-
1
-
-
84878935220
-
10 at the national level using an artificial neural network approach
-
Antanasijević D.Z., Ristić M., Perić-Grujić A., Pocajt, V., Forecasting human exposure to PM10 at the national level using an artificial neural network approach. J. Chemom. 27 (2012), 170–177.
-
(2012)
J. Chemom.
, vol.27
, pp. 170-177
-
-
Antanasijević, D.Z.1
Ristić, M.2
Perić-Grujić, A.3
Pocajt, V.4
-
2
-
-
84951879294
-
Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models
-
Bai, Y., Chen, Z.Q., Xie, J., Li, C., Daily reservoir inflow forecasting using multiscale deep feature learning with hybrid models. J. Hydrol. 532 (2016), 193–206.
-
(2016)
J. Hydrol.
, vol.532
, pp. 193-206
-
-
Bai, Y.1
Chen, Z.Q.2
Xie, J.3
Li, C.4
-
3
-
-
84964952463
-
Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions
-
Bai, Y., Li, Y., Wang, X., Xie, J., Li, C., Air pollutants concentrations forecasting using back propagation neural network based on wavelet decomposition with meteorological conditions. Atmos. Pollut. Res. 7:3 (2016), 557–566.
-
(2016)
Atmos. Pollut. Res.
, vol.7
, Issue.3
, pp. 557-566
-
-
Bai, Y.1
Li, Y.2
Wang, X.3
Xie, J.4
Li, C.5
-
4
-
-
85015006087
-
7Be air concentrations
-
Bas, M.D.C., Ortiz, J., Ballesteros, L., Martorell, S., Evaluation of a multiple linear regression model and SARIMA model in forecasting 7Be air concentrations. Chemosphere 177 (2017), 326–333.
-
(2017)
Chemosphere
, vol.177
, pp. 326-333
-
-
Bas, M.D.C.1
Ortiz, J.2
Ballesteros, L.3
Martorell, S.4
-
5
-
-
85009290172
-
2.5
-
Biancofiore, F., Busilacchio, M., Verdecchia, M., Tomassetti, B., Aruffo, E., Bianco, S., Tommaso, S., Colangeli, C., Rosatelli, G., Carlo, P., Recursive neural network model for analysis and forecast of PM10 and PM2.5. Atmos. Pollut. Res. 8:4 (2017), 652–659.
-
(2017)
Atmos. Pollut. Res.
, vol.8
, Issue.4
, pp. 652-659
-
-
Biancofiore, F.1
Busilacchio, M.2
Verdecchia, M.3
Tomassetti, B.4
Aruffo, E.5
Bianco, S.6
Tommaso, S.7
Colangeli, C.8
Rosatelli, G.9
Carlo, P.10
-
6
-
-
23644455496
-
The global burden of disease due to outdoor air pollution
-
Cohen, A.J., Ross Anderson, H., Ostro, B., Pandey, K.D., Krzyzanowski, M., Künzli, N., Gutschmidt, K., Pope, A., Romieu, I., Samet, J.M., Smith, K., The global burden of disease due to outdoor air pollution. J. Toxicol. Environ. Health 68:13–14 (2005), 1301–1307.
-
(2005)
J. Toxicol. Environ. Health
, vol.68
, Issue.13-14
, pp. 1301-1307
-
-
Cohen, A.J.1
Ross Anderson, H.2
Ostro, B.3
Pandey, K.D.4
Krzyzanowski, M.5
Künzli, N.6
Gutschmidt, K.7
Pope, A.8
Romieu, I.9
Samet, J.M.10
Smith, K.11
-
7
-
-
84907244565
-
2.5 levels in Paris with a multivariate linear regression model
-
Dimitriou, K., Kassomenos, P., A study on the reconstitution of daily PM10 and PM2.5 levels in Paris with a multivariate linear regression model. Atmos. Environ. 98 (2014), 648–654.
-
(2014)
Atmos. Environ.
, vol.98
, pp. 648-654
-
-
Dimitriou, K.1
Kassomenos, P.2
-
8
-
-
84923017379
-
2.5 pollution using air mass trajectory based geographic model and wavelet transformation
-
Feng, X., Li, Q., Zhu, Y., Hou, J., Jin, L., Wang, J., Artificial neural networks forecasting of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation. Atmos. Environ. 107 (2015), 118–128.
-
(2015)
Atmos. Environ.
, vol.107
, pp. 118-128
-
-
Feng, X.1
Li, Q.2
Zhu, Y.3
Hou, J.4
Jin, L.5
Wang, J.6
-
9
-
-
84941876827
-
Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model
-
Fu, M., Wang, W., Le, Z., Khorram, M., Prediction of particular matter concentrations by developed feed-forward neural network with rolling mechanism and gray model. Neural Comput. Appl. 26:8 (2015), 1789–1797.
-
(2015)
Neural Comput. Appl.
, vol.26
, Issue.8
, pp. 1789-1797
-
-
Fu, M.1
Wang, W.2
Le, Z.3
Khorram, M.4
-
10
-
-
0034293152
-
Learning to forget: continual prediction with LSTM
-
Gers, F.A., Schmidhuber, J., Cummins, F., Learning to forget: continual prediction with LSTM. Neural Comput. 12:10 (2000), 2451–2471.
-
(2000)
Neural Comput.
, vol.12
, Issue.10
, pp. 2451-2471
-
-
Gers, F.A.1
Schmidhuber, J.2
Cummins, F.3
-
11
-
-
84979010616
-
LSTM: a search space odyssey
-
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B., Schmidhuber, J., LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28:10 (2016), 2222–2232.
-
(2016)
IEEE Trans. Neural Netw. Learn. Syst.
, vol.28
, Issue.10
, pp. 2222-2232
-
-
Greff, K.1
Srivastava, R.K.2
Koutník, J.3
Steunebrink, B.4
Schmidhuber, J.5
-
12
-
-
85050087079
-
2.5) forecasting in smart cities
-
Huang, C.J., Kuo, P.H., A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors, 18(7), 2018, 2220.
-
(2018)
Sensors
, vol.18
, Issue.7
, pp. 2220
-
-
Huang, C.J.1
Kuo, P.H.2
-
13
-
-
5444236478
-
The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis
-
Huang, N.E., Shen, Z., Long, S.R., Wu, M.C., Shih, E.H., Zheng, Q., Tung, C.C., Liu, H.H., The empirical mode decomposition method and the Hilbert spectrum for non-stationary time series analysis. Proc. Roy. Soc. London Ser. A 454 (1998), 903–995.
-
(1998)
Proc. Roy. Soc. London Ser. A
, vol.454
, pp. 903-995
-
-
Huang, N.E.1
Shen, Z.2
Long, S.R.3
Wu, M.C.4
Shih, E.H.5
Zheng, Q.6
Tung, C.C.7
Liu, H.H.8
-
14
-
-
84860676627
-
An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China
-
Jian, L., Zhao, Y., Zhu, Y.P., Zhang, M., Bertolatti, D., An application of ARIMA model to predict submicron particle concentrations from meteorological factors at a busy roadside in Hangzhou, China. Sci. Total Environ. 426 (2012), 336–345.
-
(2012)
Sci. Total Environ.
, vol.426
, pp. 336-345
-
-
Jian, L.1
Zhao, Y.2
Zhu, Y.P.3
Zhang, M.4
Bertolatti, D.5
-
15
-
-
85055974537
-
Improving forecasting accuracy of daily enterprise electricity consumption using random forest based on ensemble empirical mode decomposition
-
Li, C., Tao, Y., Ao, W.G., Yang, S., Bai, Y., Improving forecasting accuracy of daily enterprise electricity consumption using random forest based on ensemble empirical mode decomposition. Energy 165 (2018), 1220–1227.
-
(2018)
Energy
, vol.165
, pp. 1220-1227
-
-
Li, C.1
Tao, Y.2
Ao, W.G.3
Yang, S.4
Bai, Y.5
-
16
-
-
84933564722
-
2.5 concentration in Guangzhou, China
-
Liu, D., Li, L., Application study of comprehensive forecasting model based on Entropy weighting method on trend of PM2.5 concentration in Guangzhou, China. Int. J. Environ. Res. Publ. Health 12:6 (2015), 7085–7099.
-
(2015)
Int. J. Environ. Res. Publ. Health
, vol.12
, Issue.6
, pp. 7085-7099
-
-
Liu, D.1
Li, L.2
-
17
-
-
84860551851
-
2.5 emissions control during the Beijing 2008 Olympic Games
-
Liu, Y., He, K., Li, S., Wang, Z., Christiani, D., Koutrakis, P., A statistical model to evaluate the effectiveness of PM2.5 emissions control during the Beijing 2008 Olympic Games. Environ. Int. 44 (2012), 100–105.
-
(2012)
Environ. Int.
, vol.44
, pp. 100-105
-
-
Liu, Y.1
He, K.2
Li, S.3
Wang, Z.4
Christiani, D.5
Koutrakis, P.6
-
18
-
-
85028944487
-
Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation
-
Li, X., Peng, L., Yao, X., Cui, S., Hu, Y., You, C., Chi, T., Long short-term memory neural network for air pollutant concentration predictions: method development and evaluation. Environ. Pollut. 231 (2017), 997–1004.
-
(2017)
Environ. Pollut.
, vol.231
, pp. 997-1004
-
-
Li, X.1
Peng, L.2
Yao, X.3
Cui, S.4
Hu, Y.5
You, C.6
Chi, T.7
-
19
-
-
0000551189
-
Popular ensemble methods: an empirical study
-
Maclin, R., Opitz, D., Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11 (1999), 169–198.
-
(1999)
J. Artif. Intell. Res.
, vol.11
, pp. 169-198
-
-
Maclin, R.1
Opitz, D.2
-
20
-
-
85048258541
-
2.5 pollution in Santiago, Chile
-
Moisan, S., Herrera, R., Clements, A., A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile. Int. J. Forecast. 34 (2018), 566–581.
-
(2018)
Int. J. Forecast.
, vol.34
, pp. 566-581
-
-
Moisan, S.1
Herrera, R.2
Clements, A.3
-
21
-
-
84933557438
-
2.5
-
Ong, B.T., Sugiura, K., Zettsu, K., Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5. Neural Comput. Appl. 27:6 (2016), 1553–1566.
-
(2016)
Neural Comput. Appl.
, vol.27
, Issue.6
, pp. 1553-1566
-
-
Ong, B.T.1
Sugiura, K.2
Zettsu, K.3
-
22
-
-
84942986317
-
Artificial neural networks and fuzzy time series forecasting: an application to air quality
-
Rahman, N.H.A., Lee, M.H., Suhartono, Latif, M., Artificial neural networks and fuzzy time series forecasting: an application to air quality. Qual. Quantity 49:6 (2015), 2633–2647.
-
(2015)
Qual. Quantity
, vol.49
, Issue.6
, pp. 2633-2647
-
-
Rahman, N.H.A.1
Lee, M.H.2
Suhartono3
Latif, M.4
-
23
-
-
75149176174
-
Ensemble-based classifiers
-
Rokach, L., Ensemble-based classifiers. Artif. Intell. Rev. 33:1–2 (2010), 1–39.
-
(2010)
Artif. Intell. Rev.
, vol.33
, Issue.1-2
, pp. 1-39
-
-
Rokach, L.1
-
24
-
-
84906705476
-
Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach
-
Russo, A., Soares, A.O., Hybrid model for urban air pollution forecasting: a stochastic spatio-temporal approach. Math. Geosci. 46 (2014), 75–93.
-
(2014)
Math. Geosci.
, vol.46
, pp. 75-93
-
-
Russo, A.1
Soares, A.O.2
-
25
-
-
84958729903
-
2.5 episodes occurring in multiple cities in central and southern Chile
-
Saide, P., Mena, M., Tolvett, S., Hernandez, P., Carmichael, G., Air quality forecasting for winter-time PM2.5 episodes occurring in multiple cities in central and southern Chile. J. Geophys. Res. Atmos. 121:1 (2016), 558–575.
-
(2016)
J. Geophys. Res. Atmos.
, vol.121
, Issue.1
, pp. 558-575
-
-
Saide, P.1
Mena, M.2
Tolvett, S.3
Hernandez, P.4
Carmichael, G.5
-
26
-
-
85013665232
-
2.5 concentrations forecasting
-
Wang, P., Zhang, H., Qin, Z., Zhang, G., A novel hybrid-Garch model based on ARIMA and SVM for PM2.5 concentrations forecasting. Atmos. Pollut. Res. 8:5 (2017), 850–860.
-
(2017)
Atmos. Pollut. Res.
, vol.8
, Issue.5
, pp. 850-860
-
-
Wang, P.1
Zhang, H.2
Qin, Z.3
Zhang, G.4
-
27
-
-
85048149425
-
2.5 concentration in China using partial differential equations
-
Wang, Y., Wang, H., Chang, S., Avram, A., Prediction of daily PM2.5 concentration in China using partial differential equations. PLoS One, 13(6), 2018, e0197666.
-
(2018)
PLoS One
, vol.13
, Issue.6
, pp. e0197666
-
-
Wang, Y.1
Wang, H.2
Chang, S.3
Avram, A.4
-
28
-
-
79955578106
-
10 air pollution index prediction in the urban area of Wuhan, China
-
Wu, S., Feng, Q., Du, Y., Li, X., Artificial neural network models for daily PM10 air pollution index prediction in the urban area of Wuhan, China. Environ. Eng. Sci. 28 (2011), 357–363.
-
(2011)
Environ. Eng. Sci.
, vol.28
, pp. 357-363
-
-
Wu, S.1
Feng, Q.2
Du, Y.3
Li, X.4
-
29
-
-
84930466218
-
Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: a panel study among young adults in Beijing, China
-
Wu, S.W., Yang, D., Wei, H.Y., Wang, B., Huang, J., Li, H., Shima, M., Deng, F., Guo, X., Association of chemical constituents and pollution sources of ambient fine particulate air pollution and biomarkers of oxidative stress associated with atherosclerosis: a panel study among young adults in Beijing, China. Chemosphere 135 (2015), 347–353.
-
(2015)
Chemosphere
, vol.135
, pp. 347-353
-
-
Wu, S.W.1
Yang, D.2
Wei, H.Y.3
Wang, B.4
Huang, J.5
Li, H.6
Shima, M.7
Deng, F.8
Guo, X.9
-
30
-
-
80052078099
-
Ensemble empirical mode decomposition: a noise assisted data analysis method
-
Wu, Z.H., Huang, N.E., Ensemble empirical mode decomposition: a noise assisted data analysis method. Adv. Adapt. Data Anal. 1:1 (2009), 1–41.
-
(2009)
Adv. Adapt. Data Anal.
, vol.1
, Issue.1
, pp. 1-41
-
-
Wu, Z.H.1
Huang, N.E.2
-
31
-
-
85049385081
-
Auto encoder-based deep belief regression network for air particulate matter concentration forecasting
-
Xie, J.J., Wang, X., Liu, Y., Bai, Y., Auto encoder-based deep belief regression network for air particulate matter concentration forecasting. J. Intell. Fuzzy Syst. 34:6 (2018), 3475–3486.
-
(2018)
J. Intell. Fuzzy Syst.
, vol.34
, Issue.6
, pp. 3475-3486
-
-
Xie, J.J.1
Wang, X.2
Liu, Y.3
Bai, Y.4
-
32
-
-
85009288963
-
The multi-dimensional ensemble empirical mode decomposition
-
Yao, Y., Sfarra, S., Ibarra-Castanedo, C., You, R.C., Maldague, X.P.V., The multi-dimensional ensemble empirical mode decomposition. J. Therm. Anal. Calorim. 128:3 (2017), 1841–1858.
-
(2017)
J. Therm. Anal. Calorim.
, vol.128
, Issue.3
, pp. 1841-1858
-
-
Yao, Y.1
Sfarra, S.2
Ibarra-Castanedo, C.3
You, R.C.4
Maldague, X.P.V.5
-
33
-
-
85035799017
-
2 concentration using an adaptive neuro-fuzzy inference system
-
Yeganeh, B., Hewson, M.G., Clifford, S., Tavassoli, A., Knibbs, L., Morawska, L., Estimating the spatiotemporal variation of NO2 concentration using an adaptive neuro-fuzzy inference system. Environ. Model. Softw 100 (2018), 222–235.
-
(2018)
Environ. Model. Softw
, vol.100
, pp. 222-235
-
-
Yeganeh, B.1
Hewson, M.G.2
Clifford, S.3
Tavassoli, A.4
Knibbs, L.5
Morawska, L.6
-
34
-
-
85045378706
-
PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors
-
Zhu, S., Lian, X., Lin, W., Chen, J., Shen, X., Yang, L., Qiu, X., Liu, X., Gao, W., Ren, X., Li, J., PM2.5 forecasting using SVR with PSOGSA algorithm based on CEEMD, GRNN and GCA considering meteorological factors. Atmos. Environ. 183 (2018), 20–32.
-
(2018)
Atmos. Environ.
, vol.183
, pp. 20-32
-
-
Zhu, S.1
Lian, X.2
Lin, W.3
Chen, J.4
Shen, X.5
Yang, L.6
Qiu, X.7
Liu, X.8
Gao, W.9
Ren, X.10
Li, J.11
|