메뉴 건너뛰기




Volumn 43, Issue 35, 2009, Pages 5588-5596

Neural network forecasting of air pollutants hourly concentrations using optimised temporal averages of meteorological variables and pollutant concentrations

Author keywords

Air quality forecasting; Model input selection; Multi layer perceptron neural networks

Indexed keywords

AIR POLLUTANTS; AIR QUALITY FORECASTING; CITY OF ZAGREB; COEFFICIENT OF CORRELATION; CROATIA; DATA SETS; FORECASTING MODELS; INDEX OF AGREEMENTS; INPUT DATAS; INPUT VARIABLES; METEOROLOGICAL VARIABLES; MOVING AVERAGES; MULTI LAYER PERCEPTRON; MULTI-LAYER PERCEPTRON NEURAL NETWORKS; NUMERICAL WEATHER FORECASTS; POLLUTANT CONCENTRATION; REGRESSION MODEL; RELATIVE IMPORTANCE; RESIDENTIAL AREAS; UNIVARIATE;

EID: 70449405008     PISSN: 13522310     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.atmosenv.2009.07.048     Document Type: Article
Times cited : (101)

References (34)
  • 3
    • 0027610496 scopus 로고
    • 2 concentrations in highly polluted industrial areas of complex terrain
    • 2 concentrations in highly polluted industrial areas of complex terrain. Atmospheric Environment 27B (1993) 221-230
    • (1993) Atmospheric Environment , vol.27 B , pp. 221-230
    • Božnar, M.1    Lesjak, M.2    Mlakar, P.3
  • 5
    • 17644370689 scopus 로고    scopus 로고
    • Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning
    • Corani G. Air quality prediction in Milan: feed-forward neural networks, pruned neural networks and lazy learning. Ecological Modelling 185 (2005) 513-529
    • (2005) Ecological Modelling , vol.185 , pp. 513-529
    • Corani, G.1
  • 8
    • 71749094593 scopus 로고
    • Federal Register, National Archives and Records Administration
    • Federal Register, 1995, Office of the Federal Register, National Archives and Records Administration, 60, 38326.
    • (1995) Office of the Federal Register , vol.60 , pp. 38326
  • 9
    • 71749104273 scopus 로고    scopus 로고
    • Federal Register, National Archives and Records Administration
    • Federal Register, 2002, Office of the Federal Register, National Archives and Records Administration, 67, 42557.
    • (2002) Office of the Federal Register , vol.67 , pp. 42557
  • 10
    • 71749106750 scopus 로고    scopus 로고
    • Federal Register, National Archives and Records Administration
    • Federal Register, 2004, Office of the Federal Register, National Archives and Records Administration, 69, 18569.
    • (2004) Office of the Federal Register , vol.69 , pp. 18569
  • 12
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences
    • Gardner M.W., and Dorling S.R. Artificial neural networks (the multilayer perceptron) - a review of applications in the atmospheric sciences. Atmospheric Environment 32 (1998) 2627-2636
    • (1998) Atmospheric Environment , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 17
    • 0034215014 scopus 로고    scopus 로고
    • A modelling system for predicting urban air pollution: model description and applications in the Helsinki metropolitan area
    • Karppinen A., Kukkonen J., Elolähde T., Konttinen M., Koskentalo T., and Rantakrans E. A modelling system for predicting urban air pollution: model description and applications in the Helsinki metropolitan area. Atmospheric Environment 34 (2000) 3723-3733
    • (2000) Atmospheric Environment , vol.34 , pp. 3723-3733
    • Karppinen, A.1    Kukkonen, J.2    Elolähde, T.3    Konttinen, M.4    Koskentalo, T.5    Rantakrans, E.6
  • 18
    • 0034215012 scopus 로고    scopus 로고
    • A modelling system for predicting urban air pollution: comparison of model predictions with the data of an urban measurement network in Helsinki
    • Karppinen A., Kukkonen J., Elolähde T., Konttinen M., and Koskentalo T. A modelling system for predicting urban air pollution: comparison of model predictions with the data of an urban measurement network in Helsinki. Atmospheric Environment 34 (2000) 3735-3743
    • (2000) Atmospheric Environment , vol.34 , pp. 3735-3743
    • Karppinen, A.1    Kukkonen, J.2    Elolähde, T.3    Konttinen, M.4    Koskentalo, T.5
  • 19
    • 0035982612 scopus 로고    scopus 로고
    • Modification of the local winds due to the hypothetical urbanization of the Zagreb surroundings
    • Klaić Z.B., Nitis T., Kos I., and Moussiopoulos N. Modification of the local winds due to the hypothetical urbanization of the Zagreb surroundings. Meteorology and Atmospheric Physics 79 (2002) 1-12
    • (2002) Meteorology and Atmospheric Physics , vol.79 , pp. 1-12
    • Klaić, Z.B.1    Nitis, T.2    Kos, I.3    Moussiopoulos, N.4
  • 20
    • 85088183901 scopus 로고    scopus 로고
    • Mesoscale modeling of meteorological conditions in the lower troposphere during a winter stratospheric ozone intrusion over Zagreb, Croatia
    • Klaić Z.B., Belušić D., Bulić I.H., and Hrust L. Mesoscale modeling of meteorological conditions in the lower troposphere during a winter stratospheric ozone intrusion over Zagreb, Croatia. Journal of Geophysical Research 108 (2003) 0148-0227
    • (2003) Journal of Geophysical Research , vol.108 , pp. 0148-0227
    • Klaić, Z.B.1    Belušić, D.2    Bulić, I.H.3    Hrust, L.4
  • 21
    • 0034739912 scopus 로고    scopus 로고
    • Neural networks and periodic components used in air quality forecasting
    • Kolehmainen M., Martikainen H., and Ruuskanen J. Neural networks and periodic components used in air quality forecasting. Atmospheric Environment 35 (2001) 815-825
    • (2001) Atmospheric Environment , vol.35 , pp. 815-825
    • Kolehmainen, M.1    Martikainen, H.2    Ruuskanen, J.3
  • 24
    • 70449405243 scopus 로고
    • The wind in Zagreb (a contribution to the knowledge of climate of the city of Zagreb, II)
    • Lisac I. The wind in Zagreb (a contribution to the knowledge of climate of the city of Zagreb, II). Geofizika 1 (1984) 47-123
    • (1984) Geofizika , vol.1 , pp. 47-123
    • Lisac, I.1
  • 25
    • 33745714336 scopus 로고    scopus 로고
    • Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network
    • Lu H.C., Hsieh J.C., and Chang T.S. Prediction of daily maximum ozone concentrations from meteorological conditions using a two-stage neural network. Atmospheric Research 81 (2006) 124-139
    • (2006) Atmospheric Research , vol.81 , pp. 124-139
    • Lu, H.C.1    Hsieh, J.C.2    Chang, T.S.3
  • 26
    • 49449113055 scopus 로고    scopus 로고
    • Improving the quality of INSAT derived quantitative precipitation estimates using an neural network method
    • Nath S., Mitra A.K., and Bhowmik S.K.R. Improving the quality of INSAT derived quantitative precipitation estimates using an neural network method. Geofizika 25 1 (2008) 41-51
    • (2008) Geofizika , vol.25 , Issue.1 , pp. 41-51
    • Nath, S.1    Mitra, A.K.2    Bhowmik, S.K.R.3
  • 27
    • 26444607469 scopus 로고    scopus 로고
    • Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations
    • Niska H., Rantamäki M., Hiltuinen T., Karpinen A., Kukkonen J., Ruuskanen J., and Kolehmainen M. Evaluation of an integrated modelling system containing a multi-layer perceptron model and the numerical weather prediction model HIRLAM for the forecasting of urban airborne pollutant concentrations. Atmospheric Environment 39 (2005) 6524-6536
    • (2005) Atmospheric Environment , vol.39 , pp. 6524-6536
    • Niska, H.1    Rantamäki, M.2    Hiltuinen, T.3    Karpinen, A.4    Kukkonen, J.5    Ruuskanen, J.6    Kolehmainen, M.7
  • 28
    • 0343339858 scopus 로고    scopus 로고
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile
    • 2.5 concentrations several hours in advance using neural networks in Santiago, Chile. Atmospheric Environment 34 (2000) 1189-1196
    • (2000) Atmospheric Environment , vol.34 , pp. 1189-1196
    • Perez, P.1    Trier, A.2    Reyes, J.3
  • 29
    • 0036708755 scopus 로고    scopus 로고
    • 10 concentrations 30 h in advance in Santiago, Chile
    • 10 concentrations 30 h in advance in Santiago, Chile. Atmospheric Environment 36 (2002) 4555-4561
    • (2002) Atmospheric Environment , vol.36 , pp. 4555-4561
    • Perez, P.1    Reyes, J.2
  • 31
    • 0036134847 scopus 로고    scopus 로고
    • Application of artificial neural networks to modeling the transport and dispersion of tracers in complex terrain
    • Podnar D., Koračin D., and Panorska A. Application of artificial neural networks to modeling the transport and dispersion of tracers in complex terrain. Atmospheric Environment 36 (2002) 561-570
    • (2002) Atmospheric Environment , vol.36 , pp. 561-570
    • Podnar, D.1    Koračin, D.2    Panorska, A.3
  • 32
    • 0019707668 scopus 로고
    • On the validation of models
    • Wilmott C.J. On the validation of models. Physical Geography 2 (1981) 184-194
    • (1981) Physical Geography , vol.2 , pp. 184-194
    • Wilmott, C.J.1
  • 33
    • 0020386641 scopus 로고
    • Some comments on the evaluation of model performance
    • Wilmott C.J. Some comments on the evaluation of model performance. Bulletin American Meteorological Society 63 11 (1982) 1309-1313
    • (1982) Bulletin American Meteorological Society , vol.63 , Issue.11 , pp. 1309-1313
    • Wilmott, C.J.1
  • 34
    • 30444437204 scopus 로고    scopus 로고
    • Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
    • Wilmott C.J. Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Climate Research 30 (2005) 79-82
    • (2005) Climate Research , vol.30 , pp. 79-82
    • Wilmott, C.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.