고
    • A survey of decision tree classifier methodology
    • Safavian, S.R.; Landgrebe, D. A survey of decision tree classifier methodology. IEEE Trans. Syst. Man. Cybern. 1991, 21, 660–674. [CrossRef]
    • (1991) IEEE Trans. Syst. Man. Cybern. , vol.21 , pp. 660-674
    • Safavian, S.R.1    Landgrebe, D.2
  • 46
    • 85021191933 scopus 로고    scopus 로고
    • Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm
    • Huang, N.; Peng, H.; Cai, G.; Chen, J. Power Quality Disturbances Feature Selection and Recognition Using Optimal Multi-Resolution Fast S-Transform and CART Algorithm. Energies 2016, 9, 927. [CrossRef]
    • (2016) Energies , vol.9 , pp. 927
    • Huang, N.1    Peng, H.2    Cai, G.3    Chen, J.4
  • 47
    • 85032394358 scopus 로고    scopus 로고
    • Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes
    • Alani, A.Y.; Osunmakinde, I.O. Short-Term Multiple Forecasting of Electric Energy Loads for Sustainable Demand Planning in Smart Grids for Smart Homes. Sustainability 2017, 9, 1972. [CrossRef]
    • (2017) Sustainability , vol.9 , pp. 1972
    • Alani, A.Y.1    Osunmakinde, I.O.2
  • 48
    • 85017346611 scopus 로고    scopus 로고
    • Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV
    • Rosli, N.; Rahman, M.; Balakrishnan, M.; Komeda, T.; Mazlan, S.; Zamzuri, H. Improved Gender Recognition during Stepping Activity for Rehab Application Using the Combinatorial Fusion Approach of EMG and HRV. Appl. Sci. 2017, 7, 348. [CrossRef]
    • (2017) Appl. Sci. , vol.7 , pp. 348
    • Rosli, N.1    Rahman, M.2    Balakrishnan, M.3    Komeda, T.4    Mazlan, S.5    Zamzuri, H.6
  • 49
    • 85041539734 scopus 로고    scopus 로고
    • Identification of Pancreatic Injury in Patients with Elevated Amylase or Lipase Level Using a Decision Tree Classifier: A Cross-Sectional Retrospective Analysis in a Level I Trauma Center
    • Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H.; Liu, H.-T. Identification of Pancreatic Injury in Patients with Elevated Amylase or Lipase Level Using a Decision Tree Classifier: A Cross-Sectional Retrospective Analysis in a Level I Trauma Center. Int. J. Environ. Res. Public Health 2018, 15, 277. [CrossRef] [PubMed]
    • (2018) Int. J. Environ. Res. Public Health , vol.15 , pp. 277
    • Rau, C.-S.1    Wu, S.-C.2    Chien, P.-C.3    Kuo, P.-J.4    Chen, Y.-C.5    Hsieh, H.-Y.6    Hsieh, C.-H.7    Liu, H.-T.8
  • 50
    • 85034979875 scopus 로고    scopus 로고
    • Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System
    • Rau, C.-S.; Wu, S.-C.; Chien, P.-C.; Kuo, P.-J.; Chen, Y.-C.; Hsieh, H.-Y.; Hsieh, C.-H. Prediction of Mortality in Patients with Isolated Traumatic Subarachnoid Hemorrhage Using a Decision Tree Classifier: A Retrospective Analysis Based on a Trauma Registry System. Int. J. Environ. Res. Public Health 2017, 14, 1420. [CrossRef] [PubMed]
    • (2017) Int. J. Environ. Res. Public Health , vol.14 , pp. 1420
    • Rau, C.-S.1    Wu, S.-C.2    Chien, P.-C.3    Kuo, P.-J.4    Chen, Y.-C.5    Hsieh, H.-Y.6    Hsieh, C.-H.7
  • 51
  • 54
    • 80755132115 scopus 로고    scopus 로고
    • Experimental investigation of submicron and ultrafine soot particle removal by tree leaves
    • Hwang, H.J.; Yook, S.J.; Ahn, K.H. Experimental investigation of submicron and ultrafine soot particle removal by tree leaves. Atmos. Environ. 2011, 45, 6987–6994. [CrossRef]
    • (2011) Atmos. Environ. , vol.45 , pp. 6987-6994
    • Hwang, H.J.1    Yook, S.J.2    Ahn, K.H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.