메뉴 건너뛰기




Volumn 11, Issue 3, 2010, Pages 1163-1171

An artificial neural network-based model for short-term predictions of daily mean pmio concentrations

Author keywords

Artificial neural networks; PM10; Prediction

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ATMOSPHERIC POLLUTION; CONCENTRATION (COMPOSITION); CORRELATION; FORECASTING METHOD; MODEL TEST; PARTICULATE MATTER; POLLUTION CONTROL; PREDICTION; TRANSFER FUNCTION;

EID: 77958011900     PISSN: 13115065     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (14)

References (15)
  • 1
    • 33646472025 scopus 로고    scopus 로고
    • Adaptive nonlinear state-space modelling for the prediction of daily mean PM10 concentrations.
    • A. ZOLGHADRI, F. CAZAURANG: Adaptive Nonlinear State-Space Modelling for the Prediction of Daily Mean PM10 Concentrations. Environmental Modelling & Software, 21, 885 (2006).
    • (2006) Environmental Modelling & Software , vol.21 , pp. 885
    • Zolghadri, A.1    Cazaurang, F.2
  • 2
    • 60849131237 scopus 로고    scopus 로고
    • PM2.5 Concentration prediction using hidden semi-markov model-based times series data mining
    • M. DONG, D. YANG, Y. KUANG, D. HE, S. ERDAL, D. KENSKI: PM2.5 Concentration Prediction Using Hidden Semi-Markov Model-based Times Series Data Mining. Expert Systems with Applications, 36,9046 (2009).
    • (2009) Expert Systems with Applications , vol.36 , pp. 9046
    • Dong, M.1    Yang, D.2    Kuang, Y.3    He, D.4    Erdal, S.5    Kenski, D.6
  • 3
    • 0036006437 scopus 로고    scopus 로고
    • An empirical approach for the prediction of daily mean PM10 concentrations
    • G. W. FULLER, D. C. CARSLAW, H. W. LODGE: An Empirical Approach for the Prediction of Daily Mean PM10 Concentrations. Atmospheric Environment, 36,1431 (2002).
    • (2002) Atmospheric Environment , vol.36 , pp. 1431
    • Fuller, G.W.1    Carslaw, D.C.2    Lodge, H.W.3
  • 4
    • 65549140354 scopus 로고    scopus 로고
    • Natural and anthropogenic environmental nanoparticulates: Their microstructural characterization and respiratory health implications
    • L. E. MURR, K. M. GARZA: Natural and Anthropogenic Environmental Nanoparticulates: Their Microstructural Characterization and Respiratory Health Implications. Atmospheric Environment, 43,2683 (2009).
    • (2009) Atmospheric Environment , vol.43 , pp. 2683
    • Murr L.E.Garza, K.M.1
  • 5
    • 0036708755 scopus 로고    scopus 로고
    • Prediction of maximum Of 24-Hour Average Of Pm10 Concentrations 30 hours in advance in santiago chile
    • P. PEREZ, J. REYES: Prediction of Maximum of 24-hour Average of PM10 Concentrations 30 Hours in Advance in Santiago, Chile. Atmospheric Environmental, 36,4555 (2002).
    • (2002) Atmospheric Environmental , vol.36 , pp. 4555
    • Perez, P.1    J. Reyes2
  • 9
    • 32644479189 scopus 로고    scopus 로고
    • Artificial neural network modeling of methane emissions at istanbul kemerburgaz-odayeri landfill site
    • H. K. OZCAN, O. N. UCAN, U. SAHIN, M. BORAT, C. BAYAT: Artificial Neural Network Modeling of Methane Emissions at Istanbul Kemerburgaz-Odayeri Landfill Site. J. of Scienfitic & Industrial Research, 65 (2), 128 (2006).
    • (2006) J. of Scienfitic & Industrial Research , vol.65 , Issue.2 , pp. 128
    • Ozcan, H.K.1    Ucan, O.N.2    Sahin, U.3    Borat, M.4    Bayat, C.5
  • 10
    • 57649224741 scopus 로고    scopus 로고
    • Exploring the Possibilities of Development of Directly Quenched TRIP-aided Steel by the Artificial Neural Networks (ANN) Technique
    • K. P. DAS, S. GANGULY, P. P. CHATTOPADHYAY, S. TARAFDER, N. R. BANDYOPAD-HYAY: Exploring the Possibilities of Development of Directly Quenched TRIP-aided Steel by the Artificial Neural Networks (ANN) Technique. Materials and Manufacturing Processes, 24 (1), 68 (2009).
    • (2009) Materials and Manufacturing Processes , vol.24 , Issue.1 , pp. 68
    • Das, K.P.1    Ganguly, S.2    Chattopadhyay, P.P.3    Tarafder, S.4    Bandyopad-Hyay, N.R.5
  • 11
    • 63449103012 scopus 로고    scopus 로고
    • Performance Prediction of a Direct Expansion Solar Assisted Heat Pump Using Artificial Neural Networks
    • M. MOHANRAJ, S. JAYARAJ, C. MURALEEDHARAN: Performance Prediction of a Direct Expansion Solar Assisted Heat Pump Using Artificial Neural Networks. Applied Energy, 86, 1442 (2009).
    • (2009) Applied Energy , vol.86 , pp. 1442
    • Mohanraj, M.1    Jayaraj, S.2    Muraleedharan, C.3
  • 12
    • 63449096455 scopus 로고    scopus 로고
    • Modeling of solar energy potential in nigeria using an artificial neural net-work model
    • D. A. FADARE: Modeling of Solar Energy Potential in Nigeria Using an Artificial Neural Net-work Model. Applied Energy, 86,1410 (2009).
    • (2009) Applied Energy , vol.86 , pp. 1410
    • Fadare, D.A.1
  • 13
    • 9544219714 scopus 로고    scopus 로고
    • Progress in developing an ANN model for air pollution index forecast
    • D. JIANG, Y. ZHANG, X. HU, Y ZENG, J. TAN, D. SHAO: Progress in Developing an ANN Model for Air Pollution Index Forecast. Atmospheric Environment, 38 (40), 7055 (2004).
    • (2004) Atmospheric Environment , vol.38 , Issue.40 , pp. 7055
    • Jiang, D.1    Zhang, Y.2    Hu, X.3    Zeng, Y.4    Tan, J.5    Shao, D.6
  • 14
    • 28844434949 scopus 로고    scopus 로고
    • Air-pol-lution modeling in an urban Area: Correlating turbulent diffusion coefficient by means of an artificial network approach
    • R. PREZ-ROA, J. CASTRO, H. JORGUERA, J. R. PEREZ-CORREA, V. VESOIC: Air-pol-lution Modeling in an Urban Area: Correlating Turbulent Diffusion Coefficient by Means of an Artificial Network Approach. Atmospheric Environment, 40,109 (2005).
    • (2005) Atmospheric Environment , vol.40 , pp. 109
    • Prez-Roa, R.1    Castro, J.2    Jorguera, H.3    Perez-Correa, J.R.4    Vesoic, V.5
  • 15
    • 64649084798 scopus 로고    scopus 로고
    • Prediction of thermal conductivity of ethylene glycol-water solu-tions by using artificial neural networks
    • H. KURT, M. KAYFECI: Prediction of Thermal Conductivity of Ethylene Glycol-Water Solu-tions by Using Artificial Neural Networks. Applied Energy, 86, 2244 (2009).
    • (2009) Applied Energy , vol.86 , pp. 2244
    • Kurt, H.1    Kayfeci, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.