메뉴 건너뛰기




Volumn 7, Issue 3, 2016, Pages 557-566

Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions

Author keywords

Air pollutants concentrations; Back propagation neural network; Forecasting; Meteorological data; Stationary wavelet transform

Indexed keywords


EID: 84964952463     PISSN: 13091042     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apr.2016.01.004     Document Type: Article
Times cited : (276)

References (47)
  • 3
    • 84904904412 scopus 로고    scopus 로고
    • A multi-scale relevance vector regression approach for daily urban water demand forecasting
    • Bai Y., Wang P., Li C., Xie J., Wang Y. A multi-scale relevance vector regression approach for daily urban water demand forecasting. J. Hydrol. 2014, 517:236-245.
    • (2014) J. Hydrol. , vol.517 , pp. 236-245
    • Bai, Y.1    Wang, P.2    Li, C.3    Xie, J.4    Wang, Y.5
  • 4
    • 84861394227 scopus 로고    scopus 로고
    • Artificial neural network model to forecast the concentration of pollutants over Delhi: skill assessment of learning rules
    • Chaudhuri S., Acharya R. Artificial neural network model to forecast the concentration of pollutants over Delhi: skill assessment of learning rules. Asian J. Water Environ. Pollut. 2012, 1:71-81.
    • (2012) Asian J. Water Environ. Pollut. , vol.1 , pp. 71-81
    • Chaudhuri, S.1    Acharya, R.2
  • 6
    • 84877352016 scopus 로고    scopus 로고
    • 10 concentration forecast model based on stepwise regression and wavelet analysis
    • 10 concentration forecast model based on stepwise regression and wavelet analysis. Atmos. Environ. 2013, 74:346-359.
    • (2013) Atmos. Environ. , vol.74 , pp. 346-359
    • Chen, Y.1    Shi, R.2    Shu, S.3    Gao, W.4
  • 7
    • 80052642742 scopus 로고    scopus 로고
    • Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States
    • Chuang M.T., Zhang Y., Kang D. Application of WRF/Chem-MADRID for real-time air quality forecasting over the Southeastern United States. Atmos. Environ. 2011, 45:6241-6250.
    • (2011) Atmos. Environ. , vol.45 , pp. 6241-6250
    • Chuang, M.T.1    Zhang, Y.2    Kang, D.3
  • 8
    • 84964966412 scopus 로고    scopus 로고
    • 2 pollution incidents by means of Elman artificial neural networks and ARIMA models
    • 2 pollution incidents by means of Elman artificial neural networks and ARIMA models. Abstr. Appl. Analysis 2013, 4:1728-1749.
    • (2013) Abstr. Appl. Analysis , vol.4 , pp. 1728-1749
    • Corporation, H.P.1
  • 10
    • 84924196048 scopus 로고    scopus 로고
    • 2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model
    • 2.5 analog forecast and Kalman filter post-processing for the Community Multiscale Air Quality (CMAQ) model. Atmos. Environ. 2015, 108:76-87.
    • (2015) Atmos. Environ. , vol.108 , pp. 76-87
    • Djalalova, I.1    Monache, L.D.2    Wilczak, J.3
  • 11
    • 84858343140 scopus 로고    scopus 로고
    • Application of fuzzy time series models for forecasting pollution concentrations
    • Domańska D., Woktylak M. Application of fuzzy time series models for forecasting pollution concentrations. Expert Syst. Appl. 2012, 39:7673-7679.
    • (2012) Expert Syst. Appl. , vol.39 , pp. 7673-7679
    • Domańska, D.1    Woktylak, M.2
  • 12
    • 84907578344 scopus 로고    scopus 로고
    • Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis
    • Elangasinghe M.A., Singhal N., Dirks K.N., Salmond J.A. Development of an ANN-based air pollution forecasting system with explicit knowledge through sensitivity analysis. Atmos. Pollut. Res. 2014, 5:696-708.
    • (2014) Atmos. Pollut. Res. , vol.5 , pp. 696-708
    • Elangasinghe, M.A.1    Singhal, N.2    Dirks, K.N.3    Salmond, J.A.4
  • 13
    • 84923017379 scopus 로고    scopus 로고
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 2015, 107:118-128.
    • (2015) Atmos. Environ. , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Hou, J.4    Jin, L.5    Wang, J.6
  • 14
    • 79952246361 scopus 로고    scopus 로고
    • Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification
    • Feng Y., Zhang W., Sun D., Zhang L. Ozone concentration forecast method based on genetic algorithm optimized back propagation neural networks and support vector machine data classification. Atmos. Environ. 2011, 45:1979-1985.
    • (2011) Atmos. Environ. , vol.45 , pp. 1979-1985
    • Feng, Y.1    Zhang, W.2    Sun, D.3    Zhang, L.4
  • 15
    • 70749090032 scopus 로고    scopus 로고
    • The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States
    • Gantt B., Meskhidze N., Zhang Y., Xu J. The effect of marine isoprene emissions on secondary organic aerosol and ozone formation in the coastal United States. Atmos. Environ. 2010, 44:115-121.
    • (2010) Atmos. Environ. , vol.44 , pp. 115-121
    • Gantt, B.1    Meskhidze, N.2    Zhang, Y.3    Xu, J.4
  • 16
    • 84906979899 scopus 로고    scopus 로고
    • Research on motor vehicle exhaust pollution monitoring technology
    • Gao X.L., Hu T.J., Wang K. Research on motor vehicle exhaust pollution monitoring technology. Appl. Mech. Mater. 2014, 620:244-247.
    • (2014) Appl. Mech. Mater. , vol.620 , pp. 244-247
    • Gao, X.L.1    Hu, T.J.2    Wang, K.3
  • 17
    • 84896964477 scopus 로고    scopus 로고
    • Numerical model-based relationship between meteorological conditions and air quality and its implication for urban air quality management
    • He J., Yu Y., Liu N., Zhao S. Numerical model-based relationship between meteorological conditions and air quality and its implication for urban air quality management. Int. J. Environ. Pollut. 2013, 53:265-286.
    • (2013) Int. J. Environ. Pollut. , vol.53 , pp. 265-286
    • He, J.1    Yu, Y.2    Liu, N.3    Zhao, S.4
  • 18
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
    • Jian L., Zhao Y., Zhu Y.P., Zhang M., Bertolatti D. An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 2012, 426:336-345.
    • (2012) Sci. Total Environ. , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3    Zhang, M.4    Bertolatti, D.5
  • 19
    • 84891939195 scopus 로고    scopus 로고
    • Denoising of an image using discrete stationary wavelet transform and various thresholding techniques
    • Jumah A.A. Denoising of an image using discrete stationary wavelet transform and various thresholding techniques. J. Signal Inf. Process. 2013, 4:33-41.
    • (2013) J. Signal Inf. Process. , vol.4 , pp. 33-41
    • Jumah, A.A.1
  • 20
    • 77957840490 scopus 로고    scopus 로고
    • Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks
    • Kurt A., Oktay A.B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks. Expert Syst. Appl. 2010, 37:7986-7992.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 7986-7992
    • Kurt, A.1    Oktay, A.B.2
  • 21
    • 84906895900 scopus 로고    scopus 로고
    • An adaptive stopping creterion for backpropagetion learning in feedforward neural network
    • Lalis J.T., Gerardo B.D., Byun Y. An adaptive stopping creterion for backpropagetion learning in feedforward neural network. Int. J. Multimedia Ubiquitous Eng. 2014, 9:149-156.
    • (2014) Int. J. Multimedia Ubiquitous Eng. , vol.9 , pp. 149-156
    • Lalis, J.T.1    Gerardo, B.D.2    Byun, Y.3
  • 22
    • 79953234385 scopus 로고    scopus 로고
    • Separation of vibration-induced signal of oil debris sensor for vibration monitoring
    • Li C., Liang M. Separation of vibration-induced signal of oil debris sensor for vibration monitoring. Smart Mater. Struct. 2011, 20:1044-1052.
    • (2011) Smart Mater. Struct. , vol.20 , pp. 1044-1052
    • Li, C.1    Liang, M.2
  • 23
    • 84937813448 scopus 로고    scopus 로고
    • Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals
    • Li C., Liang M., Wang T.Y. Criterion fusion for spectral segmentation and its application to optimal demodulation of bearing vibration signals. Mech. Syst. Signal Process. 2015, 64-65:132-148.
    • (2015) Mech. Syst. Signal Process. , pp. 132-148
    • Li, C.1    Liang, M.2    Wang, T.Y.3
  • 25
    • 84940197971 scopus 로고    scopus 로고
    • 10 concentrations in Central Anatolia Region, Turkey
    • 10 concentrations in Central Anatolia Region, Turkey. Atmos. Pollut. Res. 2015, 6:735-741.
    • (2015) Atmos. Pollut. Res. , vol.6 , pp. 735-741
    • Ozel, G.1    Cakmakyapan, S.2
  • 26
    • 84881313051 scopus 로고    scopus 로고
    • Forecasting hourly roadside particulate matter in Taipei county of Taiwan based on first-order and one-variable grey model
    • Pai T.Y., Hanaki K., Chiou R.J. Forecasting hourly roadside particulate matter in Taipei county of Taiwan based on first-order and one-variable grey model. Clean - Soil Air Water 2013, 41:737-742.
    • (2013) Clean - Soil Air Water , vol.41 , pp. 737-742
    • Pai, T.Y.1    Hanaki, K.2    Chiou, R.J.3
  • 27
    • 84881317125 scopus 로고    scopus 로고
    • A 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approach
    • Pai T.Y., Hanaki K., Su H., Yu L.F. A 24-h forecast of oxidant concentration in Tokyo using neural network and fuzzy learning approach. Clean - Soil Air Water 2013, 41:729-736.
    • (2013) Clean - Soil Air Water , vol.41 , pp. 729-736
    • Pai, T.Y.1    Hanaki, K.2    Su, H.3    Yu, L.F.4
  • 28
    • 79551508219 scopus 로고    scopus 로고
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management
    • 10 concentration in Cyprus through artificial neural networks and multiple regression models: implications to local environmental management. Environ. Sci. Pollut. Res. 2011, 18:316-327.
    • (2011) Environ. Sci. Pollut. Res. , vol.18 , pp. 316-327
    • Paschalidou, A.K.1    Karaloysios, S.2    Kleanthous, S.3    Kassomenos, P.A.4
  • 29
    • 84915821078 scopus 로고    scopus 로고
    • Neural network training algorithm for carbon dioxide emissions forecast: a performance comparison
    • Pauzi H.M., Abdullah L. Neural network training algorithm for carbon dioxide emissions forecast: a performance comparison. Lect. Notes Electr. Eng. 2015, 315:717-726.
    • (2015) Lect. Notes Electr. Eng. , vol.315 , pp. 717-726
    • Pauzi, H.M.1    Abdullah, L.2
  • 31
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning representations by back-propagating errors. Nature 1986, 323:533-536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 32
    • 84927944185 scopus 로고    scopus 로고
    • Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales
    • Russo A., Lind P., Raischel F., Trigo R., Mendes M. Neural network forecast of daily pollution concentration using optimal meteorological data at synoptic and local scales. Atmos. Pollut. Res. 2015, 6. 10.5094/APR.2015.060.
    • (2015) Atmos. Pollut. Res. , vol.6
    • Russo, A.1    Lind, P.2    Raischel, F.3    Trigo, R.4    Mendes, M.5
  • 33
    • 84906705476 scopus 로고    scopus 로고
    • Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach
    • Russo A., Soares A.O. Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach. Math. Geosci. 2014, 46:75-93.
    • (2014) Math. Geosci. , vol.46 , pp. 75-93
    • Russo, A.1    Soares, A.O.2
  • 35
    • 84861690030 scopus 로고    scopus 로고
    • A hybrid ARIMA and artificial neural networks model to forecast air quality in urban areas: case of Tunisia
    • Samia A., Kaouther N., Abdelwahed T. A hybrid ARIMA and artificial neural networks model to forecast air quality in urban areas: case of Tunisia. Adv. Mater. Res. 2012, 518-523:2969-2979.
    • (2012) Adv. Mater. Res. , pp. 2969-2979
    • Samia, A.1    Kaouther, N.2    Abdelwahed, T.3
  • 37
    • 84860697230 scopus 로고    scopus 로고
    • Linear and nonlinear modeling approaches for urban air quality prediction
    • Singh K.P., Gupta S., Kumar A., Shukla S.P. Linear and nonlinear modeling approaches for urban air quality prediction. Sci. Total Environ. 2012, 426:244-255.
    • (2012) Sci. Total Environ. , vol.426 , pp. 244-255
    • Singh, K.P.1    Gupta, S.2    Kumar, A.3    Shukla, S.P.4
  • 38
    • 0033533301 scopus 로고    scopus 로고
    • Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach
    • Trigo R.M., Palutikof J.P. Simulation of daily temperatures for climate change scenarios over Portugal: a neural network model approach. Clim. Res. 1999, 13:45-59.
    • (1999) Clim. Res. , vol.13 , pp. 45-59
    • Trigo, R.M.1    Palutikof, J.P.2
  • 39
    • 84055222204 scopus 로고    scopus 로고
    • The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty
    • Urbanski S.P., Hao W.M., Nordgren B. The wildland fire emission inventory: western United States emission estimates and an evaluation of uncertainty. Atmos. Chem. Phys. 2011, 11:12973-13000.
    • (2011) Atmos. Chem. Phys. , vol.11 , pp. 12973-13000
    • Urbanski, S.P.1    Hao, W.M.2    Nordgren, B.3
  • 40
    • 84958524590 scopus 로고    scopus 로고
    • Study of the hydrological time series similarity search based on Daubechies wavelet transform
    • Wang H.F., Xing C., Yu F. Study of the hydrological time series similarity search based on Daubechies wavelet transform. Lect. Notes Electr. Eng. 2014, 238:2051-2057.
    • (2014) Lect. Notes Electr. Eng. , vol.238 , pp. 2051-2057
    • Wang, H.F.1    Xing, C.2    Yu, F.3
  • 42
    • 84914678223 scopus 로고    scopus 로고
    • The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei Region during January 2013
    • Wang L., Zhang N., Liu Z., Sun Y., Ji D., Wang Y. The influence of climate factors, meteorological conditions, and boundary-layer structure on severe haze pollution in the Beijing-Tianjin-Hebei Region during January 2013. Adv. Meteorol. 2014, http://dx.doi.org/10.1155/2014/685971.
    • (2014) Adv. Meteorol.
    • Wang, L.1    Zhang, N.2    Liu, Z.3    Sun, Y.4    Ji, D.5    Wang, Y.6
  • 43
    • 84908020946 scopus 로고    scopus 로고
    • 10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement
    • 10 in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) system: emission and improvement. Geosci. Model Dev. 2014, 7:2243-2259.
    • (2014) Geosci. Model Dev. , vol.7 , pp. 2243-2259
    • Wu, Q.1    Xu, W.2    Shi, A.3    Li, Y.4    Zhao, X.5    Wang, Z.6    Li, J.7    Wang, L.8
  • 44
    • 79955578106 scopus 로고    scopus 로고
    • 10 air pollution index prediction in the urban area of Wuhan, China
    • 10 air pollution index prediction in the urban area of Wuhan, China. Environ. Eng. Sci. 2011, 28:357-363.
    • (2011) Environ. Eng. Sci. , vol.28 , pp. 357-363
    • Wu, S.1    Feng, Q.2    Du, Y.3    Li, X.4
  • 45
    • 84894088330 scopus 로고    scopus 로고
    • A temperature inversion-induced air pollution process as analyzed from Mie LiDAR data
    • Wu W., Zha Y., Zhang J., Gao J., He J. A temperature inversion-induced air pollution process as analyzed from Mie LiDAR data. Sci. Total Environ. 2014, 479-480:102-108.
    • (2014) Sci. Total Environ. , pp. 102-108
    • Wu, W.1    Zha, Y.2    Zhang, J.3    Gao, J.4    He, J.5
  • 46
    • 84899865467 scopus 로고    scopus 로고
    • Real-time air quality forecasting over the southeastern United States using WRF/Chem-MADRID: multiple-year assessment and sensitivity studies
    • Yahya K., Zhang Y., Vukovich J.M. Real-time air quality forecasting over the southeastern United States using WRF/Chem-MADRID: multiple-year assessment and sensitivity studies. Atmos. Environ. 2014, 92:318-338.
    • (2014) Atmos. Environ. , vol.92 , pp. 318-338
    • Yahya, K.1    Zhang, Y.2    Vukovich, J.M.3
  • 47
    • 84865865895 scopus 로고    scopus 로고
    • Real-time air quality forecasting, part I: history, techniques, and current status
    • Zhang Y., Seigneur C., Bocquet M., Mallet V., Baklanov A. Real-time air quality forecasting, part I: history, techniques, and current status. Atmos. Environ. 2012, 60:632-655.
    • (2012) Atmos. Environ. , vol.60 , pp. 632-655
    • Zhang, Y.1    Seigneur, C.2    Bocquet, M.3    Mallet, V.4    Baklanov, A.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.