메뉴 건너뛰기




Volumn 7, Issue 1, 2012, Pages

A modified Kennard-Stone algorithm for optimal division of data for developing artificial neural network models

Author keywords

ANN models; Data division; Kennard Stone algorithm; MDKS

Indexed keywords

ANN MODELS; ARTIFICIAL NEURAL NETWORK MODELS; DATA DIVISION; DATA REPRESENTATIONS; KENNARD-STONE ALGORITHM; MAHALANOBIS DISTANCES; MDKS; VARIANCE-COVARIANCE MATRICES;

EID: 84887622153     PISSN: 21946159     EISSN: 19342659     Source Type: Journal    
DOI: 10.1515/1934-2659.1645     Document Type: Article
Times cited : (145)

References (16)
  • 1
    • 0028942732 scopus 로고
    • Beyond response surfaces: Recent developments in optimum experimental design
    • Atkinson, A. C. 1995. Beyond response surfaces: recent developments in optimum experimental design. Chemometrics and Intelligent Laboratory Systems 28, 35-47.
    • (1995) Chemometrics and Intelligent Laboratory Systems , vol.28 , pp. 35-47
    • Atkinson, A.C.1
  • 2
    • 0036221122 scopus 로고    scopus 로고
    • Optimal data division for neural network models in water resources applications
    • Bowden, G. J., Maier, H. R., & Dandy, G. C. 2002. Optimal data division for neural network models in water resources applications. Water Resources Research 38(2), 1-11.
    • (2002) Water Resources Research , vol.38 , Issue.2 , pp. 1-11
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 4
    • 0028416331 scopus 로고
    • Neural networks in civil engineering. I: Principles and understanding
    • Flood, I., & Kartam, N. 1994. Neural networks in civil engineering. I: Principles and understanding. Journal of Computing in Civil Engineering 8(2), 131-148.
    • (1994) Journal of Computing in Civil Engineering , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 7
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W. & Stone, L. A. 1969. Computer Aided Design of Experiments. Technometrics 11(1), 137-148.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 8
    • 0034578871 scopus 로고    scopus 로고
    • Modelling of the river flowrate: The influence of the training set selection
    • Kocjančič, R., & Zupan, J. 2000. Modelling of the river flowrate: the influence of the training set selection. Chemometrics and Intelligent Laboratory Systems 54, 21-34.
    • (2000) Chemometrics and Intelligent Laboratory Systems , vol.54 , pp. 21-34
    • Kocjančič, R.1    Zupan, J.2
  • 10
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • Maier, H. R., & Dandy, G. C. 2000. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environmental Modelling & Software 15, 101-124.
    • (2000) Environmental Modelling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 11
    • 77951175284 scopus 로고    scopus 로고
    • Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions
    • Maier, H. R., Jain, A., Dandy, G. C., & Sudheer, K. P. 2010. Methods used for the development of neural networks for the prediction of water resource variables in river systems: Current status and future directions. Environmental Modelling & Software 25, 891-909.
    • (2010) Environmental Modelling & Software , vol.25 , pp. 891-909
    • Maier, H.R.1    Jain, A.2    Dandy, G.C.3    Sudheer, K.P.4
  • 12
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns, A. W., & Hall, M. J. 1996. Artificial neural networks as rainfall-runoff models. Hydrological Sciences Journal 41(3), 399-417.
    • (1996) Hydrological Sciences Journal , vol.41 , Issue.3 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 13
    • 0037470203 scopus 로고    scopus 로고
    • Separation of data on the training and test set for modelling: A case study for modelling of five colour properties of a white pigment
    • Rajer-Kanduč, K., Zupan, J., & Majcen, N. 2003. Separation of data on the training and test set for modelling: a case study for modelling of five colour properties of a white pigment. Chemometrics and Intelligent Laboratory Systems 65, 221-229.
    • (2003) Chemometrics and Intelligent Laboratory Systems , vol.65 , pp. 221-229
    • Rajer-Kanduč, K.1    Zupan, J.2    Majcen, N.3
  • 14
    • 53049083041 scopus 로고    scopus 로고
    • Prediction of coal hydrogen content for combustion control in power utility using neural network approach
    • Saptoro, A., Yao, H. M., Tadé, M. O., & Vuthaluru, H. B. 2008. Prediction of coal hydrogen content for combustion control in power utility using neural network approach. Chemometrics and Intelligent Laboratory Systems 94, 149-159.
    • (2008) Chemometrics and Intelligent Laboratory Systems , vol.94 , pp. 149-159
    • Saptoro, A.1    Yao, H.M.2    Tadé, M.O.3    Vuthaluru, H.B.4
  • 15
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin, M. A., Maier, H. R., & Jaksa, M. B. 2004. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering 18(2), 105-114.
    • (2004) Journal of Computing in Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.