메뉴 건너뛰기




Volumn 222, Issue , 2019, Pages 286-294

An ensemble long short-term memory neural network for hourly PM2.5 concentration forecasting

Author keywords

Ensemble learning; Forecasting; Long short term memory; Mode transformation; PM2.5 concentrations

Indexed keywords

BRAIN; FEEDFORWARD NEURAL NETWORKS; FORECASTING; INVERSE PROBLEMS; LEARNING SYSTEMS; MEAN SQUARE ERROR;

EID: 85060908111     PISSN: 00456535     EISSN: 18791298     Source Type: Journal    
DOI: 10.1016/j.chemosphere.2019.01.121     Document Type: Article
Times cited : (150)

References (34)
  • 1
    • 84878935220 scopus 로고    scopus 로고
    • 10 at the national level using an artificial neural network approach
    • Antanasijević D.Z., Ristić M., Perić-Grujić A., Pocajt, V., Forecasting human exposure to PM10 at the national level using an artificial neural network approach. J. Chemom. 27 (2012), 170–177.
    • (2012) J. Chemom. , vol.27 , pp. 170-177
    • Antanasijević, D.Z.1    Ristić, M.2    Perić-Grujić, A.3    Pocajt, V.4
  • 2
    • 84951879294 scopus 로고    scopus 로고
    • Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
    • Bai, Y., Chen, Z.Q., Xie, J., Li, C., Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 532 (2016), 193–206.
    • (2016) J. Hydrol. , vol.532 , pp. 193-206
    • Bai, Y.1    Chen, Z.Q.2    Xie, J.3    Li, C.4
  • 3
    • 84964952463 scopus 로고    scopus 로고
    • Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
    • Bai, Y., Li, Y., Wang, X., Xie, J., Li, C., Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7:3 (2016), 557–566.
    • (2016) Atmos. Pollut. Res. , vol.7 , Issue.3 , pp. 557-566
    • Bai, Y.1    Li, Y.2    Wang, X.3    Xie, J.4    Li, C.5
  • 4
    • 85015006087 scopus 로고    scopus 로고
    • 7Be air concentrations
    • Bas, M.D.C., Ortiz, J., Ballesteros, L., Martorell, S., Evaluation of a multiple linear regression model and SARIMA model in forecasting 7Be air concentrations. Chemosphere 177 (2017), 326–333.
    • (2017) Chemosphere , vol.177 , pp. 326-333
    • Bas, M.D.C.1    Ortiz, J.2    Ballesteros, L.3    Martorell, S.4
  • 7
    • 84907244565 scopus 로고    scopus 로고
    • 2.5 levels in Paris with a multivariate linear regression model
    • Dimitriou, K., Kassomenos, P., A study on the reconstitution of daily PM10 and PM2.5 levels in Paris with a multivariate linear regression model. Atmos. Environ. 98 (2014), 648–654.
    • (2014) Atmos. Environ. , vol.98 , pp. 648-654
    • Dimitriou, K.1    Kassomenos, P.2
  • 8
    • 84923017379 scopus 로고    scopus 로고
    • 2.5 pollution using air mass trajectory based geographic model and wavelet transformation
    • Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107 (2015), 118–128.
    • (2015) Atmos. Environ. , vol.107 , pp. 118-128
    • Feng, X.1    Li, Q.2    Zhu, Y.3    Hou, J.4    Jin, L.5    Wang, J.6
  • 9
    • 84941876827 scopus 로고    scopus 로고
    • Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model
    • Fu, M., Wang, W., Le, Z., Khorram, M., Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model. Neural Comput. Appl. 26:8 (2015), 1789–1797.
    • (2015) Neural Comput. Appl. , vol.26 , Issue.8 , pp. 1789-1797
    • Fu, M.1    Wang, W.2    Le, Z.3    Khorram, M.4
  • 10
    • 0034293152 scopus 로고    scopus 로고
    • Learning to forget: continual prediction with LSTM
    • Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: continual prediction with LSTM. Neural Comput. 12:10 (2000), 2451–2471.
    • (2000) Neural Comput. , vol.12 , Issue.10 , pp. 2451-2471
    • Gers, F.A.1    Schmidhuber, J.2    Cummins, F.3
  • 12
    • 85050087079 scopus 로고    scopus 로고
    • 2.5) forecasting in smart cities
    • Huang, C.J., Kuo, P.H., A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors, 18(7), 2018, 2220.
    • (2018) Sensors , vol.18 , Issue.7 , pp. 2220
    • Huang, C.J.1    Kuo, P.H.2
  • 14
    • 84860676627 scopus 로고    scopus 로고
    • An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
    • Jian, L., Zhao, Y., Zhu, Y.P., Zhang, M., Bertolatti, D., An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 426 (2012), 336–345.
    • (2012) Sci. Total Environ. , vol.426 , pp. 336-345
    • Jian, L.1    Zhao, Y.2    Zhu, Y.P.3    Zhang, M.4    Bertolatti, D.5
  • 15
    • 85055974537 scopus 로고    scopus 로고
    • Improving forecasting accuracy of daily enterprise electricity consumption using random forest based on ensemble empirical mode decomposition
    • Li, C., Tao, Y., Ao, W.G., Yang, S., Bai, Y., Improving forecasting accuracy of daily enterprise electricity consumption using random forest based on ensemble empirical mode decomposition. Energy 165 (2018), 1220–1227.
    • (2018) Energy , vol.165 , pp. 1220-1227
    • Li, C.1    Tao, Y.2    Ao, W.G.3    Yang, S.4    Bai, Y.5
  • 16
    • 84933564722 scopus 로고    scopus 로고
    • 2.5 concentration in Guangzhou, China
    • Liu, D., Li, L., Application study of comprehensive forecasting model based on Entropy weighting method on trend of PM2.5 concentration in Guangzhou, China. Int. J. Environ. Res. Publ. Health 12:6 (2015), 7085–7099.
    • (2015) Int. J. Environ. Res. Publ. Health , vol.12 , Issue.6 , pp. 7085-7099
    • Liu, D.1    Li, L.2
  • 17
    • 84860551851 scopus 로고    scopus 로고
    • 2.5 emissions control during the Beijing 2008 Olympic Games
    • Liu, Y., He, K., Li, S., Wang, Z., Christiani, D., Koutrakis, P., A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games. Environ. Int. 44 (2012), 100–105.
    • (2012) Environ. Int. , vol.44 , pp. 100-105
    • Liu, Y.1    He, K.2    Li, S.3    Wang, Z.4    Christiani, D.5    Koutrakis, P.6
  • 18
    • 85028944487 scopus 로고    scopus 로고
    • Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation
    • Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., Chi, T., Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ. Pollut. 231 (2017), 997–1004.
    • (2017) Environ. Pollut. , vol.231 , pp. 997-1004
    • Li, X.1    Peng, L.2    Yao, X.3    Cui, S.4    Hu, Y.5    You, C.6    Chi, T.7
  • 19
    • 0000551189 scopus 로고    scopus 로고
    • Popular ensemble methods: an empirical study
    • Maclin, R., Opitz, D., Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999), 169–198.
    • (1999) J. Artif. Intell. Res. , vol.11 , pp. 169-198
    • Maclin, R.1    Opitz, D.2
  • 20
    • 85048258541 scopus 로고    scopus 로고
    • 2.5 pollution in Santiago, Chile
    • Moisan, S., Herrera, R., Clements, A., A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile. Int. J. Forecast. 34 (2018), 566–581.
    • (2018) Int. J. Forecast. , vol.34 , pp. 566-581
    • Moisan, S.1    Herrera, R.2    Clements, A.3
  • 21
    • 84933557438 scopus 로고    scopus 로고
    • 2.5
    • Ong, B.T., Sugiura, K., Zettsu, K., Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Comput. Appl. 27:6 (2016), 1553–1566.
    • (2016) Neural Comput. Appl. , vol.27 , Issue.6 , pp. 1553-1566
    • Ong, B.T.1    Sugiura, K.2    Zettsu, K.3
  • 22
    • 84942986317 scopus 로고    scopus 로고
    • Artificial neural networks and fuzzy time series forecasting: an application to air quality
    • Rahman, N.H.A., Lee, M.H., Suhartono, Latif, M., Artificial neural networks and fuzzy time series forecasting: an application to air quality. Qual. Quantity 49:6 (2015), 2633–2647.
    • (2015) Qual. Quantity , vol.49 , Issue.6 , pp. 2633-2647
    • Rahman, N.H.A.1    Lee, M.H.2    Suhartono3    Latif, M.4
  • 23
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • Rokach, L., Ensemble-based classifiers. Artif. Intell. Rev. 33:1–2 (2010), 1–39.
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 24
    • 84906705476 scopus 로고    scopus 로고
    • Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach
    • Russo, A., Soares, A.O., Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach. Math. Geosci. 46 (2014), 75–93.
    • (2014) Math. Geosci. , vol.46 , pp. 75-93
    • Russo, A.1    Soares, A.O.2
  • 25
    • 84958729903 scopus 로고    scopus 로고
    • 2.5 episodes occurring in multiple cities in central and southern Chile
    • Saide, P., Mena, M., Tolvett, S., Hernandez, P., Carmichael, G., Air quality forecasting for winter-time PM2.5 episodes occurring in multiple cities in central and southern Chile. J. Geophys. Res. Atmos. 121:1 (2016), 558–575.
    • (2016) J. Geophys. Res. Atmos. , vol.121 , Issue.1 , pp. 558-575
    • Saide, P.1    Mena, M.2    Tolvett, S.3    Hernandez, P.4    Carmichael, G.5
  • 26
    • 85013665232 scopus 로고    scopus 로고
    • 2.5 concentrations forecasting
    • Wang, P., Zhang, H., Qin, Z., Zhang, G., A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmos. Pollut. Res. 8:5 (2017), 850–860.
    • (2017) Atmos. Pollut. Res. , vol.8 , Issue.5 , pp. 850-860
    • Wang, P.1    Zhang, H.2    Qin, Z.3    Zhang, G.4
  • 27
    • 85048149425 scopus 로고    scopus 로고
    • 2.5 concentration in China using partial differential equations
    • Wang, Y., Wang, H., Chang, S., Avram, A., Prediction of daily PM2.5 concentration in China using partial differential equations. PLoS One, 13(6), 2018, e0197666.
    • (2018) PLoS One , vol.13 , Issue.6 , pp. e0197666
    • Wang, Y.1    Wang, H.2    Chang, S.3    Avram, A.4
  • 28
    • 79955578106 scopus 로고    scopus 로고
    • 10 air pollution index prediction in the urban area of Wuhan, China
    • Wu, S., Feng, Q., Du, Y., Li, X., Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China. Environ. Eng. Sci. 28 (2011), 357–363.
    • (2011) Environ. Eng. Sci. , vol.28 , pp. 357-363
    • Wu, S.1    Feng, Q.2    Du, Y.3    Li, X.4
  • 29
    • 84930466218 scopus 로고    scopus 로고
    • Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: a panel study among young adults in Beijing, China
    • Wu, S.W., Yang, D., Wei, H.Y., Wang, B., Huang, J., Li, H., Shima, M., Deng, F., Guo, X., Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: a panel study among young adults in Beijing, China. Chemosphere 135 (2015), 347–353.
    • (2015) Chemosphere , vol.135 , pp. 347-353
    • Wu, S.W.1    Yang, D.2    Wei, H.Y.3    Wang, B.4    Huang, J.5    Li, H.6    Shima, M.7    Deng, F.8    Guo, X.9
  • 30
    • 80052078099 scopus 로고    scopus 로고
    • Ensemble empirical mode decomposition: a noise assisted data analysis method
    • Wu, Z.H., Huang, N.E., Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adapt. Data Anal. 1:1 (2009), 1–41.
    • (2009) Adv. Adapt. Data Anal. , vol.1 , Issue.1 , pp. 1-41
    • Wu, Z.H.1    Huang, N.E.2
  • 31
    • 85049385081 scopus 로고    scopus 로고
    • Auto encoder-based deep belief regression network for air particulate matter concentration forecasting
    • Xie, J.J., Wang, X., Liu, Y., Bai, Y., Auto encoder-based deep belief regression network for air particulate matter concentration forecasting. J. Intell. Fuzzy Syst. 34:6 (2018), 3475–3486.
    • (2018) J. Intell. Fuzzy Syst. , vol.34 , Issue.6 , pp. 3475-3486
    • Xie, J.J.1    Wang, X.2    Liu, Y.3    Bai, Y.4
  • 34
    • 85045378706 scopus 로고    scopus 로고
    • PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
    • Zhu, S., Lian, X., Lin, W., Chen, J., Shen, X., Yang, L., Qiu, X., Liu, X., Gao, W., Ren, X., Li, J., PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos. Environ. 183 (2018), 20–32.
    • (2018) Atmos. Environ. , vol.183 , pp. 20-32
    • Zhu, S.1    Lian, X.2    Lin, W.3    Chen, J.4    Shen, X.5    Yang, L.6    Qiu, X.7    Liu, X.8    Gao, W.9    Ren, X.10    Li, J.11


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.