메뉴 건너뛰기




Volumn 184, Issue , 2018, Pages 129-139

Artificial neural network model for ozone concentration estimation and Monte Carlo analysis

Author keywords

Air pollution; Artificial neural network; Monte Carlo simulation; Sensitivity analysis; Uncertainty analysis

Indexed keywords

AIR POLLUTION; AIR QUALITY; ATMOSPHERIC PRESSURE; FORECASTING; MONTE CARLO METHODS; OZONE; SENSITIVITY ANALYSIS; TOPOGRAPHY; UNCERTAINTY ANALYSIS; WIND;

EID: 85046134663     PISSN: 13522310     EISSN: 18732844     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2018.03.027     Document Type: Article
Times cited : (102)

References (50)
  • 1
    • 84908377307 scopus 로고    scopus 로고
    • Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis
    • Antanasijević, D., Pocajt, V., Perić-Grujić, A., Ristić, M., Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo Simulation uncertainty analysis. J. Hydrol 519 (2014), 1895-1907.
    • (2014) J. Hydrol , vol.519 , pp. 1895-1907
    • Antanasijević, D.1    Pocajt, V.2    Perić-Grujić, A.3    Ristić, M.4
  • 2
    • 84870298794 scopus 로고    scopus 로고
    • PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization
    • Antanasijević, D., Pocajt, V., Povrenović, D., Ristić, M., Perić-Grujić, A., PM10 emission forecasting using artificial neural networks and genetic algorithm input variable optimization. Sci. Total Environ. 443 (2013), 511-519.
    • (2013) Sci. Total Environ. , vol.443 , pp. 511-519
    • Antanasijević, D.1    Pocajt, V.2    Povrenović, D.3    Ristić, M.4    Perić-Grujić, A.5
  • 3
    • 3342910673 scopus 로고    scopus 로고
    • Modelling the effects of meteorological variables on ozone concentration—a quantile regression approach
    • Baur, D., Saisana, M., Schulze, N., Modelling the effects of meteorological variables on ozone concentration—a quantile regression approach. Atmos. Environ. 38 (2004), 4689-4699.
    • (2004) Atmos. Environ. , vol.38 , pp. 4689-4699
    • Baur, D.1    Saisana, M.2    Schulze, N.3
  • 5
    • 0033589854 scopus 로고    scopus 로고
    • MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description
    • Brasseur, G., Hauglustaine, D., Walters, S., Rasch, R., Müller, J.F., Granier, C., Tie, X., MOZART, a global chemical transport model for ozone and related chemical tracers 1. Model description. J. Geophys. Res. 103 (1998), 28265-28289.
    • (1998) J. Geophys. Res. , vol.103 , pp. 28265-28289
    • Brasseur, G.1    Hauglustaine, D.2    Walters, S.3    Rasch, R.4    Müller, J.F.5    Granier, C.6    Tie, X.7
  • 6
    • 0042061161 scopus 로고    scopus 로고
    • Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens
    • Chaloulakou, A., Saisana, M., Spyrellis, N., Comparative assessment of neural networks and regression models for forecasting summertime ozone in Athens. Sci. Total Environ. 313 (2003), 1-13.
    • (2003) Sci. Total Environ. , vol.313 , pp. 1-13
    • Chaloulakou, A.1    Saisana, M.2    Spyrellis, N.3
  • 7
    • 84934905634 scopus 로고    scopus 로고
    • Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging
    • Chitsazan, N., Nadiri, A.A., Tsai, T.C., Prediction and structural uncertainty analyses of artificial neural networks using hierarchical Bayesian model averaging. J. Hydrol 528 (2015), 52-62.
    • (2015) J. Hydrol , vol.528 , pp. 52-62
    • Chitsazan, N.1    Nadiri, A.A.2    Tsai, T.C.3
  • 8
    • 85046162555 scopus 로고    scopus 로고
    • Daily Datasets of Ground Meteorological Parameters in China
    • CDC-CMA, Daily Datasets of Ground Meteorological Parameters in China. 2017 http://data.cma.cn/site/index.html.
    • (2017)
    • CDC-CMA1
  • 9
    • 85046156306 scopus 로고    scopus 로고
    • Daily Datasets of Air Quality in China
    • DC-MEP, Daily Datasets of Air Quality in China. 2017 http://datacenter.mep.gov.cn/index.
    • (2017)
    • DC-MEP1
  • 10
    • 84900591331 scopus 로고    scopus 로고
    • Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation
    • Dehghani, M., Saghafian, B., Nasiri Saleh, F., Farokhnia, A., Noori, R., Uncertainty analysis of streamflow drought forecast using artificial neural networks and Monte-Carlo simulation. Int. J. Climatol. 34 (2013), 1169-1180.
    • (2013) Int. J. Climatol. , vol.34 , pp. 1169-1180
    • Dehghani, M.1    Saghafian, B.2    Nasiri Saleh, F.3    Farokhnia, A.4    Noori, R.5
  • 11
    • 0004041275 scopus 로고
    • Numerical Methods for Unconstrained Optimization and Nonlinear Equations
    • Prentice-Hall Englewood Cliffs, NJ
    • Dennis, J.E., Schnabel, R.B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations. 1983, Prentice-Hall, Englewood Cliffs, NJ.
    • (1983)
    • Dennis, J.E.1    Schnabel, R.B.2
  • 12
    • 84928136722 scopus 로고    scopus 로고
    • Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia
    • Deo, R.C., Sahin, M., Application of the Artificial Neural Network model for prediction of monthly Standardized Precipitation and Evapotranspiration Index using hydrometeorological parameters and climate indices in eastern Australia. Atmos. Res. 161-162 (2015), 65-81.
    • (2015) Atmos. Res. , vol.161-162 , pp. 65-81
    • Deo, R.C.1    Sahin, M.2
  • 13
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: concepts and methodology
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., Solomatine, D.P., Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology—Part 2: concepts and methodology. Hydrol. Earth Syst. Sci. 14 (2010), 1931-1941.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 14
    • 0030664464 scopus 로고    scopus 로고
    • Critical levels for ozone effects on vegetation in Europe
    • Fuhrer, J., Skärby, L., Ashmore, M., Critical levels for ozone effects on vegetation in Europe. Environ. Pollut. 97 (1997), 91-106.
    • (1997) Environ. Pollut. , vol.97 , pp. 91-106
    • Fuhrer, J.1    Skärby, L.2    Ashmore, M.3
  • 15
    • 84900308360 scopus 로고    scopus 로고
    • Can artificial neural networks be used to predict the origin of ozone episodes?
    • Fontes, T., Silva, L.M., Silva, M.P., Barros, N., Carvalho, A.C., Can artificial neural networks be used to predict the origin of ozone episodes?. Sci. Total Environ. 488-489 (2014), 197-207.
    • (2014) Sci. Total Environ. , vol.488-489 , pp. 197-207
    • Fontes, T.1    Silva, L.M.2    Silva, M.P.3    Barros, N.4    Carvalho, A.C.5
  • 16
    • 0348073262 scopus 로고    scopus 로고
    • Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model
    • Fusco, A.C., Logan, J.A., Analysis of 1970-1995 trends in tropospheric ozone at Northern Hemisphere midlatitudes with the GEOS-CHEM model. J. Geophys. Res. 108 (2003), 1988-1997.
    • (2003) J. Geophys. Res. , vol.108 , pp. 1988-1997
    • Fusco, A.C.1    Logan, J.A.2
  • 17
    • 84978910317 scopus 로고    scopus 로고
    • Nonstationary modeling of extreme precipitation in China
    • Gao, M., Mo, D., Wu, X., Nonstationary modeling of extreme precipitation in China. Atmos. Res. 182 (2016), 1-9.
    • (2016) Atmos. Res. , vol.182 , pp. 1-9
    • Gao, M.1    Mo, D.2    Wu, X.3
  • 18
    • 85029397896 scopus 로고    scopus 로고
    • Artificial Neural Network models for prediction of ozone concentrations in Guadalajara, Mexico
    • D. Popović InTech
    • García, I., Rodríguez, J.G., Tenorio, Y.M., Artificial Neural Network models for prediction of ozone concentrations in Guadalajara, Mexico. Popović, D., (eds.) Air Quality-models and Applications, 2011, InTech, 35-52.
    • (2011) Air Quality-models and Applications , pp. 35-52
    • García, I.1    Rodríguez, J.G.2    Tenorio, Y.M.3
  • 19
    • 0033081112 scopus 로고    scopus 로고
    • Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London
    • Gardner, M.W., Dorling, S.R., Neural network modeling and prediction of hourly NOx and NO2 concentrations in urban air in London. Atmos. Environ. 33 (1999), 709-719.
    • (1999) Atmos. Environ. , vol.33 , pp. 709-719
    • Gardner, M.W.1    Dorling, S.R.2
  • 20
    • 0003593041 scopus 로고    scopus 로고
    • Neural Network Design
    • University of Colorado, B, PWS Pub
    • Hagan, M.T., Demuth, H.B., Beale, M.H., Neural Network Design. 1996, University of Colorado, B, PWS Pub.
    • (1996)
    • Hagan, M.T.1    Demuth, H.B.2    Beale, M.H.3
  • 21
    • 37349047056 scopus 로고    scopus 로고
    • Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models
    • Han, Z., Ueda, H., An, J., Evaluation and intercomparison of meteorological predictions by five MM5-PBL parameterizations in combination with three land-surface models. Atmos. Environ. 42 (2008), 233-249.
    • (2008) Atmos. Environ. , vol.42 , pp. 233-249
    • Han, Z.1    Ueda, H.2    An, J.3
  • 22
    • 2442530447 scopus 로고    scopus 로고
    • A new method of ozone forecasting using fuzzy expert and neural network systems
    • Heo, J., Kim, D., A new method of ozone forecasting using fuzzy expert and neural network systems. Sci. Total Environ. 325 (2004), 221-237.
    • (2004) Sci. Total Environ. , vol.325 , pp. 221-237
    • Heo, J.1    Kim, D.2
  • 23
    • 45449099913 scopus 로고    scopus 로고
    • Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences
    • Jenkin, M.E., Trends in ozone concentration distributions in the UK since 1990: local, regional and global influences. Atmos. Environ. 42 (2008), 5434-5445.
    • (2008) Atmos. Environ. , vol.42 , pp. 5434-5445
    • Jenkin, M.E.1
  • 24
    • 0033626773 scopus 로고    scopus 로고
    • Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer
    • Jenkin, M.E., Clemitshaw, K.C., Ozone and other secondary photochemical pollutants: chemical processes governing their formation in the planetary boundary layer. Atmos. Environ. 34 (2000), 2499-2527.
    • (2000) Atmos. Environ. , vol.34 , pp. 2499-2527
    • Jenkin, M.E.1    Clemitshaw, K.C.2
  • 25
    • 84957584856 scopus 로고    scopus 로고
    • Quantification of prediction uncertainty in artificial neural network models
    • S. Shanmuganathan S. Samarasinghe Springer International Publishing
    • Kasiviswanathan, K.S., Sudheer, K.P., He, J., Quantification of prediction uncertainty in artificial neural network models. Shanmuganathan, S., Samarasinghe, S., (eds.) Artificial Neural Network Modelling, 2016, Springer International Publishing, 145-159.
    • (2016) Artificial Neural Network Modelling , pp. 145-159
    • Kasiviswanathan, K.S.1    Sudheer, K.P.2    He, J.3
  • 26
    • 34548269207 scopus 로고    scopus 로고
    • Building a robust linear model with forward selection and stepwise procedures
    • Khan, J.A., Aelst, S.V., Zamar, R.H., Building a robust linear model with forward selection and stepwise procedures. Comput. Stat. Data Anal. 52 (2007), 239-248.
    • (2007) Comput. Stat. Data Anal. , vol.52 , pp. 239-248
    • Khan, J.A.1    Aelst, S.V.2    Zamar, R.H.3
  • 28
    • 0025197567 scopus 로고
    • Influence of cloud and photochemical processes on tropospheric ozone
    • Lelieveld, J., Crutzen, P.J., Influence of cloud and photochemical processes on tropospheric ozone. Nature 343 (1990), 227-233.
    • (1990) Nature , vol.343 , pp. 227-233
    • Lelieveld, J.1    Crutzen, P.J.2
  • 29
    • 84906761463 scopus 로고    scopus 로고
    • Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at rio de janeiro, Brazil
    • Luna, A.S., Paredes, M.L.L., Oliveira, G.C.G.D., Corrêa, S.M., Prediction of ozone concentration in tropospheric levels using artificial neural networks and support vector machine at rio de janeiro, Brazil. Atmos. Environ. 98 (2014), 98-104.
    • (2014) Atmos. Environ. , vol.98 , pp. 98-104
    • Luna, A.S.1    Paredes, M.L.L.2    Oliveira, G.C.G.D.3    Corrêa, S.M.4
  • 30
    • 0000169232 scopus 로고
    • An algorithm for least-squares estimation of nonlinear parameters
    • Marquardt, D., An algorithm for least-squares estimation of nonlinear parameters. SIAM J. Appl. Math. 11 (1963), 431-441.
    • (1963) SIAM J. Appl. Math. , vol.11 , pp. 431-441
    • Marquardt, D.1
  • 31
    • 85046147390 scopus 로고    scopus 로고
    • (Second Printing) Elements of Artificial Neural Networks
    • MIT Press Cambridge MA
    • Mehrotra, K., Mohan, C.K., Ranka, S., (Second Printing) Elements of Artificial Neural Networks. 2000, MIT Press, Cambridge MA.
    • (2000)
    • Mehrotra, K.1    Mohan, C.K.2    Ranka, S.3
  • 32
    • 85046142041 scopus 로고    scopus 로고
    • Ambient Air Quality Standards of People's Republic of China (GB3095-2012)
    • (in Chinese)
    • MEP, Ambient Air Quality Standards of People's Republic of China (GB3095-2012). 2012 (in Chinese).
    • (2012)
    • MEP1
  • 33
    • 84877327345 scopus 로고    scopus 로고
    • Quantifying temporal trends in ground level ozone concentration in the UK
    • Munir, S., Chen, H., Ropkins, K., Quantifying temporal trends in ground level ozone concentration in the UK. Sci. Total Environ. 458-460 (2013), 217-227.
    • (2013) Sci. Total Environ. , vol.458-460 , pp. 217-227
    • Munir, S.1    Chen, H.2    Ropkins, K.3
  • 34
    • 64049092449 scopus 로고    scopus 로고
    • Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network
    • Noori, R., Abdoli, M.A., Farokhnia, A., Abbasi, M., Results uncertainty of solid waste generation forecasting by hybrid of wavelet transform-ANFIS and wavelet transform-neural network. Expert Syst. Appl. 36:6 (2009), 9991-9999.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.6 , pp. 9991-9999
    • Noori, R.1    Abdoli, M.A.2    Farokhnia, A.3    Abbasi, M.4
  • 35
    • 73749085391 scopus 로고    scopus 로고
    • Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration
    • Noori, R., Hoshiyaripour, G.A., Ashrafi, K., Araabi, B.N., Uncertainty analysis of developed ANN and ANFIS models in prediction of carbon monoxide daily concentration. Atmos. Environ. 44 (2010), 476-482.
    • (2010) Atmos. Environ. , vol.44 , pp. 476-482
    • Noori, R.1    Hoshiyaripour, G.A.2    Ashrafi, K.3    Araabi, B.N.4
  • 36
    • 84856076556 scopus 로고    scopus 로고
    • Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes
    • Nourani, V., Fard, M.S., Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Softw 47 (2012), 127-146.
    • (2012) Adv. Eng. Softw , vol.47 , pp. 127-146
    • Nourani, V.1    Fard, M.S.2
  • 37
    • 0033880828 scopus 로고    scopus 로고
    • Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations
    • Prybutok, V.R., Yi, J., Mitchell, D., Comparison of neural network models with ARIMA and regression models for prediction of Houston's daily maximum ozone concentrations. Eur. J. Oper. Res. 122 (2000), 31-40.
    • (2000) Eur. J. Oper. Res. , vol.122 , pp. 31-40
    • Prybutok, V.R.1    Yi, J.2    Mitchell, D.3
  • 38
    • 0017955145 scopus 로고
    • Ozone forecasting using empirical modeling
    • Revlett, G.H., Ozone forecasting using empirical modeling. J. Air Pollut. Control Assoc. 28 (1978), 338-343.
    • (1978) J. Air Pollut. Control Assoc. , vol.28 , pp. 338-343
    • Revlett, G.H.1
  • 39
    • 0034113341 scopus 로고    scopus 로고
    • NARSTO critical review of photochemical models and modeling
    • Russell, A., Dennis, R., NARSTO critical review of photochemical models and modeling. Atmos. Environ. 34 (2000), 2283-2324.
    • (2000) Atmos. Environ. , vol.34 , pp. 2283-2324
    • Russell, A.1    Dennis, R.2
  • 40
    • 84864764050 scopus 로고    scopus 로고
    • Modelling of air temperature using remote sensing and artificial neural network in Turkey
    • Şahin, M., Modelling of air temperature using remote sensing and artificial neural network in Turkey. Adv. Space Res. 50 (2012), 973-985.
    • (2012) Adv. Space Res. , vol.50 , pp. 973-985
    • Şahin, M.1
  • 42
    • 75749099728 scopus 로고    scopus 로고
    • A novel approach to parameter uncertainty analysis of hydrological models using neural networks
    • Shrestha, D.L., Kayastha, N., Solomatine, D.P., A novel approach to parameter uncertainty analysis of hydrological models using neural networks. Hydrol. Earth Syst. Sci. 13 (2009), 1235-1248.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1235-1248
    • Shrestha, D.L.1    Kayastha, N.2    Solomatine, D.P.3
  • 43
    • 84884952307 scopus 로고    scopus 로고
    • Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models
    • Sun, W., Zhang, H., Palazoglu, A., Prediction of 8 h-average ozone concentration using a supervised hidden Markov model combined with generalized linear models. Atmos. Environ. 81 (2013), 199-208.
    • (2013) Atmos. Environ. , vol.81 , pp. 199-208
    • Sun, W.1    Zhang, H.2    Palazoglu, A.3
  • 44
    • 85006165941 scopus 로고    scopus 로고
    • Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality
    • Taylan, O., Modelling and analysis of ozone concentration by artificial intelligent techniques for estimating air quality. Atmos. Environ. 150 (2018), 356-365.
    • (2018) Atmos. Environ. , vol.150 , pp. 356-365
    • Taylan, O.1
  • 45
    • 29144451373 scopus 로고    scopus 로고
    • Model identification for hydrological forecasting under uncertainty
    • Wagener, T., Gupta, H.V., Model identification for hydrological forecasting under uncertainty. Stoch. Environ. Res. Risk Assess. 19 (2005), 378-387.
    • (2005) Stoch. Environ. Res. Risk Assess. , vol.19 , pp. 378-387
    • Wagener, T.1    Gupta, H.V.2
  • 46
    • 0038201778 scopus 로고    scopus 로고
    • Prediction of maximum daily ozone level using combined neural network and statistical characteristics
    • Wang, W., Lu, W., Wang, X., Leung, A.Y., Prediction of maximum daily ozone level using combined neural network and statistical characteristics. Environ. Int. 29 (2003), 555-562.
    • (2003) Environ. Int. , vol.29 , pp. 555-562
    • Wang, W.1    Lu, W.2    Wang, X.3    Leung, A.Y.4
  • 47
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Willmott, C.J., Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. 63 (1982), 1309-1313.
    • (1982) Bull. Am. Meteorol. Soc. , vol.63 , pp. 1309-1313
    • Willmott, C.J.1
  • 48
    • 41449109567 scopus 로고    scopus 로고
    • Artificial neural networks (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) Shells
    • Yetilmezsoy, K., Demirel, S., Artificial neural networks (ANN) approach for modeling of Pb (II) adsorption from aqueous solution by Antep pistachio (Pistacia Vera L.) Shells. J. Hazard Mater. 153 (2008), 1288-1300.
    • (2008) J. Hazard Mater. , vol.153 , pp. 1288-1300
    • Yetilmezsoy, K.1    Demirel, S.2
  • 49
    • 0030476772 scopus 로고    scopus 로고
    • A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area
    • Yi, J., Prybutok, V.R., A neural network model forecasting for prediction of daily maximum ozone concentration in an industrialized urban area. Environ. Pollut. 92 (1996), 349-357.
    • (1996) Environ. Pollut. , vol.92 , pp. 349-357
    • Yi, J.1    Prybutok, V.R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.